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Introduction: The generally young K/Ar and 
40Ar/39Ar ages [1-3; cf. 4] of CM chondrites made us 

wonder whether carbonaceous xenoliths (CMX) en-

tombed in HED meteorites might retain more radiogenic 
40Ar than do ‘free-range’ CM-chondrites. To find out, we 

selected two HED breccias with carbonaceous inclusions 

in order to compare the 40Ar/39Ar release patterns and 

ages of the inclusions with those of nearby HED mate-

rial.  

Experimental methods: NWA6475 is a polymict 

achondrite breccia dominated by mafic/eucritic lithic 

clasts and mineral fragments with no recognized diog-

enitic component and has been classified as a polymict 

eucrite [5]. NWA6695, also a polymict breccia, has a sig-

nificant diogenite component, and therefore is classified 

as a howardite. Clasts in both samples consist of matrix-

supported assemblages of chondrules with fine-grained 

rims and lithic clasts . Matrix consists mainly of phyllo-

silicates, tochilinite and Fe-Ni sulfides. We conclude that 

these clasts are mainly CM2 material. One CM2 clast 

contains a fine-grained lithic clast that is C1 rather than 

CM1 as it apparently lacks chondrules. NWA 6474 and 

6695 are part of the spectrum of HED polymict achon-

drites; their populations of achondritic materials (clasts 

and minerals) and carbonaceous clasts overlap with re-

spect to textures and mineral chemistry [5]. 

The samples were irradiated for 78 hours at the 

USGS TRIGA nuclear reactor (no Cd shielding). The ir-

radiated samples were heated stepwise with a CO2 laser 

and the Ar isotopes released analyzed with a MAP215-

50 mass spectrometer [6]. Typical blanks (10-18 mol) 

were: 40Ar, 4680; 39Ar, 7; 38Ar, 4; 37Ar, 48; 36Ar, 18. 

Results: Mafic clast in NWA 6475; matrix in NWA 

6695 – The integrated, plateau, and isochron ages of 

these two silicate samples agree within the uncertainties 

at ~3.7 Ga comparable to a peak comprising eight HED 

meteorites with ages between 3.7 Ga and 3.8 Ga noted 

by [7]. 

The measured 36,38,40Ar concentrations are typical of 

howardites and eucrites [8]. The concentrations of cos-

mogenic 38Ar were calculated from the relation 
38Arc = (5.3538Ar-36Ar)/(5.35–0.65), where 5.35 and 

0.65 are the trapped and cosmogenic 36Ar/38Ar ratios, re-

spectively. 38Arc is produced primarily from Ca, for 

which the measured quantity 37ArCa (reactor-produced, 

calcium-derived 37Ar) serves as a proxy. The measured 

ratios of 38Arc/37ArCa, are roughly proportional to expo-

sure age. Ignoring shielding and using the production 

rates of [9], we obtain cosmic-ray exposure ages of 17 

Ma for NWA 6475 mafic clast and 18 Ma for NWA 6695 

matrix. 

Carbonaceous xenoliths (CMX) in NWA 6475 and 

NWA 6695 – The integrated ages (Ma±1) of 2821±28 

and 2894±17 are noticeably lower than those of their sil-

icate counterparts, 3709±27 and 3730±23. No step age 

for either CMX exceeds those of the silicates.  

Only ~35% of the 39Ar was released from CMX 

NWA 6475 at the lowest temperatures. This limited, 

low-temperature release and a generally rising release 

pattern (~2.7 Ga to 3.6 Ga), are unusual for CM material 

[2,10,11]. The apparent ages of CMX in NWA 6695 also 

mostly increase with increasing temperature, from 2.1 to 

3.3 Ga with minor exceptions for steps E and F.  

Relative to HED meteorites, CM chondrites typically 

contain higher concentrations of trapped 36,38Ar and 

lower concentrations of 40Ar. The measured 38Ar and 
40Ar concentrations of our samples conform to these gen-

eralizations. 

By assuming the CMXs contain no trapped 36,38Ar, 

we set an upper limit on the concentration of cosmogenic 
38Ar. The results are larger than for adjacent silicates, de-

spite higher concentrations of Ca-derived 37ArCa and 

hence of Ca in those silicates. We infer that much of the 

measured 38Ar in the CMXs derived from the irradiation 

of Cl in the nuclear reactor. 

Discussion: Pairing - NWA 6475 and NWA 6695 may 

be paired. The 40Ar/39Ar ages, release patterns, and cos-

mic-ray exposure ages agree. Although their official 

types shock classifications differ [5], the two meteorites 

appear to have sampled effectively identical Vestan li-

thologies in different proportions. Confirmation of pair-

ing requires further comparisons of the petrographic and 

isotopic properties of lithic clasts and the determination 

of the terrestrial ages. 
40Ar losses: CMXs vs. silicates - Bogard [7] argued 

that an intense early bombardment of the Solar System 

re-set the 40Ar/39Ar ages of many HED meteorites. In this 

picture, a large impact on Vesta indirectly heated near-

surface material enough to de-gas Ar. Such heating 

likely degassed the Ar in carbonaceous xenoliths as well, 

if we discount the remote possibility that they were cap-

tured later. Judging from their flat release patterns, the 

silicate samples retained all the Ar that accumulated 



thereafter. In contrast, the 40Ar*/39ArK ratios of the 

CMXs suggest the loss by diffusion of about 40% of the 

radiogenic 40Ar during the same period. Larger losses for 

the CMXs are expected qualitatively based on a consid-

eration of relative diffusion parameters, but the full ex-

tent of those losses may have been reduced by the lower 

porosity of the surrounding achondrite matrix.  
40Ar losses: CMXs vs. Murchison and other CMs –  

We assess the magnitudes of 40Ar losses from CMs 

based on formation ages of ~ 4.57 Ga [12]. So calculated, 

the 40Ar* loss is 58% for a CM chondrite with an age of 

3.2 Ga and 82% for an age of 2.0 Ga. These values ex-

ceed the 40% losses inferred for the CMXs. Furthermore, 

the patterns of 40Ar release in most Murchison samples 

and the CMXs differ: The former tend to decrease and 

the latter to increase with increasing heating temperature. 

Primary factors influencing the integrated losses in space 

include the value of, and the time spent at, the peak tem-

perature. The cosmic ray exposure ages of NWA 6475 

and NWA 6695 are 10 to 20 times larger than those of 

Murchison [13] and, typically, of other CMs [14]. We 

infer that either 1) the orbits of the two HED meteorites 

studied had larger perihelia than the orbits of CMs; 

and/or 2) as noted above, the matrix surrounding the 

CMXs impeded the loss of radiogenic 40Ar. Observations 

of the 40Ar/39Ar systematics of heavily altered CMs ex-

tend these trends [11]. 

Conclusions: Carbonaceous inclusions (CMXs) in 

two HED meteorites lost a greater fraction of radiogenic 
40Ar than did surrounding host material, but a smaller 

fraction of it than did free-range CM-chondrites such as 

Murchison or more heavily altered ones. Importantly, 

however, the siting of the CMXs in HED matrix did not 

prevent the 40Ar loss of about 40% of the radiogenic 40Ar, 

even from phases that degas at high laboratory tempera-

tures. We infer that carbonaceous asteroids with perihe-

lia of 1 AU probably experience losses of at least this 

size. The usefulness of 40Ar/39Ar dating for samples re-

turned from C-type asteroids may hinge, therefore, on 

identifying and analyzing separately small quantities of 

the most retentive phases of carbonaceous chondrites. 
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Figure 1. Apparent ages and K/Ca ratios for step-heated, carbonaceous 
and silicate samples from NWA 6695 and 6475. 

 

 


