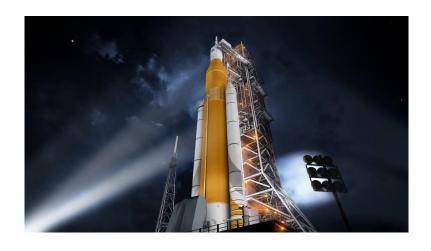
NASA

Evolving Reliability & Maintainability Allocations for NASA Ground Systems

Gisela Munoz (Red Canyon Software) T. Toon, J. Toon, A. Conner (Millennium Engineering & Integration) T. Adams, D. Miranda (NASA Kennedy Space Center)

2016 IEEE Aerospace Conference Big Sky, Montana March 10, 2016

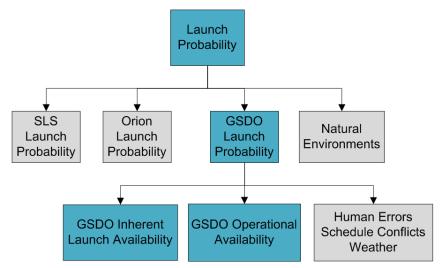


The Journey to Mars

- ◆ Exploration Mission 1
- Launch Complex 39B,
 Kennedy Space Center (KSC)
 - Space Launch System (SLS)
 - Orion
 - Ground Systems Development & Operations (GSDO)

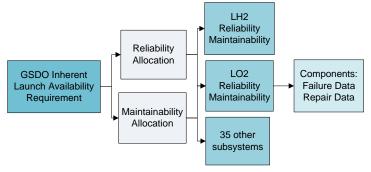
Ground System Development & Operations (GSDO)

- ◆ Evolvable Launch Architecture
 - Space Launch System (SLS)
- Upgrades and modifications across KSC
 - Launch Complex 39B
 - Mobile Launcher
 - Vehicle Assembly Building
 - Umbilicals
- Critical Design Review October 2015



Launch Probability

- GSDO requires safe and reliable ground systems
- Launch Probability is a key Technical Performance Measure
 - Applicable to SLS, Orion, and GSDO
 - Seeking no less than 90% for each launch attempt
- GSDO Launch Probability Requirements
 - Inherent Launch Availability
 - 98% for each launch attempt
 - @ 24 hours
 - Operational Availability
 - 80% between launch attempts
 - @ 360 hours or 14 days


Reliability, Maintainability, Availability (RMA)

- RMA team analyzes the integrity of hardware chosen for GSDO ground systems
 - Failure and Repair Data
 - Historical data from previous programs
 - Manufacturer
 - Subject Matter Expertise
 - Ancillary Handbooks
- ◆ RMA analysis verifies GSDO requirements
- Integral part of the design review process
- Critical reliability analysts interface directly with design and operations engineers

GSDO RMA Allocations

- Allocation is an iterative process
- Allocation Issues:
 - Change in the number of subsystems under analysis
 - Increase in the number of components per subsystem
 - Original allocations derived from preliminary designs
 - Eighteen subsystems were not meeting requirements
- Literature suggests reallocation
 - Models that include both reliability and maintainability parameters absent from the literature
 - Maintainability allocation methods not applicable to GSDO

Software

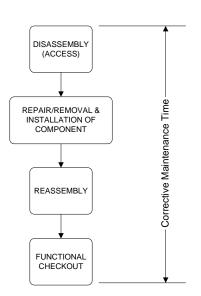
- PTC Windchill Quality Solutions
- Reliability Prediction and Reliability Block Diagrams (RBD) modules
- Assumes exponential distribution for failure and repair rates
- MIL-HDBK-217F Parts Count Calculation Model
- Monte-Carlo Simulations at 1,000,000 iterations

Reliability

- The probability that a system (or component) will fail at or after a predetermined time t
- Failures rate sources
 - Manufacturer
 - Historical Data
 - Ancillary handbooks Non-electronic Parts Reliability Database (NPRD) 2016,
 Electronic Parts Reliability Database (EPRD) 2014
- Mean Time Between Failures (MTBF)

•
$$R(t) = e^{-\lambda t}$$
, where $\lambda = \frac{1}{MTBF}$, $t = 24$ hours

• λ is the subsystem or component failure rate


Maintainability

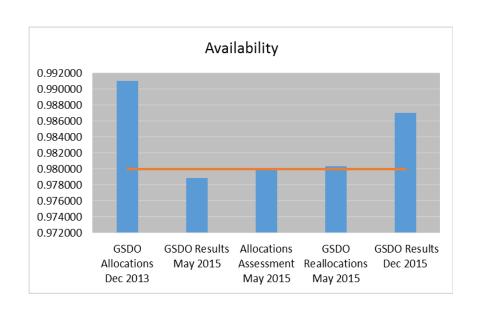
- The ability of a subsystem to be restored or repaired to an operational state within a given time period
- Values are estimated using subject matter experts (i.e., operations engineers)
- Mean Time to Repair (MTTR)
 - Corrective Maintenance

•
$$M(t) = 1 - e^{-\mu t}$$

•
$$\mu = \frac{1}{MTTR}$$

- μ is the constant repair rate
- $MTTR_{SS} = \frac{\Sigma(\lambda_i * MTTR_i)}{\Sigma \lambda_i}$

Availability


- Function of reliability and maintainability
- The probability that a repairable subsystem will operate satisfactorily at a given point in time during the period of analysis
- Point Availability analysis
 - Excludes logistic and administrative delays

$$A(t) = \frac{\mu}{\lambda + \mu} + \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu)t}$$

Reallocation Results

- Reallocations were based on changes to the launch architecture
- Initial Allocations did not reflect current designs
- Verify analysis is correct for current designs

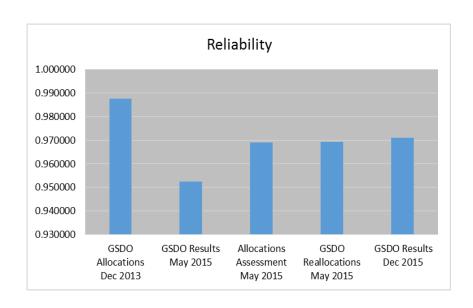
Recommendations

Consider reallocation for:

- Any increase in the number of components without a change in the design strategy (e.g., added redundancy, quality of hardware)
- Subsystems that contain a mix of upgraded and legacy components with historically high failure rates and considered single points of failure
- Significant changes to the launch architecture

Summary & Next Steps

- GSDO is creating a robust ground systems architecture
- GSDO requirements incorporate safety and reliability for successful launch activities
- RMA Analysts interface directly with and provide recommendations to design teams to ensure verification of requirements
 - Continuously perform RMA analyses through subsystem verification and validation



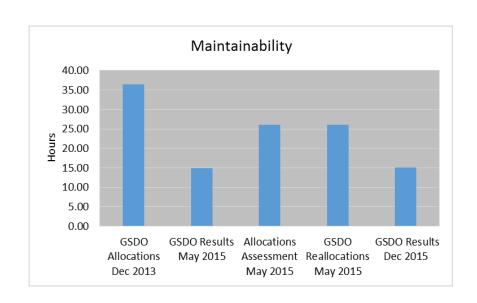
Reallocations - Reliability

$$ightharpoonup R(t) = e^{-\lambda t}$$

•
$$R(t) = e^{-\lambda t}$$

• $\lambda = \frac{1}{MTBF}$

- \uparrow t = 24 hours
- $\bullet R_{GSDO} = \prod_{i=1}^{n} R_i(t) = R_1 * R_2 * \cdots R_n$
- Reliability is a lower-bound measure
- Cause for reallocation
 - Change in the launch architecture
 - Number of subsystems & components

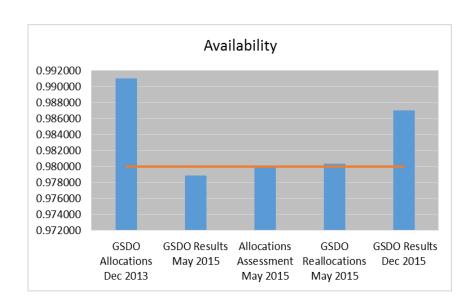


Reallocations - Maintainability

$$M(t) = 1 - e^{-\mu t}$$

•
$$\mu = \frac{1}{MTTR}$$

- t = 24 hours
- $MTTR_{GSDO} = \frac{\Sigma(\lambda_{SS} * MTTR_{SS})}{\Sigma \lambda_{SS}}$
- Maintainability is an upper-bound measure
- Cause for reallocation
 - Adjustment factor not applicable for all subsystems


Reallocations - Availability

$$A(t) = \frac{\mu}{\lambda + \mu} + \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu)t}$$

$$\star \lambda = \frac{1}{MTBF}$$

$$\bullet \mu = \frac{1}{MTTR}$$

- \bullet t = 24 hours
- Availability is a lower-bound measure
- ◆ Increase in Availability Estimates
 - Reallocations of reliability and maintainability
 - Change in the number of subsystems under analysis

