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Abstract

A desire for more complete documentation of the National Aeronautics and Space Administration
(NASA) Armstrong Flight Research Center (AFRC), Edwards, California legacy code used in
the core simulation has led to this effort to fully document the oblate Earth six-degree-of-freedom
equations of motion and integration algorithm. The authors of this report have taken much of
the earlier work of the simulation engineering group and used it as a jumping-off point for this
report. The largest addition this report makes is that each element of the equations of motion
is traced back to first principles and at no point is the reader forced to take an equation on
faith alone. There are no discoveries of previously unknown principles contained in this report;
this report is a collection and presentation of textbook principles. The value of this report is
that those textbook principles are herein documented in standard nomenclature that matches
the form of the computer code DERIVC. Previous handwritten notes are much of the backbone
of this work, however, in almost every area, derivations are explicitly shown to assure the reader
that the equations which make up the oblate Earth version of the computer routine, DERIVC, are
correct.

Nomenclature

a speed of sound in feet per second
a general acceleration vector
AFRC Armstrong Flight Research Center
b wing span in feet
c̄ mean aerodynamic chord in feet
cg center of gravity
Cyx transformation matrix from general x−Frame to general y−Frame
d
dt

x
time derivative of a vector taken relative to the general x−Frame

[D] or DCM direction cosine matrix
d
dt(∆R) vertical speed in feet per second of the vehicle along the radius vector
e0 zeroth element of the lv to b attitude quaternion
ė0 rate of change of the zeroth element of the lv to b attitude quaternion
e1 first element of the lv to b attitude quaternion
ė1 rate of change of the first element of the lv to b attitude quaternion
e2 second element of the lv to b attitude quaternion
ė2 rate of change of the second element of the lv to b attitude quaternion
e3 third element of the lv to b attitude quaternion
ė3 rate of change of the third element of the lv to b attitude quaternion
EOM equations of motion
F general force vector
h geocentric altitude above the oblate Earth

ḣ altitude rate

ḧ altitude acceleration
hgd geodetic altitude of the position of the vehicle projected to the surface

of the WGS-84 ellipsoid along the normal to that surface
I inertia tensor
Ixx moment of inertia about the xb axes in slug feet squared
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Iyy moment of inertia about the yb axes in slug feet squared
Izz moment of inertia about the zb axes in slug feet squared
Ixy product of inertia about the x− yb axes in slug feet squared
Ixz product of inertia about the x− zb axes in slug feet squared
Iyz product of inertia about the y − zb axes in slug feet squared
JSC Johnson Space Center
J2 second zonal gravitational coefficient
J3 third zonal gravitational coefficient
J4 fourth zonal gravitational coefficient
J5 fifth zonal gravitational coefficient
J6 sixth zonal gravitational coefficient
J7 seventh zonal gravitational coefficient
J8 eighth zonal gravitational coefficient
m mass of the vehicle in slugs
M Mach number of the vehicle
NASA National Aeronautics and Space Administration
NED north-east-down coordinate system
p general linear momentum vector
p roll rate
ṗ roll acceleration
Pa ambient static pressure in pounds per square foot
plv Euler roll rate, angular rate around the x−B axis with respect to the

rotating lv−Frame
q pitch rate
q̇ pitch acceleration
q̄ dynamic pressure in pounds per square foot
Qc impact pressure in pounds per square foot
qlv Euler pitch rate, angular rate around the y −B axis with respect to the

rotating lv−Frame
r yaw rate
ṙ yaw acceleration
rlv Euler yaw rate, angular rate around the z −B axis with respect to the

rotating lv−Frame
R distance from the center of gravity of the vehicle to the center of the

Earth in feet
RUh specific angular momentum of the vehicle
d
dt(RUh) rate of change of specific angular momentum of the vehicle
Rlocal local radius of the Earth at the vehicle geocentric latitude in feet
R⊕ radius of the Earth at the equator (6378137 meters) (ref. 6)
Rp radius of the Earth at the pole (6356752.3142 meters) (ref. 6)
S reference wing area in feet squared
t time
ṫ rate of change of time
UbRA

forward airmass speed in feet per second in the b−Frame
Ug forward gust speed in feet per second in the b−Frame
UEN up-east-north coordinate system
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V general velocity vector
v general vector
vx vector in general x−Frame
V speed of the vehicle with respect to the airmass

V̇ rate of change of speed of the vehicle with respect to the airmass
VEAS equivalent airspeed in knots (international nautical miles per hour)
VbRA

side speed in feet per second in the b−Frame
Ve rocket exhaust speed
Vg side gust speed in feet per second in the b−Frame
Vi inertial speed of the vehicle
wh inertial radial velocity in the h−Frame
ẇh inertial radial acceleration of the h−Frame
WbRA

down speed in feet per second in the b−Frame
Wg down gust speed in feet per second in the b−Frame
WGS-84 World Geodetic System 1984
x x−component of the ground track in fe−Frame
ẋ x−component of ground track rate in fe−Frame
Xw north component of the wind in feet per second in the lv−Frame
Yw east component of the wind in feet per second in the lv−Frame
y y−component of the ground track in fe−Frame
ẏ y−component of ground track rate in fe−Frame
Zw down component of the wind in feed per second in the lv−Frame
α angle of attack of the vehicle with respect to the airmass
α̇ angle of attack rate
β angle of sideslip of the vehicle with respect to the airmass

β̇ angle of sideslip rate
∆J2 permanent tidal deformation effect (9.3× 10−9) (ref. 6)
∆R height of vehicle in feet above a reference sphere with radius R⊕ as

measured along the vector from the center of the Earth to the cg of the
vehicle

∆x distance in feet in the x direction from the aerodynamic reference point
to the cg of the vehicle measured in the b−Frame

∆y distance in feet in the y direction from the aerodynamic reference point
to the cg of the vehicle measured in the b−Frame

∆z distance in feet in the z direction from the aerodynamic reference point
to the cg of the vehicle measured in the b−Frame

θ Euler pitch attitude in radians between the b−Frame and the lv−Frame

θ̇ Euler pitch attitude rate
λ geocentric latitude of the vehicle in the e−Frame

λ̇ geocentric latitude rate of the vehicle
ϑ geocentric longitude of the vehicle in the e−Frame

ϑ̇ geocentric longitude rate of the vehicle
λgc geocentric latitude of the position of the vehicle projected to the surface

of the WGS-84 ellipsoid along the normal to that surface
λgd geodetic latitude of the position of the vehicle projected to the surface

of the WGS-84 ellipsoid along the normal to that surface
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µ gravitational constant of the Earth (3986005× 108 meters cubed per
second squared) (ref. 6)

ρ air density in slugs per cubic foot
ρ0 sea level air density (0.0023769 slugs per cubic foot)
φ Euler roll attitude between the b−Frame and the lv−Frame

φ̇ Euler roll attitude rate
ψ Euler heading attitude between the b−Frame and the lv−Frame

ψ̇ Euler heading attitude rate
ψh heading angle of the inertial velocity in the h−Frame with respect to

the lv−Frame

ψ̇h heading rate of the inertial velocity in the h−Frame with respect to
the lv−Frame

ωxy the angular velocity of the y−Frame in the x−Frame
Ω⊕ angular velocity of the Earth (7292115× 10−11 radians per second)

(ref. 6)

1 Introduction

A review of the simulation engineering branch’s handwritten documentation (ref. 1) of the
National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center
(AFRC) core simulation was undertaken. The equations of motion used in this core simulation
were built upon those presented in reference 2. This early documentation was expanded; this
report is the result. Throughout this report the use of the typewriter font indicates reference
to a computer program variable, routine name, or computer storage location. The handwritten
notes included the following introduction:

A review of the EOM implemented by Bruce Powers for the Shuttle sim was under-
taken in early 1985. The original implementation was undertaken after the Shuttle
Sim was fully implemented with a flat Earth model. Compromises were made at the
time to minimize impact on existing common blocks. The review was undertaken
with the intent of establishing an understanding of the source of the EOM, clean-
ing up the common block interface, re-configuring the routines to be consistent with
current Sim. Eng. practice, making corrections or additions as appropriate. The
EOM were totally reworked, making rigorous use of naming conventions, and adding
extensive comments. In the process, the following changes or corrections were made:

1. An oversight which resulted in single precision integration of the EOM was
corrected to utilize double precision integration.

2. The expression for ḣ was expanded to include a term which includes oblate Earth
effects.

3. ẋ and ẏ (velocities over the ground) were approximated by vehicle inertial veloc-
ities. These expressions were multiplied by the ratio Rlocal

R to improve approxi-
mation.

4. Double precision is now used for many local variables.

5. The gravity terms have been upgraded based on input from Bill Lear, et. al. of
JSC.
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6. Calculations were added to determining geodetic latitude and altitude. Still to
be done.

The last element listed, incorporation of equations to determine geodetic latitude and altitude,
has now been accomplished using equations developed from several NASA reports, such as those
cited as references 3 and 4, and an American Institute of Aeronautics and Astronautics (AIAA)
journal article (ref. 5). Section 5.2 presents the background and derivation for this transformation.
Several additional changes have been added to the simulation:

• All references to the simple Fisher ellipsoid parameters have been replaced with the newer
World Geodetic System 1984 (WGS-84) ellipsoid parameters (ref. 6).

• Euler angles, ψ, θ, φ, have been replaced with quaternions to eliminate singularities. The
Euler angles are still used for initialization and are available as computed parameters.

• The J2 zonal harmonic gravity model has been replaced with a variable gravity model
capable of running as a J2, J4 or J8 model. The parameters of this model were derived
from the normalized gravitational coefficients defined in the WGS-84 Earth Gravitational
Model (ref. 6).

The algorithm used in the integration of the equations of motion has been used for many years
at NASA AFRC. Comments in the FORTRAN code attribute the original implementation of the
integration algorithm to Albert Myers in November 1972. The comments also indicate that circa
1978 the algorithm was modified by Albert Myers for the HiMAT program. The modification
predicted the end-integration-step derivative based upon the start- and mid-integration-step
values. The final modification was to integrate the values of many variables computed at the
mid-integration-step to the end-integration-step. Several of these variables were originally states
in the flat Earth equations of motion, but had become only computed parameters in the oblate
Earth equations of motion.

2 Coordinate and Parameter Systems

Several coordinate or parameter systems are used in the equations of motion (EOM). Their
definitions and descriptions follow:

body axis coordinate system (b−Frame) The body axis system has its origin fixed at the
center of gravity (cg) of the vehicle. The positive x−B axis points out of the nose of the
vehicle, the positive y−B axis points out of the right wing of the vehicle, and the positive
z −B axis points through the bottom of the vehicle. The b−Frame is shown in figure 1.

local flat Earth coordinate system (fe−Frame) The local flat Earth coordinate system
has its origin at an arbitrary location on the surface of the Earth at longitude ϑ0 and
latitude λ0. The positive x − fe axis points north, the positive y − fe axis points east,
and the positive z − fe axis points down. The fe−Frame is therefore a north-east-down,
or NED, coordinate system. The fe−Frame is shown in figure 2.
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Figure 2. Local flat Earth coordinate system (fe−Frame).
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local vertical coordinate system (lv−Frame) The local vertical coordinate system has its
origin at the cg of the vehicle. The reference plane is perpendicular to the radius vector
to the center of the Earth. The positive x − lv axis points north, the positive y − lv axis
points east, and the positive z− lv axis points through the center of the Earth. Therefore,
lv−Frame is also an NED coordinate system. The Euler angles between the lv−Frame and
b−Frame are the conventional heading, pitch, and roll angles. The Earth centric lv−, h−,
e−, and i−Frames are shown in figure 3.

160003

Down, h3
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h2

East

ZI = ZE
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XE

(0, 0, 0)

XI

North

(   0, λ0)

Equator

Greenwich
Meridian
(at t = 0)

λ

Ω + t

ψh

YE

Figure 3. Local vertical coordinate system, heading coordinate system, Earth axis system, and
inertial axis system (Earth centric view of lv−Frame, h−Frame, e−Frame, and i−Frame).

heading coordinate system (h−Frame) The heading coordinate system has its origin at the
cg of the vehicle. The reference plane is perpendicular to the radius vector to the center
of the Earth, and the reference direction (positive x−H) in the plane is the projection of
the vehicle inertial velocity vector on the reference plane. The h−Frame differs from the
lv−Frame by the single angle ψh, the heading angle of the inertial velocity vector. The
vehicle centric definitions of the lv− and h−Frames are shown in figure 4.

Earth axis system (e−Frame) The Earth axis coordinate system has its origin at the center
mass of the Earth and is fixed in the rotating Earth. x − E and y − E are in the equa-
torial plane of the Earth, with x − E pointing through the Greenwich Meridian/equator
intersection, z − E points through the North Pole1, and y − E completes the right-hand

1Strictly speaking, the z − E points in the direction of the Conventional Terrestrial Pole for polar motion, as
defined by the Bureau International de l’Heure for epoch 1984.
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coordinate system. This e−Frame is equivalent to the WGS-84 coordinate system (ref. 6).
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Figure 4. Local vertical and heading coordinate systems (vehicle centric view of lv− and
h−Frames).

inertial axis system (i−Frame) The inertial axis system (or Earth center inertial coordinate
system) has its origin at the center of mass of the Earth. x−I points through the time zero
Greenwich Meridian/equator intersection, z−I points through the North Pole of the Earth,
and y − I completes the right-hand coordinate system. Thus, the i−Frame represents the
e−Frame coordinate system at time zero with the only difference being that it does not
rotate with the Earth2.

3 States and Derived Parameters

A list of the states and derivatives of the states used in the EOM and the definition of the
state are presented below. These variables are all contained in the FORTRAN common block
/DRVOUT/. The states used in the oblate Earth formulation of the EOM are different than
those typically used in flat Earth EOM. The formulation of the states used in the oblate Earth
EOM are particularly suited to airplanes or suborbital rocket flight as they define the vehicle
location in easily understood latitude, longitude, and altitude3. The vehicle attitude is stored as

2This inertial frame is similar to those used by many other aircraft or spacecraft simulations, but because of
the arbitrary choice made for time zero, it is only useful for simulation of a vehicle in the gravitational influence
of the Earth. Thus, it cannot be used to simulate flights to Earth’s moon.

3The only complication arises from the fact that global positioning system (GPS) geodetic coordinates must be
converted to the geocentric quantities that the simulation uses. Several routines aid the user in this initialization
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a quaternion, which is a simple extension from Euler angles. Use of the quaternion is required
to ensure that the singularity associated with extreme pitch angles4 is avoided. The body rates
are exactly the same as for flat Earth; however, if the vehicle is desired to remain at a constant
attitude relative to a rotating Earth, then small angular rates are required of the vehicle to
account for the rotation rate of the Earth5. The velocities of the vehicle are the only states that
have no natural relationship to the flat Earth EOM states. To aid the user, several routines
have been written to allow the user to specify airmass velocities (total speed, angle of attack,
and angle of sideslip) and automatically convert these quantities to the oblate Earth simulation
states.

t, T time in seconds since integration of the EOM started.

ṫ, TDOT rate of change of time in seconds per second.

p, P roll rate in radians per second, angular rate around the x−B axis.

ṗ, PDOT roll acceleration in radians per second squared, angular acceleration around the x − B
axis.

q, Q pitch rate in radians per second, angular rate around the y −B axis.

q̇, QDOT pitch acceleration in radians per second squared, angular acceleration around the y−B
axis.

r, R yaw rate in radians per second, angular rate around the z −B axis.

ṙ, RDOT yaw acceleration in radians per second squared, angular acceleration around the z − B
axis.

RUh, RUH the distance to the center of the Earth multiplied by inertial velocity along the xh
axis in feet squared per second. This product represents the specific angular momentum of
the vehicle in an orbit (which is constant while the vehicle is in an orbit acted only upon
by a central gravitational field).

d
dt(RUh), RUHDOT rate of change of specific angular momentum of the vehicle in feet squared per

second squared.

ψh, PSIH heading angle of the inertial velocity in the h−Frame with respect to the lv−Frame in
radians. This angle defines the difference between the lv− and h−Frames. ψh is positive
for clockwise rotation of the h−Frame with respect to the lv−Frame6.

ψ̇h, PSIHDT heading rate of the inertial velocity in the h−Frame with respect to the lv−Frame
in radians per second.

phase.
4In aircraft, a standard Euler sequence is used: heading angle (0 to 360◦); pitch attitude (−90 to +90◦); and

bank angle (−180 to +180◦). Thus, a singularity exists at +90◦ and also at −90◦ pitch attitude.
5These small rates represent the rotation rate of the Earth projected onto the body axes of the vehicle, making

the rates dependent upon the attitude of the vehicle. The simulation has helper routines which are used to set
these Euler rates.

6This attribute is in keeping with the right-hand-rule for a positive rotation around the positive down vector
of the lv−Frame.
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wh, WH inertial radial velocity in the h−Frame in feet per second.

ẇh, WHDOT inertial radial acceleration of the h−Frame in feet per second squared.

e0, E0 zeroth element of the lv to b attitude quaternion; it has no units.

ė0, E0DOT rate of change of the zeroth element of the lv to b attitude quaternion.

e1, E1 first element of the lv to b attitude quaternion; it has no units.

ė1, E1DOT rate of change of the first element of the lv to b attitude quaternion.

e2, E2 second element of the lv to b attitude quaternion; it has no units.

ė2, E2DOT rate of change of the second element of the lv to b attitude quaternion.

e3, E3 third element of the lv to b attitude quaternion; it has no units.

ė3, E3DOT rate of change of the third element of the lv to b attitude quaternion.

∆R, DELR height of vehicle above a reference sphere with radius R⊕ as measured along the vector
from the center of the Earth to the cg of the vehicle in feet.

d
dt(∆R), DELRDT vertical velocity of the vehicle along the radius vector in feet per second.

λ XLAT geocentric latitude of the vehicle in the e−Frame in radians.

λ̇, XLATDT geocentric latitude rate of the vehicle in radians per second.

ϑ XLNG geocentric longitude of the vehicle in the e−Frame in radians.

ϑ̇ XLNGDT geocentric longitude rate of the vehicle in radians per second.

Several important quantities are computed in the EOM. Some of these quantities represent
variables which are normally considered to be states of the vehicle in a flat Earth EOM, but
using this oblate Earth formulation of the EOM they are only derived parameters. The first
group are contained in the common block /DRVOT2/. Their definitions are presented below:

V , V speed in feet per second of the vehicle with respect to the airmass.

V̇ , VDOT rate of change of speed in feet per second squared.

α, ALP angle of attack in radians of the vehicle with respect to the airmass.

α̇, ALPDOT angle of attack rate in radians per second.

β, BTA angle of sideslip in radians of the vehicle with respect to the airmass.

β̇, BTADOT angle of sideslip rate in radians per second.

θ, THA Euler pitch attitude in radians between the b−Frame and the lv−Frame.

θ̇, THADOT Euler pitch attitude rate in radians per second, measured between the b−Frame and
the lv−Frame.
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φ, PHI Euler roll attitude in radians between the b−Frame and the lv−Frame.

φ̇, PHIDOT Euler roll attitude rate in radians per second, measured between the b−Frame and
the lv−Frame.

ψ, PSI Euler heading attitude in radians between the b−Frame and the lv−Frame.

ψ̇, PSIDOT Euler heading attitude rate in radians per second, measured between the b−Frame
and the lv−Frame.

h, H geocentric altitude in feet above the oblate Earth.

ḣ, HDOT altitude rate in feet per second.

x, X x−component of the ground track in feet, positive is north, measured in the fe−Frame.

ẋ, XDOT x−component of ground track rate in feet per second, measured in the fe−Frame.

y, Y y−component of the ground track in feet, positive is east, measured in the fe−Frame.

ẏ, YDOT y−component of ground track rate in feet per second, measured in the fe−Frame.

Vi, VI inertial speed of the vehicle in feet per second.

Several other quantities are also in the EOM to either aid the initialization of the simulation
or to contain airmass related parameters. These are contained in six additional common blocks:
/DRVOT3/, /EULERS/, /GSTOUT/, /SIMOUT/, /WINDAT/, and /WINDT2/. Their definitions are
presented below:

λgc, LATGC geocentric latitude in radians of the position of the vehicle projected to the surface
of the WGS-84 ellipsoid along the normal to that surface.

λgd, LATGD geodetic latitude in radians of the position of the vehicle projected to the surface of
the WGS-84 ellipsoid along the normal to that surface.

hgd, HGD geodetic altitude in feet of the position of the vehicle projected to the surface of the
WGS-84 ellipsoid along the normal to that surface.

ḧ, HACCEL altitude acceleration in feet per second squared (the time derivative of HDOT).

plv, PEULER Euler roll rate in radians per second, angular rate around the x−B axis with respect
to the rotating lv−Frame.

qlv, QEULER Euler pitch rate in radians per second, angular rate around the y − B axis with
respect to the rotating lv−Frame.

rlv, REULER Euler yaw rate in radians per second, angular rate around the z−B axis with respect
to the rotating lv−Frame.

UbRA
, UBRA forward airmass speed in feet per second in the b−Frame.

Ug, UG forward gust speed in feet per second in the b−Frame.

VbRA
, VBRA side speed in feet per second in the b−Frame.
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Vg, VG side gust speed in feet per second in the b−Frame.

WbRA
, WBRA down speed in feet per second in the b−Frame.

Wg, WG down gust speed in feet per second in the b−Frame.

Xw, XWIND north component of the wind in feet per second in the lv−Frame.

Yw, YWIND east component of the wind in feet per second in the lv−Frame.

Zw, ZWIND down component of the wind in feed per second in the lv−Frame.

4 Background for the Equations of Motion

To determine the aerodynamic forces and moments which act on the vehicle it is necessary to
determine the parameters which are inputs to the aerodynamic model. These are typically: α,
α̇, β, β̇, M , q̄, ∆x, ∆y, ∆z, S, c̄, b, p, q, r, and all control surface positions.

Several of these quantities are directly related to the atmospheric model. The EOM them-
selves do not depend upon a particular atmosphere model or its characteristics. Therefore, to
keep this report simple, all discussion of the atmosphere will be of the simple atmosphere model
defined in reference (7). This model defines several quantities which are used throughout the
EOM. Speed of sound, a, is used in the computation of Mach number, M ; air density, ρ, is used
to compute dynamic pressure, q̄; and both M and ambient static pressure, Pa, are used in the
computation of impact pressure, Qc. A simple wind, gust, and turbulence model will be as-
sumed. The wind model defines three components of the wind vector, XWIND, YWIND, and ZWIND.
These components are the north, east, and down components of the wind in feet per second.
These quantities are added to airmass relative velocities in the lv−Frame. The lv−Frame is used
because it is aligned with the NED reference frame of the wind model. The gust and turbulence
models each help to define the quantities, UG, VG, and WG. These components are added to the
airmass relative velocities, UBRA, VBRA, and WBRA in the b−Frame. Thus, all of these wind, gust,
and turbulence components affect the computation of V , α, and β. The exact details of these
computations is now discussed.

5 Computation of Derived Parameters

The EOM presented here use as states many quantities which have not been used in the de-
velopment of aerodynamic models. Airmass relative velocities have typically been used in the
development of these aerodynamic models. Navigation parameters such as geodetic latitude
and geodetic altitude are also not available as vehicle states. The computation of these derived
parameters from the vehicle state are the subject of the next few sections.

5.1 Airmass Parameters

The computation of vehicle angle of attack, sideslip, airmass speed, and altitude are all dependent
upon the vehicle state (RUh, ψh, Wh, λ, and ∆R). Altitude, h, is computed from the radius
from the center of mass of the Earth to the cg of the vehicle, R, and local radius, Rlocal. We start
with a ellipse representing a slice through the Earth along a meridian plane aligned with the

13



160005

W

Rp

hgd

R lo
ca

l

h

R

Z

R + 
λgc λgd λ

Figure 5. Geocentric and geodetic parameters for the Earth ellipse.

longitude of the vehicle, λ. Figure 5 shows the resulting ellipse geometry including the various
latitude and altitude quantities.

The local radius can be derived through simple mathematical manipulation of the equation
for this ellipse:

w2

R2
⊕

+
z2

R2
p

= 1 (1)

Making the following Cartesian to polar coordinate conversion:

w = Rlocal cos(λ) (2)

z = Rlocal sin(λ) (3)

we now have the following expression:

R2
local cos2(λ)

R2
⊕

+
R2

local sin
2(λ)

R2
p

= 1 (4)

14



Through simple rearrangement and trigonometric substitutions we have:

R2
local(cos2(λ)R2

p + sin2(λ)R2
⊕) = R2

pR
2
⊕

R2
local(cos2(λ)R2

p + sin2(λ)R2
⊕ + cos2(λ)R2

⊕ − cos2(λ)R2
⊕) = R2

pR
2
⊕

R2
local(cos2(λ)(R2

p −R2
⊕) + (sin2(λ) + cos2(λ))R2

⊕) = R2
pR

2
⊕

R2
local(cos2(λ)(R2

p −R2
⊕) +R2

⊕) = R2
pR

2
⊕

R2
local(cos2(λ)(

R2
p

R2
⊕
− 1) + 1) = R2

p (5)

Finally, solving for Rlocal and rearranging terms slightly we have:

Rlocal = Rp/

√√√√1−

(
1−

(
Rp
R⊕

)2
)

cos2(λ) (6)

Defining ∆R by the following equation:

R = R⊕ + ∆R (7)

We now have a definition for altitude:

h = R−Rlocal (8)

The next step is to convert the h−Frame velocity states to the lv−Frame.

Uh = RUh/R (9)

Ulv = Uh cos(ψh) (10)

Vlv = Uh sin(ψh) (11)

Wlv = Wh (12)

Once the velocities are in the lv−Frame we can compute the airmass relative quantities. The
wind velocities in the lv−Frame have been computed with some process which typically uses h
as its independent variable. These wind velocities have three components in the lv−Frame. The
north component is Xw, the east component is Yw, and finally the down component is Zw (this
last one is typically zero but is included for downdrafts or updrafts). This equation assumes that
the atmosphere rotates with the Earth.

UlvRA
= Ulv −Xw (13)

VlvRA
= Vlv − Yw −R cos(λ)Ω⊕ (14)

WlvRA
= Wlv − Zw (15)

Now that we have the airmass relative velocities we can transform them to the b−Frame
using the direction cosine matrix (DCM) (which will be defined in the next section). This is also
the point where we can add the gust velocities.

V bRA
= [D]V lvRA

+ V g (16)
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Expanding these vectors we have:
UbRA

VbRA

WbRA

 = [D]


UlvRA

VlvRA

WlvRA

+


Ug
Vg
Wg

 (17)

With these b−Frame velocities we can solve for V outright, and for α and β using the four-
quadrant arctangent function, atan2():

V =
√
U2
bRA

+ V 2
bRA

+W 2
bRA

(18)

tan(α) = WbRA
/UbRA

(19)

tan(β) = cos(α)VbRA
/UbRA

(20)

Inertial speed can be derived from either the h−Frame or lv−Frame inertial velocities. Using
the h−Frame velocities we have:

Vi =
√
U2
h +W 2

h (21)

Similarly, we can derive expressions for Mach number and dynamic pressure using standard
definitions for these quantities and the previously defined airmass relative speed and local atmo-
spheric characteristics.

M = V/a (22)

q̄ =
1

2
ρV 2 (23)

Solving for equivalent airspeed requires only a little more work. The definition of equivalent
airspeed is:

VEAS = V

√
ρ

ρ0
(24)

Rearranging terms and using the previous definition of q̄, we arrive at the following:

VEAS =

√
2

ρ0

√
1

2
ρV 2

= (

√
2

ρ0
)
√
q̄ (25)

Since VEAS is usually expressed in knots (or nautical miles per hour) and not feet per second,
we apply the following conversion using the number of seconds in an hour, the international
standard definition for the nautical mile (ref. 6), and the sea level standard value for air density
(ref. 7) .

VEAS =

(
3600.0

6076.11548556

√
2

0.0023769

)
√
q̄

= 17.1864
√
q̄ (26)

The next step is to derive the mass properties. This model typically computes the vehicle
mass, cg location, moments of inertia, and products of inertia as a function of remaining propel-
lant, landing gear location, et cetera. After these derived parameters have been computed we
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call the aerodynamic model, the engine model, the reaction control system model, the landing
gear model, gravity model, and any additional models that create forces or moments acting on
the vehicle (such as a hold-down model or slosh model). The forces and moments acting on the
vehicle can then be summed.

In the DERIVC routine these forces are all summed in the b−Frame except for the gravity
forces. The landing gear model (and hold-down model if one is included) are treated in a special
manner to ensure that the vehicle can “rest” on the gear without motion (or on the hold-down
brackets). ∑

F b = F aero + F engine + FRCS + F gear + ... (27)

These forces are then divided by the mass to obtain the body accelerations.

ab = F b/m (28)

These body accelerations are transformed from the b−Frame to the lv−Frame and the gravity
accelerations are added. These gravity accelerations will be defined in a later section.

alv = [D]−1ab + aglv (29)

Transforming these accelerations from the lv−Frame to the h−Frame:

ah =

 cos(ψh) sin(ψh) 0
− sin(ψh) cos(ψh) 0

0 0 1

alv (30)

Similarly, the moments are all summed in the b−Frame. Again the landing gear model (and
hold-down model if one is included) are treated in a special manner to ensure that the vehicle
can “rest” on the gear without rotation (or on the hold-down brackets).∑

N b = Naero + N engine + NRCS + Ngear + ... (31)

5.2 Exact Geodetic Parameters

The problem of computing the exact geodetic latitude and geodetic altitude of an arbitrary point
given in the e−Frame coordinates is a complex problem. The technique used in the Armstrong
simulation is built upon derivation taken from (refs. 3, 4, and 5). The algorithm and its derivation
are presented below:

The distance of a vehicle to the Earth ellipsoid is given by:

d =
√

(X −Xg)2 + (Y − Yg)2 + (Z − Zg)2 (32)

where (Xg, Yg, Zg) is the location of the vehicle and (X,Y, Z) is the location of a point on
the Earth ellipsoid. For purposes of computing the geodetic parameters, the geometry can be
simplified in the same manner as previously shown in figure 5.

By eliminating longitude, the distance of a vehicle to Earth ellipsoid is given by:

d =
√

(W −Wg)2 + (Z − Zg)2 (33)

where (Wg, Zg) is the location of the vehicle and (W,Z) is the location of a point on the Earth
ellipsoid.
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The minimum distance is the altitude of the vehicle, hgd, and can be determined through the
Lagrange multiplier method (ref. 8).

Scaling each of the simplified e−Frame vehicle coordinates with radius, R, we make the
following substitutions.

ag = R⊕/R (34)

bg = Rp/R (35)

Wg = cos(λ)R (36)

Zg = sin(λ)R (37)

W0g = cos(λ) (38)

Z0g = sin(λ) (39)

In the following formulation the performance index is L(W,Z), and the constraint relationship
is f(W,Z) = 0. Therefore, for our simple problem:

L(W,Z) = d2 = (W −W0g)2 + (Z − Z0g)2 (40)

since minimum distance requires minimum d2. The constraint equation is:

f(W,Z) =
W 2

a2g
+
Z2

b2g
− 1 = 0 (41)

Now we can form the adjoint, H(W,Z) with a single multiplier, α:

H(W,Z, α) = L(W,Z) + αf(W,Z)

= (W −W0g)2 + (Z − Z0g)2 − α
(
W 2

a2g
+
Z2

b2g
− 1

)
(42)

Each of the partial derivatives of H are formed and equated to zero. Thus, the following:

∂H

∂W
= 2(W −W0g)− 2αW

a2g
= 0 (43)

∂H

∂Z
= 2(Z − Z0g)− 2αZ

b2g
= 0 (44)

∂H

∂α
= −W

2

a2g
− Z2

b2g
+ 1 = 0 (45)

Solving for W and Z we have:

W =
W0ga

2
g

a2g − α
(46)

Z =
Z0gb

2
g

b2g − α
(47)

Finally, substituting these expressions for W and Z into equation (45) we form the following
normalized fourth-order polynomial:

Pg(α) = α4 − 2a2gb
2
g

(
( 1
ag

)2 + ( 1
bg

)2
)
α3 + a2gb

2
g

(
4 + (

ag
bg

)2 + (
bg
ag

)2 − (
W0g

bg
)2 − (

Z0g

ag
)2
)
α2

+2a2gb
2
g

(
W 2

0g + Z2
0g − a

2
g − b2g

)
α+ a2gb

2
g

(
a2gb

2
g −W 2

0gb
2
g − Z2

0ga
2
g

)
= 0

(48)
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The piercing point is found by setting αg to the smallest real root of Pg(α).

αg = min(<(R(Pg(α))) (49)

Compute the coordinate of the piercing point on the surface of the reference ellipsoid.

Wpierce = R
W0ga

2
g

a2g − αg
(50)

Zpierce = R
Z0gb

2
g

b2g − αg
(51)

Compute the altitude above (or below) the reference ellipsoid7.

hgd = − sgn(αg)
√

(Wpierce −Wg)2 + (Zpierce − Zg)2 (52)

With the piercing point solved, we can immediately solve for the geocentric latitude, λgc,
of the position of the vehicle projected to the surface of the Earth using the four-quadrant
arctangent function, atan2().

tan(λgc) = Zpierce/Wpierce (53)

Lastly, we can solve for the geodetic latitude, λgd, using simple geometry. Using equation (1)
and solving for z we have:

z =
Rp
R⊕

√
R2
⊕ − w2) (54)

For an arbitrary point (w, z) on the ellipse we can find the slope of a tangent to the surface
by taking the derivative of expression z with respect to w, yielding the following equation:

dz

dw
= −w Rp

R⊕

1√
(R2
⊕ − w2)

(55)

and a normal to the ellipse at this point has a slope defined by:

−dw
dz

=
1

w

R⊕
Rp

√
(R2
⊕ − w2) =

R2
⊕

R2
p

z

w
(56)

but this slope is also the geodetic latitude, λgd, at the piercing point and we can solve for its
value using the four-quadrant arctangent function, atan2():

tan(λgd) = −dw
dz

=
R2
⊕

R2
p

Zpierce

Wpierce
=
a2g
b2g

Zpierce

Wpierce
(57)

7The sign of αg is negative for altitude above the Earth and positive for below.
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6 Direction Cosine Matrix and Quaternions

The direction cosine matrix, [D] (ref. 9), is used to perform the transformation from lv− to
b−Frame. The [D] used in the AFRC simulation follows the standard (for airplanes) convention
for the Euler rotation sequence, ψ, θ, and φ8. Originally the [D] was defined using the Euler
angles (ψ, θ, and φ) with the following equation:

[D] =

 1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)

 cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

 (58)

Multiplying these matrices together we arrive at this form:

[D] =

 cos(ψ) cos(θ) sin(ψ) cos(θ) − sin(θ)
cos(ψ) sin(θ) sin(φ)− sin(ψ) cos(φ) sin(ψ) sin(θ) sin(φ) + cos(ψ) cos(φ) cos(θ) sin(φ)
cos(ψ) sin(θ) cos(φ) + sin(ψ) sin(φ) sin(ψ) sin(θ) cos(φ)− cos(ψ) sin(φ) cos(θ) cos(φ)


(59)

Now [D] is defined from the quaternion e (refs. 9 and 10) with the following equation:

[D] =

 e20 + e21 − e22 − e23 2(e1e2 + e0e3) 2(e1e3 − e0e2)
2(e1e2 − e0e3) e20 − e21 + e22 − e23 2(e2e3 + e0e1)
2(e1e3 + e0e2) 2(e2e3 − e0e1) e20 − e21 − e22 + e23

 (60)

The quaternion is defined as:

e = e0 + e1i+ e2j + e3k (61)

where the quantities e0, e1, e2, and e3 are all real numbers and i, j, and k satisfy the following
relationships:

i2 = j2 = k2 = −1
ij = −ji = k
jk = −kj = i
ki = −ik = j

The quantity e0 is the scalar part of the quaternion and e1i + e2j + e3k make up the vector
portion. Since the quaternion is made up of four elements to parameterize a DCM made up from
three Euler angles, a fourth equation constrains the quaternions. This equation is:

e20 + e21 + e22 + e23 = 1 (62)

Thus, after some number of integration steps, the quaternion elements must be normalized by
dividing by the square root of equation (62).

The quaternion elements are initialized from the initial vehicle Euler angle with the following
relationships:

e =


e0
e1
e2
e3

 =


+ cos(ψ2 ) cos( θ2) cos(φ2 ) + sin(ψ2 ) sin( θ2) sin(φ2 )

+ cos(ψ2 ) cos( θ2) sin(φ2 )− sin(ψ2 ) sin( θ2) cos(φ2 )

+ cos(ψ2 ) sin( θ2) cos(φ2 ) + sin(ψ2 ) cos( θ2) sin(φ2 )

− cos(ψ2 ) sin( θ2) sin(φ2 ) + sin(ψ2 ) cos( θ2) cos(φ2 )

 (63)

8In spacecraft literature this is referred to as a Type 1: 3-2-1 Euler Angle Rotation (ref. 11).
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The derivatives of quaternion elements are taken from (ref. 10). Since the quaternion defines
our attitude with respect to the lv−Frame, the equations have been modified to use the Euler
angular rate vector (which will be defined in eq. (178)):

ė =


ė0
ė1
ė2
ė3

 =
1

2


−e1 −e2 −e3
+e0 −e3 +e2
+e3 +e0 −e1
−e2 +e1 +e0




p
q
r


lv

(64)

The Euler angles are derived from this quaternion by comparing elements of the Euler-DCM
with the quaternion-DCM using trigonometric identities. The first angle to extract is θ. Looking
at the Euler-DCM we can isolate the θ in several ways. The easiest is to equate the upper
right-hand elements of the Euler-DCM and the quaternion-DCM. Doing this yields the following
expression for θ:

− sin(θ) = 2(e1e3 − e0e2) (65)

Unless the quaternion elements are normalized at every integration step this expression can
exhibit numerical problems as θ approaches ±90◦. It is much safer, and only somewhat more
computationally expensive, to find an expression utilizing arctan(). In this case, the expression
becomes:

sin(θ)√
cos2(ψ) cos2(θ) + sin2(ψ) cos2(θ)

=
−2(e1e3 − e0e2)√

(e20 + e21 − e22 − e23)2 + (2(e1e2 + e0e3))2
(66)

but through trigonometric identities this first expression reduces to tan(θ). In the computer
routine we use the four-quadrant atan2() routine to solve for these tan() angles. In the same
manner, if θ is neither +90 or −90 deg, we can use simple trigonometric relationships to solve
for φ and ψ using elements of the first row and third column of the Euler-DCM matrix.

In this general case we can determine that θ is not equal to either +90 or −90 deg by testing
the sum of the squares of the first and second elements of the quaternion-DCM, (e20 + e21 − e22 −
e23)

2 + (2(e1e2 + e0e3))
2 ≈ 0. Therefore, if (e20 + e21 − e22 − e23)2 + (2(e1e2 + e0e3))

2 > 1.0× 10−14:

tan(θ) =
−2(e1e3 − e0e2)√

(e20 + e21 − e22 − e23)2 + (2(e1e2 + e0e3))2
(67)

tan(φ) =
2(e0e1 + e2e3)

(e20 − e21 − e22 + e23)
(68)

tan(ψ) =
2(e1e2 + e0e3)

(e20 + e21 − e22 − e23)
(69)

else the Euler-DCM reduces to the following:

[D] = ±

 0 0 −1
cos(ψ) sin(φ)− sin(ψ) cos(φ) sin(ψ) sin(φ) + cos(ψ) cos(φ) 0
cos(ψ) cos(φ) + sin(ψ) sin(φ) sin(ψ) cos(φ)− cos(ψ) sin(φ) 0

 (70)

where [D] takes the positive value if θ = +90 deg and takes the negative value if θ = −90 deg.
This expression can be further reduced to:

[D] = ±

 0 0 −1
sin(φ− ψ) cos(φ− ψ) 0
cos(φ− ψ) − sin(φ− ψ) 0

 (71)
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which indicates that one of the angles, φ or ψ, can be set to an arbitrary value while the other
angle is solved. We choose to set ψ = 0. The last angle is solved using another tan() function:

sin(φ)/cos(φ) = tan(φ) =
±2(e1e2 − e0e3)
±(e20 − e21 + e22 − e23)

(72)

Note: the decision logic for determining the correct quadrant is automatic if we use the atan2()

function; however, this requires that we keep the correct signs on both of the arguments. There-
fore if θ > 0 both arguments are also positive, but if θ < 0 both arguments must be multiplied
by −1.

7 Gravitational Model

The Earth gravitational model is based upon the spherical harmonic expansion of the gravita-
tional potential (ref. 11).

φ(X,Y, Z) = − µ
R

(
1−

∞∑
n=2

(
R⊕
R

)n
JnPn

(
Z

R

))
(73)

or more simply:

φ(X,Y, Z) = − µ
R
−
∞∑
n=2

− µ

R
Jn

(
R⊕
R

)n
Pn
(
Z

R

)
= − µ

R
−
∞∑
n=2

φn(X,Y, Z) (74)

The notation has been put into the “standard” Jn notation where zonal harmonics only are
included; sectoral and tesseral are not usually important unless the vehicle enters a geosyn-
chronous orbit. The Jn coefficients can be computed from the Cn0 coefficients (ref. 6) using the
following equation:

Jn = −Cn0
√

2n+ 1 (75)

Table 1. The WGS-84 Earth Gravitational Model (selected coefficients copied from reference 6
table 5.2) and computed zonal harmonic gravitational coefficients.

Degree and Order Normalized Gravitational Coefficients Computed Jn Coefficients

n m Cnm Snm Jn

2 0 −0.48416685× 10−3 0.0 +1.08262999× 10−3

3 0 +0.95706390× 10−6 0.0 −2.53215307× 10−6

4 0 +0.53699587× 10−6 0.0 −1.61098761× 10−6

5 0 +0.71092048× 10−7 0.0 −2.35785649× 10−7

6 0 −0.15064821× 10−6 0.0 +5.43169846× 10−7

7 0 +0.85819217× 10−7 0.0 −3.32376398× 10−7

8 0 +0.42979835× 10−7 0.0 −1.77210399× 10−7

No tesseral or sectoral harmonics are included. The gravity model can be run in the J2, J4,
or J8 mode, by truncating the polynomial series at the appropriate term.
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With this gravitational potential model of the Earth, the e−Frame accelerations can be found
from:

a = ∇φ =
∂φ

∂x
~ı+

∂φ

∂y
~+

∂φ

∂z
~k (76)

Using a spherical harmonic expansion, the terms of the gravitational potential at a point in
the e−Frame are defined by:

φn(X,Y, Z) = −
µJnR

n
⊕Pn(ZR)

Rn+1
(77)

where Pn(ZR) is a Legendre polynomial and R =
√
X2 + Y 2 + Z2.

The recursive relationship which defines these Legendre polynomials is:

Pn+1(
Z

R
) =

(2n+ 1)(ZR)Pn(ZR)− nPn−1(ZR)

(n+ 1)
(78)

where:

P0
(
Z

R

)
= 1 (79)

P1
(
Z

R

)
=

Z

R
(80)

Thus, each of the terms of the partial derivative of the gravitational potential with respect
to X, Y , and Z are:

∂φn
∂X

= −µJnRn⊕

(
R2∂Pn(ZR)

∂X
−X(n+ 1)Pn

(
Z

R

))
/Rn+3 (81)

∂φn
∂Y

= −µJnRn⊕

(
R2∂Pn(ZR)

∂Y
− Y (n+ 1)Pn

(
Z

R

))
/Rn+3 (82)

∂φn
∂Z

= −µJnRn⊕

(
R2∂Pn(ZR)

∂Z
− Z(n+ 1)Pn

(
Z

R

))
/Rn+3 (83)

where the recursive relationships which define the partial derivatives of the Legendre polynomials
with respect to X, Y , and Z are:

∂Pn+1(
Z
R)

∂X
=

(
(2n+ 1)

(
∂(ZR)

∂X
Pn
(
Z

R

)
+ (Z/R)

∂Pn(ZR)

∂X

)
− n

∂Pn−1(ZR)

∂X

)
/(n+ 1) (84)

∂Pn+1(
Z
R)

∂Y
=

(
(2n+ 1)

(
∂(ZR)

∂Y
Pn
(
Z

R

)
+ (Z/R)

∂Pn(ZR)

∂Y

)
− n

∂Pn−1(ZR)

∂Y

)
/(n+ 1) (85)

∂Pn+1(
Z
R)

∂Z
=

(
(2n+ 1)

(
∂(ZR)

∂Z
Pn
(
Z

R

)
+ (Z/R)

∂Pn(ZR)

∂Z

)
− n

∂Pn−1(ZR)

∂Z

)
/(n+ 1) (86)
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where:

∂P0(ZR)

∂X
= 0 (87)

∂P0(ZR)

∂Y
= 0 (88)

∂P0(ZR)

∂Z
= 0 (89)

∂P1(ZR)

∂X
= −XZ/R3 (90)

∂P1(ZR)

∂Y
= −Y Z/R3 (91)

∂P1(ZR)

∂Z
= (R2 − Z2)/R3 (92)

or, in normalized form:

∂φn
∂X

= − µ

R2
Jn(R⊕/R)n

(
R
∂Pn(ZR)

∂X
−
(
X

R

)
(n+ 1)Pn

(
Z

R

))
(93)

∂φn
∂Y

= − µ

R2
Jn(R⊕/R)n

(
R
∂Pn(ZR)

∂Y
−
(
Y

R

)
(n+ 1)Pn

(
Z

R

))
(94)

∂φn
∂Z

= − µ

R2
Jn(R⊕/R)n

(
R
∂Pn(ZR)

∂Z
−
(
Z

R

)
(n+ 1)Pn

(
Z

R

))
(95)

Summing the first eight terms of the derivative gravitational potential equation with respect to
X we find:

∂φ

∂X
=− (µ/R2)(

X

R
)(1

+ (
3

2
(J2 + ∆J2)(R⊕/R)2(−5(

Z

R
)2 + 1)

+ (
5

2
J3(R⊕/R)3(−7(

Z

R
)3 + 3(

Z

R
))

+ (
15

8
J4(R⊕/R)4(−21(

Z

R
)4 + 14(

Z

R
)2 − 1)

+ (
21

8
J5(R⊕/R)5(−33(

Z

R
)5 + 30(

Z

R
)3 − 5(

Z

R
)) (96)

+ (
7

16
J6(R⊕/R)6(−429(

Z

R
)6 + 495(

Z

R
)4 − 135(

Z

R
)2 + 5)

+ (
9

16
J7(R⊕/R)7(−715(

Z

R
)7 + 1001(

Z

R
)5 − 385(

Z

R
)3 + 35(

Z

R
))

+ (
45

128
J8(R⊕/R)8(−2431(

Z

R
)8 + 4004(

Z

R
)6 − 2002(

Z

R
)4 + 308(

Z

R
)2 − 7))

For the derivative of the gravitational potential with respect to y we have:

∂φ

∂Y
=

∂φ

∂X

Y

X
(97)
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and, finally, for the derivative of the gravitational potential with respect to Z we find:

∂φ

∂Z
=− (µ/R2)((

Z

R
)

+ (
3

2
(J2 + ∆J2)(R⊕/R)2(−5(

Z

R
)3 + 3(

Z

R
))

+ (
1

2
J3(R⊕/R)3(−35(

Z

R
)4 + 30(

Z

R
)2 − 3)

+ (
5

8
J4(R⊕/R)4(−63(

Z

R
)5 + 70(

Z

R
)3 − 15(

Z

R
))

+ (
3

8
J5(R⊕/R)5(−231(

Z

R
)6 + 315(

Z

R
)4 − 105(

Z

R
)2 + 5) (98)

+ (
7

16
J6(R⊕/R)6(−429(

Z

R
)7 + 693(

Z

R
)5 − 315(

Z

R
)3 + 35(

Z

R
))

+ (
1

16
J7(R⊕/R)7(−6435(

Z

R
)8 + 12012(

Z

R
)6 − 6930(

Z

R
)4 + 1260(

Z

R
)2 − 35)

+ (
9

128
J8(R⊕/R)8(−12155(

Z

R
)9 + 25740(

Z

R
)7 − 18018(

Z

R
)5 + 4620(

Z

R
)3 − 315(

Z

R
))

which can be simplified somewhat by recognizing that:(
X

R

)
= X0g = cos(λ) cos(ϑ) (99)(

Y

R

)
= Y0g = cos(λ) sin(ϑ) (100)(

Z

R

)
= Z0g = sin(λ) (101)

Finally, we take these e−Frame accelerations and transform them into the lv−Frame. To accom-
plish this transformation we use the following steps:

1. Take the initial e−Frame and rotate it about the z−axis by +ϑ;

2. rotate next about the y−axis by −λ (negative rotation due to the right-hand rule and the
definition of positive latitude); and

3. align the resulting coordinate frame with the lv−Frame through another rotation about
the y−axis of −90◦.

In matrix form we have:

alv =

 cos(−90◦) 0 − sin(−90◦)
0 1 0

sin(−90◦) 0 cos(−90◦)

 cos(−λ) 0 − sin(−λ)
0 1 0

sin(−λ) 0 cos(−λ)

 cos(ϑ) sin(ϑ) 0
− sin(ϑ) cos(ϑ) 0

0 0 1

ae

(102)
Multiplying these matrices together and applying simple trigonometric relationships we arrive
at this form:

alv =

 − sin(λ) cos(ϑ) − sin(λ) sin(ϑ) cos(λ)
− sin(ϑ) cos(ϑ) 0

− cos(λ) cos(ϑ) − cos(λ) sin(ϑ) − sin(λ)

ae (103)
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With the previously defined expressions for the gravitational potential, we can substitute and
simplify to form the following expressions for the gravity accelerations in the lv−Frame:

axglv = −
(
∂φ

∂X
cos(ϑ) +

∂φ

∂Y
sin(ϑ)

)
sin(λ) +

∂φ

∂Z
cos(λ) (104)

ayglv = − ∂φ
∂X

sin(ϑ) +
∂φ

∂Y
cos(ϑ) (105)

azglv = −
(
∂φ

∂X
cos(ϑ) +

∂φ

∂Y
sin(ϑ)

)
cos(λ)− ∂φ

∂Z
sin(λ) (106)

The y−axis acceleration in the lv−Frame can be shown to be zero through the following expansion
and substitutions:

ayglv = − ∂φ
∂X

sin(ϑ) +
∂φ

∂Y
cos(ϑ)

= − ∂φ
∂Y

X

Y
sin(ϑ) +

∂φ

∂Y
cos(ϑ)

= − ∂φ
∂Y

X

R

R

Y
sin(ϑ) +

∂φ

∂Y
cos(ϑ)

= − ∂φ
∂Y

cos(λ) cos(ϑ)

cos(λ) sin(ϑ)
sin(ϑ) +

∂φ

∂Y
cos(ϑ)

= 0 (107)

Finally:

axglv = −(
∂φ

∂X
cos(ϑ) +

∂φ

∂Y
sin(ϑ)) sin(λ) +

∂φ

∂Z
cos(λ) (108)

ayglv = 0 (109)

azglv = −(
∂φ

∂X
cos(ϑ) +

∂φ

∂Y
sin(ϑ)) cos(λ)− ∂φ

∂Z
sin(λ) (110)

8 Translational Equations

Equations of motion for any system can be derived using one of several vector and energy
methods. The most common vector method is Newtonian mechanics. Applying Newton’s second
law of motion to a point mass requires the acceleration of the particle be computed with respect to
an inertial reference frame. This acceleration is typically determined by twice time-differentiating
the particle’s position vector with respect to a fixed point in inertial space.

When performing vector derivatives, care must be taken to account for the frame from which
the derivative is taken. For example, consider a vector v. The same vector may be expressed in
i−Frame or b−Frame coordinates and related by the transformation vi = Cibvb. If an i−Frame
time derivative is taken of this vector, the chain rule gives:

d

dt

i

vi = Cibv̇b + Ċibvb (111)

A common form of the above equation is the Theorem of Coriolis, which allows a vector
expressed in one reference frame to be differentiated with respect to another. The theorem is:

d

dt

i

vb =
d

dt

b

vb + ωib × vb (112)
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8.1 h−Frame Definition

The reference frame chosen for writing the equations of motion is a local-level h−Frame. This
frame is similar to the lv−Frame (NED) with an additional rotation of angle ψh about down.
The i−Frame, lv−Frame and h−Frame are shown in figure 3.

The h−Frame is oriented so that the vehicle velocity vector always lies in the h1-h3 plane.
Therefore, the h−Frame velocity is given as:

vh =


Uh
0
Wh


h

(113)

8.2 Inertial Position Vector

The vehicle position vector is defined from an inertially-fixed point taken to be the center of the
Earth, o = (0, 0, 0), to a moving point, p, which is the cg of the vehicle. This vector is easily
expressed in the h−Frame as:

roph =


0
0
−R


h

(114)

Point o is considered inertial, which is an assumption valid for aircraft and rocket vehicles in
suborbital flight or orbital flights of short duration.

8.3 Angular Velocity

The angular velocity of the h−Frame relative to an Earth-centered inertial frame, i−Frame,
is determined by adding the angular velocities of several intermediate reference frames. This
process requires repeated application of the formula:

ωac = ωab + ωbc (115)

Beginning with the i−Frame, the following series of rotations are performed:

1. Rotate at Earth rate, Ω⊕, about +Ẑi and form an intermediate Earth-centered Earth-fixed
e−Frame.

2. Rotate at the longitude rate, ϑ̇, about +ẑe and form an intermediate ϑ−Frame.

3. Rotate at the latitude rate, λ̇, about −ŷϑ and form an intermediate up-east-north (UEN)
frame.

4. Rotate at heading rate, ψ̇h, about −x̂UEN .

The total angular velocity of the h−Frame relative to the i−Frame expressed in mixed coor-
dinates may then be built up as:

ωih = Ω⊕Ẑi + ϑ̇ẑe − λ̇ŷϑ − ψ̇hx̂UEN (116)
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This angular velocity may be coordinatized in the UEN frame and then transformed to
h−Frame coordinates using the following transformations:

Ẑi = ẑe = ẑϑ (117)

ẑϑ = sin(λ)x̂UEN + cos(λ)ẑUEN (118)

ŷϑ = ŷUEN (119)

ChUEN =

 0 sin(ψh) cos(ψh)
0 cos(ψh) − sin(ψh)
1 0 0

 (120)

resulting in the following total angular velocity of the h−Frame relative to inertial space expressed
in h−Frame coordinates:

ωih =


−λ̇ sin(ψh) +

(
Ω⊕ + ϑ̇

)
cos(λ) cos(ψh)

−λ̇ cos(ψh)−
(

Ω⊕ + ϑ̇
)

cos(λ) sin(ψh)

ψ̇h −
(

Ω⊕ + ϑ̇
)

sin(λ)


h

(121)

This angular velocity expression may be simplified using the facts that the h−Frame is a
local-level frame with ẑh pointed towards the center of the Earth and the vehicle velocity vector
always lies in the x̂h-ẑh plane. These facts lead to the transformations for the latitude rate,
longitude rate, and Earth rate terms:

λ̇ = Uh cos(ψh)/R (122)(
Ω⊕ + ϑ̇

)
cos(λ) = Uh sin(ψh)/R (123)

Applying these transformations leads to the simplified expression of h−Frame angular velocity
with respect to the i−Frame:

ωih =


0

−Uh/R
ψ̇h −

(
Ω⊕ + ϑ̇

)
sin(λ)


h

(124)

8.4 Inertial Acceleration

An inertial acceleration must be obtained for Newton’s laws to be applied. Inertial velocity,
coordinatized in the h−Frame, is determined using the following Theorem of Coriolis:

viph =
d

dt

h

roph + ωih × roph (125)

This computation yields:

viph =


Uh
0

−Ṙ


h

(126)

Inertial acceleration coordinatized in the h−Frame is found by applying the Theorem of
Coriolis again to the inertial velocity. It is computed to be:

aiph =


U̇h + UhṘ/R

Uh

(
ψ̇h −

(
Ω⊕ + ϑ̇

)
sin(λ)

)
−R̈+ U2

h/R


h

(127)
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8.5 Newton’s Law

Newton’s second law of motion may now be applied to the inertial acceleration. The sum of all
forces in the h−Frame are given by the vector:

∑
F h =


Xh

Yh
Zh


h

(128)

Applying these forces to the system using Newton’s law yields:

Xh/m = U̇h + UhṘ/R (129)

Yh/m = Uh

(
ψ̇h −

(
Ω⊕ + ϑ̇

)
sin(λ)

)
(130)

Zh/m = −R̈+ U2
h/R (131)

The Xh force equation may be simplified by multiplying through by R and making the
substitution:

d

dt
(RUh) = ṘUh +RU̇h (132)

The Yh force equation may be simplified by invoking the previously used transformation:

Ω⊕ + ϑ̇ =
Uh sin(ψh)

R cos(λ)
(133)

and noticing that the term Uh sin(ψh) is simply Vlv, or the eastern component of the vehicle
velocity.

The Zh force equation is simplified using the acceleration relationship inherent in the h−Frame:
−R̈ = Ẇh.

The final h−Frame translational equations of motion then become:

d

dt
(RUh) = RXh/m = Raxh (134)

ψ̇h = Vlv tan(λ)/R+ Yh/(mUh) = Vlv tan(λ)/R+ ayh/Uh (135)

Ẇh = Zh/m− U2
h/R = azh − U

2
h/R (136)

It is worth pointing out that as the latitude approaches 90 deg, ψ̇h approaches infinity.
Therefore, these EOM cannot be used for polar or near-polar flights and may exhibit numerical
stability problems for extreme latitudes (λ > 89.9◦).

There are three additional equations that describe the rate of change of latitude, longitude,
and altitude. These equations were presented previously and are restated here for completeness
in their simplified forms:

λ̇ = Ulv/R (137)

ϑ̇ = Vlv/(R cosλ)− Ω⊕ (138)

Ṙ = −Wlv (139)

where:

Ulv = Uh cos(ψh) (140)

Vlv = Uh sin(ψh) (141)

Wlv = Wh (142)
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because R = R⊕ + ∆R we also have:

d

dt
(∆R) = Ṙ = −Wlv (143)

Equation (138) has a numerical stability problem as latitude approaches 90 deg. In much
the same way that ψ̇h approached infinity, Vlv/(R cosλ) will also approach infinity for extreme
latitudes. This observation should be fairly obvious; the lines of longitude of the Earth collapse
at the poles, and, therefore, for a given Uh the longitude rate increases at extreme latitudes.

9 A Note on Rate of Change of Vehicle Mass

The astute reader will notice that there is no ṁ term visible in the general translational equations
of motion. Newton’s second law of motion states that force equals the time rate of change of
momentum with respect to an inertial reference frame:

F =
d

dt

i

p = mV̇ + ṁV (144)

It is commonly argued when dealing with rocket problems that the mass flow rate of fuel is
large and therefore the ṁ term may not be neglected as it can be in aircraft problems. This
argument is incorrect because the ṁ term that appears in Newton’s law accounts for relativistic
mass changes and does not apply to fuel mass changes in the rocket itself.

For example, consider the simple example of a rocket that expels mass through its nozzle
over a short time period. Figure 6 shows the initial and final momentum states of the rocket
and exhaust gases. Initially, the rocket and all its fuel are moving with a constant speed and

160006

Momentum: p0 = mV Momentum: p1 = Δm (Ve – V) + (m – Δm) (V + Δv)

V + ΔvV Ve – V

Δm

160006

Momentum: p0 = mV Momentum: p1 = Δm (Ve – V) + (m – Δm) (V + Δv)

V + ΔvV Ve – V

Δm

Time: t1 = t0 + Δt

m – Δm

Time: t0
m

Figure 6. Simple rocket example.

have initial momentum, p0. Over a small time period, ∆t, the rocket has expelled an amount
of exhaust with mass ∆m at an exhaust speed of Ve relative to the rocket nozzle. The exhaust
speed expressed relative to the same inertial point as the speed of the rocket is actually Ve − V .
This action increases the speed of the rocket by ∆V and simultaneously decreases its mass by
∆m. The momentum of the rocket-exhaust system in each time frame is given by:

p0 = mV (145)

p1 = −∆m (Ve − V ) + (V + ∆V ) (m−∆m) (146)

p0 = p1 (147)

30



Total rocket-exhaust system momentum over the time period remains constant because no
mass has been allowed to enter or leave the system. Expanding the equation for the system
momentum at time t1, and equating it with the initial momentum gives:

mV = −∆m Ve + ∆m V +mV +m∆V − V ∆m−∆V ∆m (148)

Several terms in the above equation cancel. The term ∆V ∆m must be preserved for a finite
stream of discrete impulses, but it may be dropped when considering a continuous stream of
infinitesimal impulses because it becomes infinitely small with respect to the other terms. The
latter case is considered here, and the resulting momentum conservation equation is:

∆m Ve = m∆V (149)

The final differential equation may be found by dividing both sides by ∆t and taking the
limit as ∆t→ 0:

ṁ Ve = m V̇ (150)

This final equation contains no external force term because no external forces have been
applied to the system. Newton’s third law, however, does allow for equal and opposite internal
forces. There are in fact equal and opposite thrust forces that accelerate the exhaust gases
through the nozzle in one direction and accelerate the remaining mass of the rocket in the other.
Two equations of motion result:

FT = ṁVe (151)

FT = mV̇ (152)

where:
FT = Thrust force

The first equation in the above set relates the thrust force to the rate of fuel expenditure and
exhaust speed. A variant of this equation would be found in an engine model where the thrust
force is computed. The second equation describes the resultant motion of the rocket under the
applied thrust force, and it is this equation that is used in derivation of the general simulation
translational equations of motion. An ṁ term would only be present if the rocket or exhaust
acquired or lost mass without any mass entering or leaving the closed system. A closed system,
by definition, cannot admit or release mass, therefore, any mass change in the system may only
occur by way of relativistic effects, which have been ignored in this analysis.

10 Rotational Equations

For rigid vehicles the rotational equations of motion are mostly simply presented in the following
form (ref. 11):

L̇ = N − ω × L (153)

but
L = Iω (154)

and therefore in its simplest form we have:

Iω̇ + İω = N − ω × (Iω) (155)
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If the coordinate frame is the b−Frame with its origin at the cg of the vehicle the İ term
is identically zero for a rigid vehicle. Even if the vehicle is not rigid this term can generally be
ignored if the rotation rate of the vehicle are small because of the relative size of this term with
respect to the others. This term is the mechanism by which the rotational equations of motion
enforce conservation of angular momentum. For the X-33 vehicle9, calculations show that this
term is approximately one-hundred times smaller than the other pitch acceleration terms.

The fully populated inertia tensor is:

I =

 Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

 (156)

solving for ω̇ and neglecting İ we have:

Iω̇ = (N − ω × Iω) (157)

After substitution and expansion of these vector quantities we have:

I


ṗ
q̇
ṙ

 =


Lb
Mb

Nb

−


p
q
r

× I


p
q
r


 (158)

Substituting I into the right-hand side of this equation:

I


ṗ
q̇
ṙ

 =


Lb
Mb

Nb

−


p
q
r

×


+Ixxp− Ixyq − Ixzr
−Ixyp+ Iyyq − Iyzr
−Ixzp− Iyzq + Izzr


 (159)

for simplification we can give this last vector the name H. With this substitution we can expand
the cross-product to arrive at:

I


ṗ
q̇
ṙ

 =


Lb −qHz +rHy

Mb +pHz −rHx

Nb −pHy +qHx

 =


T1
T2
T3

 (160)

The inertia tensor has several useful properties. Chief among these is that for any real object,
the inverse of the inertia tensor always exists (ref. 11). Thus, the inverse for I can be solved
using its adjoint, or matrix of cofactors, and determinant:

adj(I) =

 IyyIzz − I2yz IxyIzz + IxzIyz IxyIyz + IxzIyy
IxyIzz + IxzIyz IxxIzz − I2xz IxxIyz + IxyIxz
IxyIyz + IxzIyy IxxIyz + IxyIxz IxxIyy − I2xy

 (161)

and
detI = IxxIyyIzz − IxxI2yz − I2xyIzz − 2IxyIxzIyz − I2xzIyy (162)

Thus, our original equation for the angular rates has become:

Iω̇ = T (163)

9The X-33 was a proposed vertically-launched research vehicle which was planned to be used to develop a
single-stage-to-orbit rocket. It burned roughly eighty percent of its mass in little more than four minutes and
underwent a 90-deg rotation in the pitch axis during this same period.
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and after this inverse of the inertia tensor is substituted we have:

ω̇ = adj(I)T / detI (164)

solving for ṗ we have:

ṗ =
(IyyIzz − I2yz)T1 + (IxyIzz + IxzIyz)T2 + (IxyIyz + IxzIyy)T3

detI (165)

Once ṗ is known we can substitute its value back into equation (163) and reduce the equation
to: [

+Iyy −Iyz
−Iyz +Izz

]{
q̇
ṙ

}
=

{
T2 + Ixyṗ
T3 + Ixz ṗ

}
(166)

We can again solve for one of the angular accelerations, this time q̇, using the same techniques.
The matrix equation becomes:{

q̇
ṙ

}
=

[
+Izz +Iyz
+Iyz +Iyy

]{
T2 + Ixyṗ
T3 + Ixz ṗ

}
/(IyyIzz − I2xy) (167)

which gives us the following equation for q̇:

q̇ =
ṗ(IxyIzz + IxzIyz) + T2Izz + T3Iyz

(IyyIzz − I2yz)
(168)

substituting both ṗ and q̇ yields the following equation for ṙ:

ṙ = (T3 + Ixz ṗ+ Iyz q̇)/Izz (169)

10.1 Effects of Rotating Mass

In the previous section the angular momentum, L, was assumed to represent a single rigid body.
For some flight vehicles this is not an accurate assumption due to rotating masses, for example,
propellers and momentum wheels. The gyroscopic couples which account for the moments in-
duced by these rotating masses can be summed up with the other external body axis moments.
Adding these terms to the rotational equation of motion we have:

L̇ = N − ω × L− ω × Lrm (170)

but

ω × Lrm =


p
q
r

×


lx
ly
lz


rm

=


qlzrm − rlyrm
rlxrm − plzrm
plyrm − qlxrm

 (171)

which is the same equation as that presented in (ref. 12).
With the following assumptions:

1. The rotating mass is rotating around a principle axis with angular velocity Ωrm;

2. The rotating mass is in stationary alignment with respect to vehicle body axes, that is, it
is not allowed to freely wobble inside the vehicle; and

3. The inertia, Irm, of the rotating mass is constant.
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We can further reduce this gyroscopic coupling term to:

ω × Lrm =


p
q
r

×


IrmΩrmxrm
IrmΩrmyrm
IrmΩrmzrm


rm

= IrmΩrm


qzrm − ryrm
rxrm − pzrm
pyrm − qxrm

 (172)

or if spherical coordinates are more advantageous to:

IrmΩrm


qzrm − ryrm
rxrm − pzrm
pyrm − qxrm

 = IrmΩrm


q sin(θrm) + r cos(θrm) sin(ψrm)
−r cos(θrm) cos(ψrm)− p sin(θrm)

−p cos(θrm) sin(ψrm) + q cos(θrm) cos(ψrm)

 (173)

It must be noted that this term is subtracted from the body moments, which switches the signs
of all the terms (otherwise these equations are exactly the same as the equations presented in
ref. 9).

Figure 7 shows how the torque due to rotating mass can be resolved into components along
the vehicle body axes. It also shows the definitions of the alignment angles for the rotating
mass10.

160007

Z

Y

Rotating mass
X

T

ψrm

θrm

IrmΩrm

Figure 7. Geometry of rotating mass with respect to the vehicle body axis.

10.2 lv−Frame Orientation

The attitude of the vehicle is described relative to the lv−Frame, but the lv−Frame constantly
rotates with the vehicle position above the Earth. The angular velocity of the vehicle in this
lv−Frame, Ωlv, is equal to the angular velocity of the vehicle in the i−Frame, Ωi, minus the
angular rate of the lv−Frame, ωlv projected onto the vehicle body axes. Thus, the components
of the angular velocity are:

ωlv =
Vlv

R cos(λ)
~ıe −

Ulv
R

~lv (174)

10This figure is essentially figure 9 from ref. 9, except that the pitch angle shown is a negative angle.
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but
~ıe = cos(λ) ~ılv − sin(λ) ~klv (175)

Thus,

ωlv =
Vlv
R

~ılv −
Ulv
R

~lv − Vlv tan(λ)/R~k (176)

subtracting this rate from the i−Frame angular velocity we have the following expression for the
lv−Frame angular velocity:

Ωlv = Ωi − [D]ωlv (177)

or, after these vectors have been expanded:
p
q
r


lv

=


p
q
r

− [D]


V/R
−U/R

−V tan(λ)/R


lv

(178)

Equation (178) also has a numerical stability problem as latitude approaches 90 deg. In
much the same way that ψ̇h and ϑ̇ approach infinity, Ωlv will also approach infinity for extreme
latitudes.

We now have the Euler angular rate vector of the vehicle required to compute the quaternion
rates.

These Euler rates can also be used to define the time derivatives of the Euler angles. The
standard definitions are used from ref. 9, which have a singularity at θ = ±90.

θ̇ = qlv cos(φ)− rlv sin(φ) (179)

ψ̇ = (rlv cos(φ) + qlv sin(φ))/ cos(θ) (180)

φ̇ = plv + ψ̇ sin(θ) (181)

11 Derivatives of Derived Parameters

The time derivatives of many of the derived parameters are computed in the EOM. The derivation
of these parameters will be presented in this section.

The first parameters are those related to position. From the previous definition of altitude
in equation (8), yields the following definition for its derivative:

ḣ = Ṙ− Ṙlocal (182)

but in equations (139) and (6) we defined Ṙ and Rlocal respectively. Differentiating equation (6)
with respect to time yields:

Ṙlocal = −
(Rpλ̇(1− (

Rp

R⊕
)2) cos(λ) sin(λ))

(1− (1− (
Rp

R⊕
)2) cos2(λ))

3
2

= −(RpUh cos(ψh)e2 cos(λ) sin(λ))

R(1− e2 cos2(λ))
3
2

(183)

and with a little manipulation:

Ṙlocal = −(RlocalUh cos(ψh)e2 cos(λ) sin(λ))

R(1− e2 cos2(λ))
(184)
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Likewise, we can differentiate the previous expression for ḣ to obtain the following expression:

ḧ = R̈− R̈local (185)

but we have previously shown:
R̈ = U2

h/R− azh (186)

Therefore, the only work left is to develop an expression for R̈local. Differentiating equation (183)
with respect to time we have:

R̈local =
−Rpe2

4

2λ̈ sin(2λ) + λ̇2
(

4 cos(2λ)(1− e2 cos2(λ))3 − 3e2 sin2(2λ)(1− e2 cos2(λ))
1
2

)
(1− e2 cos2(λ))3


(187)

where λ̈ is derived from equation (137):

λ̈ =
d

dt
(Ulv/R)

=
U̇lvR− ṘUlv

R2

=
(axh cos(ψh)R− ṘUh cos(ψh)− Uh sin(ψh)ψ̇hR+WlvUlv)

R2
(188)

The flat Earth ground track is generated assuming a spherical Earth with radius equal to
Rlocal. Therefore, we have the following equations for x and y:

x = (λ− λ0)Rlocal (189)

y = (ϑ− ϑ0)Rlocal cos(λ) (190)

where λ0 and ϑ0 represent an arbitrary reference location. The value of these flat Earth ground
track parameters depends greatly upon appropriate choice of these reference longitude and lati-
tude. In most cases, either the launch site or the landing site are good choices. The quantities
ẋ and ẏ are computed through simple differentiation of these equations. Therefore:

ẋ = (λ− λ0)Ṙlocal + λ̇Rlocal (191)

ẏ = (ϑ− ϑ0)(−Rlocal sin(λ)λ̇+ Ṙlocal cos(λ)) + ϑ̇Rlocal cos(λ) (192)

The last parameters are those related to airmass velocities. From the definition of total speed,
V , in equation (18) we derive the following definition for its derivative:

V̇ =
UbRA

U̇bRA
+ VbRA

V̇bRA
+WbRA

ẆbRA

V
(193)

Likewise for angle of attack and sideslip we have the following definitions:

tan(α) = WbRA
/UbRA

(194)

tan(β) = cos(α)VbRA
/UbRA

(195)

which can be reduced to:

tan(α) = WbRA
/UbRA

(196)

tan(β) = VbRA
/
√
U2
bRA

+W 2
bRA

(197)
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These expressions can be solved using the four-quadrant arctangent function, atan2(), but to
solve for their derivatives we must use the arctan() function, which yields the following explicit
equations:

α = arctan(WbRA
/UbRA

) (198)

β = arctan(VbRA
/
√
U2
bRA

+W 2
bRA

) (199)

Differentiating the expression for α yields the following:

α̇ =
UbRA

ẆbRA
− U̇bRA

WbRA

U2
bRA

+W 2
bRA

(200)

and for β̇:

β̇ =
V̇bRA

(U2
bRA

+W 2
bRA

)− VbRA
(UbRA

U̇bRA
+WbRA

ẆbRA
)

V 2
√
U2
bRA

+W 2
bRA

(201)

We now find that we need the derivatives of the component velocities in the b−Frame. To
obtain these we start with the derivatives of the states and work our way through the coordinate
transformations. Using the previous definition of d

dt(RUh) and solving for U̇h we have:

U̇h =
d
dt(RUh)− ṘUh

R
= axh +

WlvUh
R

(202)

From the previous definitions of Ulv, Vlv, and Wlv we can solve for their derivatives:

U̇lv = −Uh sin(ψh)ψ̇h + U̇h cos(ψh) (203)

V̇lv = Uh cos(ψh)ψ̇h + U̇h sin(ψh) (204)

Ẇlv = Ẇh (205)

By applying the chain rule we can differentiate equations (13), (14), and (15) to arrive at the
following expressions for the airmass relative velocities:

U̇lvRA
= U̇lv − Ẋw (206)

V̇lvRA
= V̇lv − Ẏw + Ω⊕

(
R sin(λ)λ̇− Ṙ cos(λ)

)
(207)

ẆlvRA
= Ẇlv − Żw (208)

where the wind components are computed through simple differentiation:

Ẋw ≈ (Xw −Xwlast
)/∆t (209)

Ẏw ≈ (Yw − Ywlast
)/∆t (210)

Żw ≈ (Zw − Zwlast
)/∆t (211)

Ignoring the gust contributions (because of the purely random zero mean nature of gusts) in
the transformation from lv−Frame to b−Frame we arrive at the following:

V̇ bRA
=

d

dt
[D]V lvRA

+ [D]V̇ lvRA
(212)

where:

d

dt
[D] = 2

 e0ė0 + e1ė1 − e2ė2 − e3ė3 e1ė2 + e2ė1 + e0ė3 + e3ė0 e1ė3 + e3ė1 − e0ė2 − e2ė0
e1ė2 + e2ė1 − e0ė3 − e3ė0 e0ė0 − e1ė1 + e2ė2 − e3ė3 e2ė3 + e3ė2 + e0ė1 + e1ė0
e1ė3 + e3ė1 + e0ė2 + e2ė0 e2ė3 + e3ė2 − e0ė1 − e1ė0 e0ė0 − e1ė1 − e2ė2 + e3ė3


(213)
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12 Background for Integration Algorithm

Throughout section 12, Background for Integration Algorithm, the equation symbology follows that
used reference 13. In particular, chapter 8 of reference 13 presents analysis of several integration
algorithms. This section summarizes many of the equations developed in that reference. These
background integration algorithms are presented in simple scalar form. All of these equations
can be extended to the vector formulation. Please refer to reference 13 for any assistance with
understanding the symbology presented in the equations presented below.

Consider the standard form for a single simple first-order differential equation:

y′ = f(x, y) (214)

y(x0) = y0 (215)

Most of the techniques used for numerical integration rely in some part upon a Taylor series
of y(x) about a point x = x0.

y(x) = y0 + (x− x0)y′(x0) +
(x− x0)2

2!
y′′(x0) + · · · (216)

where

y′ = f(x, y) (217)

y′′ = f ′ = fx + fyy
′ = fx + fyf (218)

y′′′ = f ′′ = fxx + fxyf + fyxf + fyyf
2 + fyfx + f2y f

= fxx + 2fxyf + fyyf
2 + fxfy + f2y f (219)

This Taylor series must be truncated at a finite number of terms, but the resulting truncated
series must only be a good approximation over a step of h = (x− x0). After this step has been
taken, the derivatives are reevaluated about the point x0 + h and additional steps can be taken
in like manner.

This Taylor series algorithm leads to the following integration method and local error:

yn+1 = yn + hTk(xn, yn) (220)

where

Tk(x, y) = f(x, y) +
h

2!
f ′(x, y) + · · ·+ hk−1

k!
f (k−1)(x, y) (221)

E =
hk+1f (k)(ξ, y(ξ))

(k + 1)!

=
hk+1y(k+1)(ξ)

(k + 1)!
(222)

where

k = 1, 2, ...

and

xn < ξ < xn + h
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These methods of integration, which require only information about the function y and its
derivatives at a single point x = xn, are called one-step methods. Among the simplest one-step
integration techniques is Euler’s method, which is Taylor’s algorithm with k = 1. The following
equations show the method and its local error:

yn+1 = yn + hf(xn, yn) (223)

E =
h2

2
y′′(ξn) (224)

Several techniques exist to perform numerical integration with increased accuracy at a cost
of additional derivative calculations or increased storage requirements for past states and past
derivatives. These include both Runge-Kutta and multistep integration techniques.

The general formula for second-order Runge-Kutta integration:

yn+1 = yn + ak1 + bk2 (225)

k1 = hf(xn, yn) (226)

k2 = hf(xn + αh, yn + βk1) (227)

where a, b, α, and β are constants to be determined such that the equation (225) agrees with a
Taylor series integration of as high an order as possible.

Expanding y(xn+1) in a Taylor series through order h3 we obtain the following:

y(xn+1) = y(xn) + hy′(xn) +
h2

2
y′′(xn) +

h3

6
y′′′(xn) + ... (228)

= y(xn) + hf(xn, yn) +
h2

2
(fx + ffy)n

+
h3

6
(fxx + 2ffxy + fyyf

2 + fxfy + f2y f)n +O(h4) (229)

If we perform a Taylor expansion for functions of two variables on equation (227) we obtain
the following expression for k2/h:

k2
h

= f(xn + αh, yn + βk1) (230)

= f(xn, yn) + αhfx + βk1fy +
α2h2

2
fxx

+ αhβk1fxy +
β2k21

2
fyy +O(h3) (231)

Substituting equations (226) and (231) into equation (225) and simplifying the notation
slightly, we obtain the following:

yn+1 = yn + (a+ b)hf + bh2(αfx + βffy)

+ bh3
(
α2

2
fxx + αβffxy +

β2

2
f2fyy

)
+O(h4) (232)

For a second-order Runge-Kutta integration we find that we can make both the first- and
second-order terms of h match by requiring:

a+ b = 1 (233)

bα = bβ =
1

2
(234)
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Since there are three equations with four unknowns we have many choices for these terms. A
non-typical choice11 of parameters are:

a = 0

b = 1

α =
1

2

β =
1

2

The resulting integration equation is:

yn+1 = yn + k2 (235)

with

k1 = hf(xn, yn) (236)

k2 = hf(xn +
1

2
h, yn +

1

2
k1) (237)

The local error associated with this integration algorithm is12:

E = y(xn+1)− yn+1 =
h3

24
(fxx + 2ffxy + f2fyy + 4fxfy + 4ff2y ) +O(h4) (238)

Another series of more complex integration techniques are the multistep methods. The fol-
lowing equation shows the basis of these methods in general:

yn+1 = yn +

∫ xn+1

xn

f(x, y(x))dx (239)

If we introduce the notation

f(xk, y(xk)) = fk

we can combine the Newton backward formula for polynomial interpolation and arrive at the
following formula (known as the Adams-Bashforth formula):

yn+1 = yn + h

∫ 1

0

m∑
k=0

(−1)k
(
−s
k

)
∆kfn−kds (240)

= yn + h{γ0fn + γ1∆fn−1 + · · ·+ γm∆mfn−m} (241)

where

s =
x− xn
h

(242)

∆ifs =

{
fs i = 0
∆(∆i−1fs) = ∆i−1fs+1 −∆i−1fs i > 0

(243)

11The usefulness of this choice will become evident in the later discussion of the algorithm used in the AFRC
simulation code.

12This equation differs from that presented in (ref. 13) because of the unconventional choice of a, b, α, and, β.
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(
y
i

)
=


1 i = 0
i−1∏
j=0

y−j
j+1 = (y)(y−1)···(y−i+1)

1·2···i i > 0
(244)

γk = (−1)k
∫ 1

0

(
−s
k

)
ds (245)

A more general case is to consider that f(x, y) can be integrated from xn−p to xn+1 for some
p ≥ 0. Two of those special cases are presented below.

The first case takes m = 1 and p = 1:

yn+1 = yn−1 + 2hfn (246)

E =
h3

3
y′′′(ξ) (247)

The second case, referred in the literature as Milne’s formula, takes m = 3 and p = 3:

yn+1 = yn−3 +
4h

3
(2fn − fn−1 + 2fn−2) (248)

E =
14

45
h5yv(ξ) (249)

13 Simulation Integration Algorithm

We have now finally developed enough background to describe the algorithm used in the AFRC
simulation. The current algorithm uses a modification to the second-order Runge-Kutta tech-
nique presented earlier.

The notational translation of the Runge-Kutta algorithm yields:

xn+1 = xn + k2 (250)

with

k1 = ∆tf(tn, xn) (251)

k2 = ∆tf(tn +
1

2
∆t, xn +

1

2
k1) (252)

Step 1. Compute k1 using the estimate of the derivative saved from the previous integration
step.

k1 = ∆tf(tn, xn) (253)

Step 2. Compute k2 (at the mid-integration step) using a call to DERIVC to evaluate the
function f(t, x).

tn+ 1
2

= tn +
1

2
∆t (254)

xn+ 1
2

= xn +
1

2
k1 (255)

k2 = ∆tf(tn+ 1
2
, xn+ 1

2
) (256)
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Step 3. Integrate over the full integration step.

xn+1 = xn + k2 (257)

Step 4. Extrapolate the derivative computed at the estimated mid-integration step13 to the
end-of-integration-step using one-half of the change in the first part of the integration step.

fn+1 = fn+ 1
2

+
1

2
(fn+ 1

2
− fn) (258)

=
3

2
fn+ 1

2
− 1

2
fn (259)

Step 5. Extrapolate needed parameters which have been computed at the mid-integration
step to the end-of-integration-step boundary.

14 Oblate Earth Equations of Motion Considerations

Many of the states and parameters used in the AFRC simulation have limitations placed on their
valid range. The definition of each of these states and parameters were provided previously in
Section 3.

Time, t, has a valid range of [0 : +∞]. It is initialized to 0.0 and can never become negative
since its derivative, ṫ, is always 1.0.

Roll, pitch, and yaw rates, p, q, and r, have a valid range of [−∞ : +∞]. No special attention is
therefore required of them. Ridiculously high angular rates would, however, require an extremely
small integration time.

The next parameters are RUh and ψh. RUh is the product of radius from the center of
the Earth to the vehicle and its total horizontal speed in the h-frame. The valid range for this
parameter is [0 : +∞]. ψh is the direction of the Uh speed in the h-frame, hence its valid range
is [−π : +π]. Since radius is always positive and cannot even take a value near zero14 and Uh
is always positive, since it is the magnitude of the horizontal speed vector15. Since Uh and ψh
are a polar representation of the velocities, xlv and ylv, care must be taken in the integration to
assure that RUh and ψh maintain the proper relationship. The variable RUh shall be tested for
becoming negative and if a negative value is detected the variable shall be made positive and
π shall be added to ψh. Then ψh shall be limited to its valid range by adding ±2π (whichever
value is required to bring it into the valid range).

Vehicle vertical speed in the h-frame, wh, has a valid range of [−∞ : +∞]. No special attention
is required.

13This is the modification step. To follow the second-order Runge-Kutta algorithm exactly, this extrapolation
would be replaced by a second call to DERIVC. The choice of how to estimate the end-of-integration-step derivative
from the start-of-integration-step and mid-integration-step derivative is completely arbitrary.

14Contrary to several popularized fictionalized accounts about journeys to the center of the Earth, the AFRC
simulation does not believe that the Earth is hollow. Therefore, the smallest value of R is essentially Rp.

15Uh can go to or through zero if the vehicle flies a trajectory which builds up speed in the westerly direction and
cancels the speed of the rotation of the Earth. As a practical matter, Uh will never be exactly zero because even
the slightest deviation in heading will create either a small northern or southern component speed. Simulation
runs used in the Hyper-X batch simulation have proved this conjecture wrong; if you try hard enough you can
confuse the AFRC simulation by flying directly west with no atmospheric disturbances. There is no simple fix,
and the only solution is to change the initial conditions to prevent the degenerate condition from occurring; thus,
don’t intentionally fly directly west.
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The next set of variables is the quaternion components, e0, e1, e2, and e3. These components
each have the range of [−1 : +1]. To assure that the quaternion remains valid it is normalized
after each integration step. The normalization step divides each element of the quaternion, ei,
by the quaternion magnitude,

√
e20 + e21 + e22 + e23.

The next state, ∆R, is the height of the vehicle above a spherical Earth with radius R⊕. It
has a usable range of [−(R⊕ −Rp) : +∞]. No special care is required to keep this variable within
its valid range.

The geocentric latitude of the vehicle, λ, has a valid range of (−π/2 : +π/2)16. If during the
integration step it is determined that the parameter has exceeded this range it must be reflected
back from the limit and 2π must be added to ϑgc. This treatment is analogous to the treatment
that θ and ψ are given as θ passes through ±π/2.

The geocentric longitude of the vehicle, ϑgc, has a range of validity of [−π : +π]. If ϑgc
exceeds this range 2π shall be added or subtracted (whichever value is required to bring it into
the valid range).

The airmass velocities of the vehicle, V , α, and β, have a valid range of [0 : +∞], [−π : +π],
and [−π : +π] respectively. These velocities are computed parameters at the mid-point of the
integration frame for use in the equations of motion and recomputed at the end-point. They
are computed from the component body axis velocities relative to the moving airmass. Each
parameter is computed in such a manner to assure that it stays within the valid range. Therefore
no special care is required to keep these parameters within their proper ranges. Additional
constraints may be placed on the angle of attack or sideslip due to limitations of the wind
tunnels tests used in creation of the aerodynamic model. Because of this the simulation has a
program control display page where the upper and lower limit for α can be controlled. In a
similar manner the maximum limit for β can be set17. Exceeding any of these limits causes the
simulation to enter the HOLD state.

The Euler angles, θ, φ, and ψ, have ranges of [−π/2 : +π/2], [−π : +π], and [−π : +π] re-
spectively. Since these parameters are derived at the end-point of the integration step from the
quaternion elements they will remain within the appropriate range.

The altitude of the vehicle, h, has a valid range of [0m : +1, 000, 000m] due to implementa-
tion of the 1976 U.S. Standard Atmosphere. The actual limitations of the 1976 U.S. Standard
Atmosphere, if fully implemented, would allow a larger range of [−5, 000m : 1, 000, 000m]. Other
atmospheric models may have different lower or upper limits. The program control page allows
the user to set a lower limit on altitude (below which the simulation enters the HOLD state).

The next variables approximate flat Earth coordinates around a local reference point. These
variables are x and y. They have a valid range of [−∞ : +∞], but the approximation that the
surface of the Earth is approximately a flat plane will have substantial errors long before either
x or y reaches ∞.

The parameter Vi is the total inertial speed of the vehicle and has a valid range of [0 : +∞].
Since it is computed from Uh and Wh it has no special considerations or requirements to keep it
within this range.

The geocentric and geodetic latitude parameters λgc and λgd have a valid range of [−π/2 : +π/2].
Because these parameters are computed directly from the vehicle’s state using trigonometric
functions there are no special considerations required to keep them within their proper ranges.

Likewise the geodetic altitude, hgd, is a computed parameter and requires no special consid-

16To exclude the possibility of simulation problems with ψ̇h the valid range is restricted to [−89.9◦ : +89.9◦].
17It is assumed that sideslip limits are symmetric.
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eration to stay within its approximate range of [−(R⊕ −Rp) : +∞].
The last parameters are the angular rates of the vehicle relative to the local horizon. These

Euler rate parameters, plv, qlv, and rlv, have a useful range of [−∞ : +∞]. They require no
special consideration.

15 Concluding Remarks

The EOM shown in this report are general, neglecting only terms that are small, and precluding
polar or near-polar trajectories18. Two major assumptions were made:

• The center of the Earth is the origin of an inertially fixed reference frame, i−Frame.

• The İω term in the rotational EOM is small and can be neglected.

The simplicity of the EOM described in this report arises from the choice of the h−Frame.
The legacy NASA Armstrong Flight Research Center (AFRC) oblate Earth nonlinear simu-

lation applies these translational, rotational, and helper equations in the routine DERIVC.
The algorithm used in the AFRC simulation has been presented. It is based upon a modi-

fication to the second-order Runge-Kutta integration method. The modification has been made
to eliminate a second call to the routine DERIVC, which can be very expensive in terms of com-
putation time. Additional algorithms that also do not require additional calls to DERIVC have
also been presented.

The typical problems associated with startup and storage of these multistep algorithms are
not significant for this application. Seeding the past derivatives with either Runge-Kutta or Euler
methods while in RESET will eliminate the startup concern. The limited number of equations to
integrate eliminates concern regarding storage requirements. Of more concern is the numerical
stability of these integration methods. Runge-Kutta methods do not exhibit numerical instability
if the time-step is sufficiently small, while multistep methods may be unstable for any value of
the time-step.

Considerations of ranges for variables have also been presented. Limit functions and nor-
malization routines should be used to assure that the integration states are maintained in their
proper range.

18Care should be taken to look for numerical problems if the trajectory exceeds a geocentric latitude of 89.9◦

deg.
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