

Requirements and Verification (R&V) Streamlining for NASA's Space Launch System (SLS)

Josh Whitehead, Ph.D., P.E., CSEP ESSSA V&V Subelement Lead SLS | SE&I | SE | V&V

February 11, 2016

- Classical approaches to R&V
- Tenets of SLS
- Implementation of SLS R&V
- Snapshot of Results
- Backup: Terms and Definitions

Highly detailed and overly-prescriptive R&V

- 'Fat' requirement sets
 - Specifications written with extensive amount of 'shall' statements
 - Standards applied as directives
 - Design solutions included as part of requirement set
 - Multi-dimensioning of requirements through parent/child allocations
- 'Multiplexed' and 'over-tested' verification planning
 - Verification planning (events) often overly conservative due to excessive redundancy (overlapping test and analysis activities)
 - 'Test is best' mental model often drives additional cost/schedule without commensurate reduction in risk for today's development

Oversight/insight balance tends towards high control level

- Multi-dimensioned requirements leads to multi-dimensioned verification closure approvals (same requirement exists at two architecture levels)
- Additional redundant technical reviews drive large cost/schedule impact with minimal risk reduction to project
- Opportunities to 'compact' verification compliance assessments into shared compliance events and shared compliance reporting may not be explored

NASA's Space Launch System (SLS)

If you wonder how NASA's Space Launch System, or SLS, compares to earlier generations of NASA NASA's SLS Block 1 launch vehicles... Launch Vehicle Orion Spacecraft 363 ft (Astronauts) 322 ft 305 ft فر فر فر فر 184 ft **Upper Stage** (Liquid Fuel) Space Shuttle SLS Saturn V Statue of Liberty SLS will produce 13% more thrust at launch than the space shuttle and 17% more than the Saturn V. SLS 8.8 million Space Shuttle pounds 7.8 million pounds Saturn V 7.5 million pounds Core Stage SLS will launch more (Liquid Fuel) than three times as much weight into space as the Solid Rocket space shuttle. **Booster or SRB** (Solid Fuel) Space Shuttle cargo SLS cargo tons Engines

Cost- and schedule-constrained program

- SLS Program is based on a model of affordability
- Program structure and operating model target efficient utilization of taxpayer investments to maximize return on investment in the design of a new heavy lift launch vehicle
- This requires focus on cost and schedule performance of the program

Insight/oversight balance

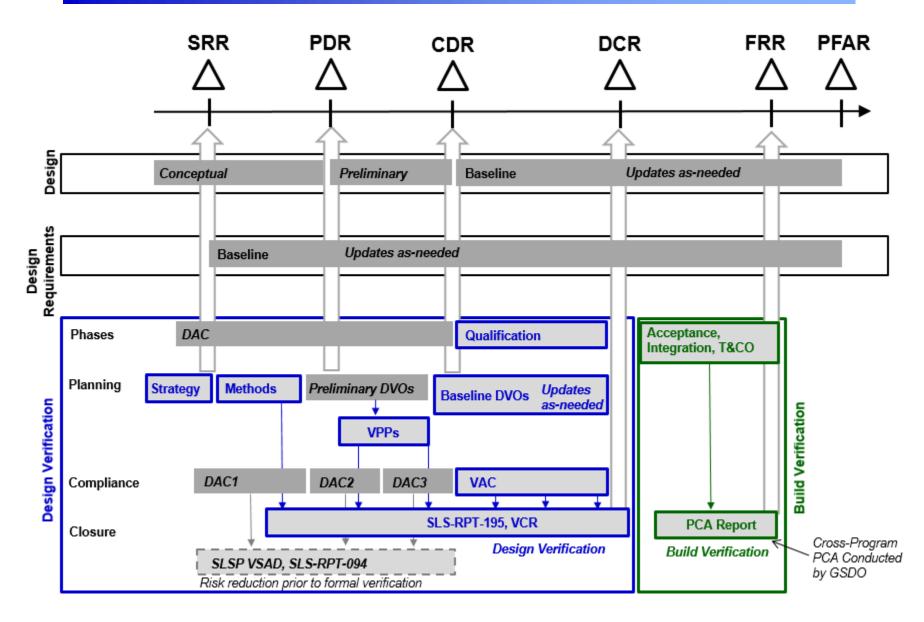
- <u>Oversight</u> is tactically applied at major design reviews (SRR, PDR, CDR, DCR, etc.) and based upon risk between milestones
- Matrix engineering model for SE&I used to continually administer vertical and horizontal integration, including <u>insight</u> into lower levels of the system

Risk-based management

• Technical decisions (including R&V considerations) are informed decisions based on risk assessments for safety, technical, cost, and schedule

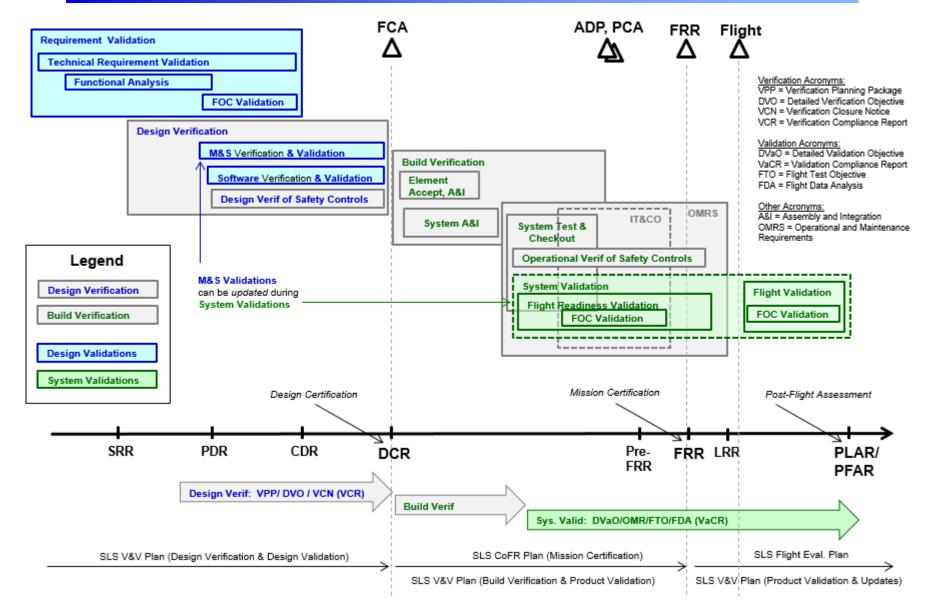
Delegation of technical authority and tailoring

- In response to key parent requirements, detailed requirement sets are derived by the technical authority at the level of implementation in the architecture
- Design and construction standards are applied as requirements with a clearly defined, risk-based process for tailoring:
 - Delegated to technical authority at the system-element level of the architecture
 - Allows system-elements to meet the intent of allocated standards with equivalent or modified standards
 - Elevation criteria defined for cases where intent is not met


Implementation of SLS R&V

- Lean R&V
 - 'Skinny' requirement set developed to define key safety, performance, functional, interface, and design standard requirements
 - Tactical verifications applied to ensure technical adequacy without forcing unneeded costs into the overall program
- Model-based R&V
 - Novel analytical approaches in lieu of classical requirement-to-analysis verifications
 - 'Heritage' hardware affordability maximized using controlled models
- 'Design constraints' used to formalize design agreements
- Removal of 'waste'
 - Redundant approvals removed from the overall process by delegating technical review, approval, and responsibility to the lowest level of the system
 - A subset of the verification method 'Inspection' was defined (called 'Validation of Records') to enable risk-based approval of delegated verification closures

• Clear communication of definitions, process, and implementation facilitated consistency and effectiveness of the overall R&V program



SLS Design Verification Lifecycle

SLS V&V Lifecycle

Risk-based process enables informed decisions

• Maintains technical rigor while allowing trade with cost and schedule

Improved program momentum (schedule)

- Increased schedule performance during critical early program timeframe
- Allowed for reduced 'churn' in program that results from defining overly constricting requirements, which allowed designers to swiftly proceed with preliminary and detailed design activities

Improved cost performance

- Significant reduction in non-value-added activities
- Reduced processes and removed redundancy in verification compliance and verification closure approvals
- Tailoring of standards replaces need for costly waivers/deviations that would have been identified late in the program development lifecycle

 Use of model-based R&V significantly reduces R&V overhead in areas where approach is risk-appropriate

Backup

Terms and Definitions

- <u>Build verification</u> a verification conducted against a released engineering requirement
- <u>Compliance activity</u> an analysis, test, inspection, demonstration, or other 'compliance' event where objective evidence is generated for comparison against applicable verification requirements
- <u>Compliance report</u> a report that documents the results of a compliance activity
- <u>Design verification</u> verification conducted against a design (specification) requirement
- <u>Requirement</u> a 'shall' statement that must be verified
- <u>Validation</u> the act of generating and approving objective evidence that a product meets stakeholder expectations
- <u>Verification</u> the act of generating and approving objective evidence that a requirement has been successfully satisfied

• <u>Verification closure</u> – approval of the successful completion of all the necessary verification compliance activities by a technical and/or program authority

•<u>Verification requirement</u> – a binding requirement that defines the conduct and measure(s) of success for verification closure, including verification objectives and verification success criteria for necessary compliance activities associated with a requirement