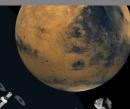


# Options for Staging Orbits in Cislunar Space

Ryan Whitley Roland Martinez

NASA

IEEE Aerospace Conference March 2016




Introduction Long Term Ops •00

## Need for Staging Orbit NASA's Building Blocks to Mars



Expanding exploration capabilities by visiting an asteroid that has been redirected to high lunar orbit.



Getting affordable access to low Earth orbit from U.S. companies.

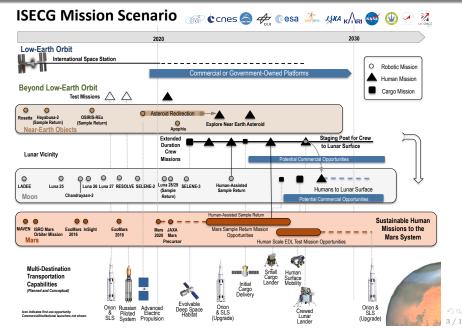


Traveling beyond low Earth orbit with the Space Launch System and Orion spacecraft.

Learning fundamentals of living and working in space aboard ISS.

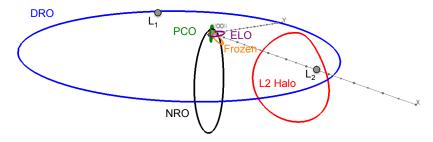


Proving Ground Earth Independent


Earth Reliant

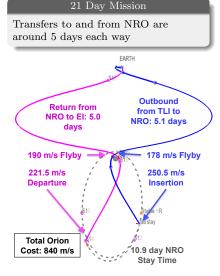
Missions: 6 to 12 months

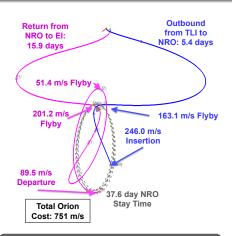
Missions: 1 month up to 12 months


Missions: 2 to 3 years / 14

#### Hub for International Exploration




#### All Cislunar Orbits Considered


| Orbit Type                     | Orbit Period           | Amplitude Range     | E-M Orientation                  |
|--------------------------------|------------------------|---------------------|----------------------------------|
| Low Lunar Orbit (LLO)          | $\sim$ 2 hrs           | 100 km              | Any inclination                  |
| Prograde Circular (PCO)        | 11 hrs                 | 3,000 to 5,000 km   | $\sim$ 75 $^{\circ}$ inclination |
| Frozen Lunar Orbit             | $\sim 13 \text{ hrs}$  | 880 to 8,800 km     | 40 <sup>◦</sup> inclination      |
| Elliptical Lunar Orbit (ELO)   | $\sim 14 \text{ hrs}$  | 100 to 10,000 km    | Equatorial                       |
| Near Rectilinear Orbit (NRO)   | 6-8 days               | 2,000 to 75,000 km  | Roughly polar                    |
| Earth-Moon L2 Halo             | 8-14 days              | 0 to 60,000 km (L2) | Dependent on size                |
| Distant Retrograde Orbit (DRO) | $\sim 14 \text{ days}$ | 70,000  km          | Equatorial                       |



In total, 7 types of orbits were considered, relying on both previous studies from literature and new analysis, primarily for the NRO. While the analysis presented is not comprehensive for all orbits, trends and characteristics are computed to permit generalized conclusions.

#### Orion Transfers from Earth to NRO





#### 60 Day Mission

Dwell time enabled by NRO habitat permits reduction in total  $\Delta V$ 

#### Transfer Costs from Earth TLI Condition

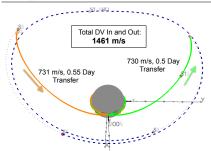
- An important metric for orbit viability is accessibility from Earth using existing or planned transportation elements.
- The combined performance of NASA's SLS and Orion vehicles were evaluated:
  - [SLS] SLS completes ascent to Low Earth Orbit and than the SLS Exploration Upper Stage places Orion on trans-lunar trajectory
  - [Orion] The MPCV is  $\sim$ 25 t, with  $\sim$ 8 t of usable propellant, leaving a  $\Delta V$  budget of around 1250 m/s with a total lifetime constraint of 21 days for 4 crew members
- Smaller Cislunar Orbits

| Orbit  | Total $\Delta V$             | $C_3$ (Moon)       |
|--------|------------------------------|--------------------|
| LLO    | 1800+ m/s                    | $-2.67 \ km^2/s^2$ |
| PCO    | Unknown                      | $85 \ km^2/s^2$    |
| Frozen | Unknown                      | $75 \ km^2/s^2$    |
| ELO    | 940 to 1270 m/s <sup>a</sup> | $72 \ km^2/s^2$    |

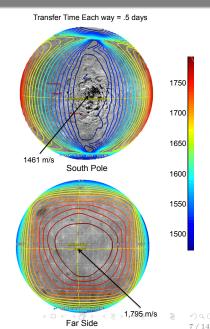
 $<sup>^{</sup>a}\,$  Optimal values from 20 year epoch scan.

• Larger Cislunar Orbits

| Orbit               | Total $\Delta V$   | Stay Time | Total $\Delta V$   | Stay Time         |
|---------------------|--------------------|-----------|--------------------|-------------------|
|                     | 21 Day Mission     |           | 60 Day             | Mission           |
| NRO                 | $840 \mathrm{m/s}$ | 10.9 d    | $751 \mathrm{m/s}$ | $37.6 \mathrm{d}$ |
|                     | 18 Day Mission     |           | 31 Day             | Mission           |
| $L2 \text{ Halo}^b$ | 811 m/s            | 5 d       | $637 \mathrm{m/s}$ | 10 d              |
|                     | 21 Day Mission     |           | 26 Day             | Mission           |
| $DRO^c$             | 957  m/s           | 6 d       | 841 m/s            | 6 d               |


<sup>&</sup>lt;sup>b</sup> From AIAA 2013-5478

c From AIAA 2014-1696

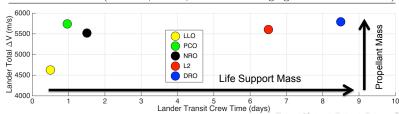

| Orion Feasible Marginal Infeasible |
|------------------------------------|
|------------------------------------|

#### Accessing the Lunar Surface from NRO

#### Example Transfer from NRO to Polar LLO



Low cost transfers from NRO to LLO are possible with short transfer times of around 1/2 day for global surface landing sites. However, the cost at the poles is significantly cheaper than the faces with one way cost of 730 m/s compared to 898 m/s respectively.




#### All Orbits: Lunar Surface Access

|                        | To or Fro              | om LLO               | Plane Change            | Total      |
|------------------------|------------------------|----------------------|-------------------------|------------|
| Orbit                  | $\Delta V$             | $\Delta T$           | $\Delta V$              | $\Delta V$ |
| LLO (0° PC)            | 0 m/s                  | < 1hr                | 0 m/s <sup>b</sup>      | 0  m/s     |
| LLO $(30^{\circ} PC)$  | 0  m/s                 | < 1hr                | $846 \text{ m/s}^{\ b}$ | 846 m/s    |
| PCO (Pol.)             | 700  m/s               | 5 hrs                |                         | 700  m/s   |
| Frozen (Pol.)          | $556 \text{ m/s}^{-a}$ | 6 hrs                | $252 \text{ m/s}^{\ b}$ | 808  m/s   |
| Frozen (Eq.)           | $556 \text{ m/s}^{-a}$ | 6 hrs                | $408 \text{ m/s}^{\ b}$ | 964  m/s   |
| ELO $(0^{\circ} PC)$   | $515 \text{ m/s}^{-a}$ | 7 hrs                | $0 \text{ m/s}^{b}$     | 515 m/s    |
| ELO ( $90^{\circ}$ PC) | $515 \text{ m/s}^{-a}$ | 7 hrs                | $478 \text{ m/s}^{\ b}$ | 993 m/s    |
| NRO (Pol.)             | 730  m/s               | $0.5  \mathrm{days}$ |                         | 730 m/s    |
| NRO (Eq)               | 898 m/s                | $0.5  \mathrm{days}$ | _                       | 898 m/s    |
| EM-L2 (Pol.)           | 800  m/s               | 3 days               | _                       | 800 m/s    |
| EM-L2 (Eq.)            | 750  m/s               | 3 days               | _                       | 750  m/s   |
| DRO (Pol.)             | 830  m/s               | 4 days               | _                       | 830 m/s    |

| Legend      |
|-------------|
| Favorable   |
| Marginal    |
| Unfavorable |

Total Lander Cost (Includes, ascent, descent and staging orbit insertion  $\Delta Vs$ )

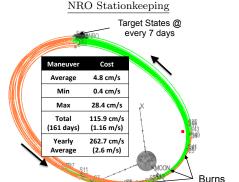


<sup>&</sup>lt;sup>1</sup> Calculations assume implusive hohmann transfer <sup>b</sup> Eqn:  $\Delta V_{pc} = 2vsin\left[\frac{\Delta i}{2}\right]$ 

#### Anytime Surface to Cislunar Orbit Abort Assessment

- For **LLO**, orbit precession around the moon is key.
  - Analysis performed in the mid 2000's for Constellation suggest that some amount
    of plane change may be required to get back to an orbiting asset.
  - If Orion is in a polar orbit and landing site is also polar that plane change cost should be minimal. The plane change cost increases as the landing site moves away from the poles.
- If the staging orbit is in a fixed plane, such as the **Frozen** orbit, the **PCO**, or the **ELO** selected for analysis, the plane change cost could be substantial.
  - As the PCO is around 75 degrees this cost may not be too large, while the Frozen orbit with 40 degree inclination may have a substantial plane change.
  - The equatorial ELO is a particular challenge for global aborts as only equatorial landing sites would be favored.
- An assessment of the NRO anytime aborts was assessed from a both a polar surface landing site as well as an equatorial landing site.

| Orbit             | Anytime Abort Requirement |                  |                    | $_{ m ent}$ |
|-------------------|---------------------------|------------------|--------------------|-------------|
|                   | From Pole                 |                  | From Equator       |             |
|                   | $\Delta V$                | $\Delta T$       | $\Delta V$         | $\Delta T$  |
| NRO               | 750 m/s                   | $3.5 \mathrm{d}$ | 900 m/s            | 2.5 d       |
| $L2 Halo^a$       | 900  m/s                  | 3.5 d            | $850 \mathrm{m/s}$ | 2.5 d       |
| L2 Lissajous $^a$ | 850  m/s                  | 3.5 d            | 800  m/s           | 2.5 d       |


<sup>&</sup>lt;sup>a</sup> See "Mission Analysis for Exploration Missions Utilizing Near-Earth Libration Points." Ph.D. Thesis by Florian Renk for detailed analysis.

• As the table demonstrates, for the larger orbits, **NRO** is substantially more favorable for polar landing sites, while the **L2 Halo** and Lissajous orbits are more favorable for equatorial landing sites with Lissajous generally out performing the L2 Halo.

#### Stationkeeping Costs

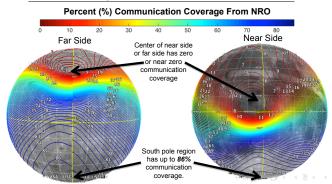
#### All Orbits Stationkeeping

| Orbit Type | Stationkeeping               |
|------------|------------------------------|
| LLO        | 50  m/s + per year           |
| PCO        | 0 m/s for 3 years            |
| Frozen     | 0 m/s                        |
| ELO        | $>300 \mathrm{m/s}$ per year |
| NRO        | <10 m/s per year             |
| EM L2H     | <10 m/s per year             |
| DRO        | 0 m/s                        |



| Legend | Favorable | Marginal | Unfavorable |
|--------|-----------|----------|-------------|

For the NRO, small corrections each orbit can maintain stability at an average cost of 2.6 m/s per year (0.22 m/s per month). Two of NASA's ARTEMIS spacecraft successfully flew a similar Earth-Moon  $L_1$  and  $L_2$  Halo libration orbit stationkeeping strategy at 0.31 and 0.41 m/s per month cost.


### Communication (Line of sight to Earth and Moon)

#### All Orbits Line of Sight Communications to Earth

| Orbit Type | Communication          |
|------------|------------------------|
| LLO        | 50% Occulted           |
| Frozen     | Frequent Occultation   |
| ELO        | Frequent Occultation   |
| NRO        | No Occultation         |
| EM L2H     | No Occultation         |
| DRO        | Infrequent Occultation |

Legend
Favorable
Marginal
Unfavorable

#### NRO Line of Sight Communications to Lunar Surface



#### Thermal Comparison

#### Heat Flux & Radiator Sizing Comparison

| Orbit /    | Maximum   | Heat Flux (V | $V/m^2$ ) | Radiator        |
|------------|-----------|--------------|-----------|-----------------|
| Location   | Radiative | Reflective   | Total     | Sizing $^{a,b}$ |
| LLO        | 1545      | 231          | 1776      | N/A             |
| NRO        | 54        | 8            | 62        | $21.4~m^2$      |
| DRO        | _         | _            | 0.6       | $18.0~m^2$      |
| Deep Space | _         | _            | 0.0       | $17.9 \ m^2$    |

<sup>&</sup>lt;sup>a</sup>Radiator Sizing Based on 5000 W Q<sub>craft</sub>

#### All Orbits Thermal

| Orbit Type | Thermal                |
|------------|------------------------|
| LLO        | Radiators Insufficient |
| NRO        | Radiators Sufficient   |
| EM L2H     | Radiators Sufficient   |
| DRO        | Radiators Sufficient   |

Legend
Favorable
Marginal
Unfavorable

For LLO, the radiator sizing is undefined; a radiator cannot be sized large enough to handle the flux in LLO. No increase in radiator sizing is necessary for the vehicle in NRO, E-M L2 or DRO orbits as the radiator has margin already as designed to the benign deep space environment.

 $<sup>^{</sup>b}Eqn:Q_{net}=Q_{r}-\alpha(Q_{s}+Q_{a})-\epsilon Q_{IR}, \alpha=.2, \epsilon=.8, T_{rad}=280K$ 

#### Staging Orbit Summary Comparison

| Orbit Type                          | Earth<br>Access        | Lunar Access                                             | Crewed Spacecraft    |                           |                           |
|-------------------------------------|------------------------|----------------------------------------------------------|----------------------|---------------------------|---------------------------|
|                                     | (Orion)                | (to Polar LLO)                                           | $_{ m SK}$           | Communication             | n Thermal                 |
| Low Lunar<br>Orbit (LLO)            | Infeasible             | $\Delta V = 0 \text{ m/s}$ $\Delta T = 0$                | 50 m/s +<br>per year | 50%<br>Occulted           | Radiators<br>Insufficient |
| Prograde<br>Circular Orbit<br>(PCO) | Marginally<br>Feasible | $\Delta V < 700 \text{ m/s}$ $\Delta T < 1 \text{ day}$  | 0 m/s for<br>3 years | Unknown                   | Unknown                   |
| Frozen Lunar<br>Orbit               | Marginally<br>Feasible | $\Delta V = 808 \text{ m/s}$ $\Delta T < 1 \text{ day}$  | 0 m/s                | Frequent<br>Occultation   | Unknown                   |
| Elliptical<br>Lunar Orbit<br>(ELO)  | Marginally<br>Feasible | $\Delta V = 953 \text{ m/s}$ $\Delta T < 1 \text{ day}$  | >300 m/s<br>per year | Frequent<br>Occultation   | Unknown                   |
| Near<br>Rectilinear<br>Orbit (NRO)  | Feasible               | $\Delta V = 730 \text{ m/s}$ $\Delta T = .5 \text{ day}$ | <10 m/s<br>per year  | No<br>Occultation         | Radiators<br>Sufficient   |
| Earth-Moon<br>L2 Halo               | Feasible               | $\Delta V = 800 \text{ m/s}$ $\Delta T = 3 \text{ days}$ | <10 m/s<br>per year  | No<br>Occultation         | Radiators<br>Sufficient   |
| Distant Retrograde Orbit (DRO)      | Feasible               | $\Delta V = 830 \text{ m/s}$ $\Delta T = 4 \text{ days}$ | 0 m/s                | Infrequent<br>Occultation | Radiators<br>Sufficient   |

| Legend Favorable Marginal Unfavorable |
|---------------------------------------|
|---------------------------------------|

Establishing a viable staging orbit in cislunar space is a key step in the human exploration journey. Maximizing flexibility in terms of access from Earth, access to other destinations, and spacecraft design impacts are all important. Accordingly, the Near Rectilinear Orbit (NRO) appears to be the most favorable orbit to meet multiple, sometimes competing, constraints and requirements.

**◆□▶ ◆□▶ ◆豆▶ ◆豆 ◆ 豆 ・ 夕**९@