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AC alternative current LF low frequency

CCS constant current stress LT low temperature

CM current multoplier NS not specified

DC direct current PO purchase order

DCL direct current leakage QA quality assurance

DF dissipation factor RB reverse bias

DLA Defense Logistics Agency RT room temperature

DPA destructive physical analysis RVT random vibration testing

DWG drawing TS thermal shock

ESR equivalent series resistance VBR breakdown voltage

HF high frequency VF voltage formation

HT high temperature VR rated voltage

HTS high temperature storage WTC wet tantalum capacitors

XRF X-Ray Fluorescence
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Introduction: Problems with new WTC

Currently, WTC per MIL-PRF-39006 are among the most 

reliable components, but they had a rich history of problems.

The need for higher capacitance in a smaller volume resulted 

in development of new technology WTC.  

Difference between advanced WTC and MIL capacitors.

 Higher leakage currents increase the risk of excessive internal pressure.

 High sensitivity to reverse bias;

 Higher ripple currents require a closer look on self-heating and overheating 

in vacuum, derating (?);

 Sensitivity to random vibration;

 A common misconception is that new WTC are almost the same 

as MIL-PRF-39006, but with better characteristics.
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DLA L&M Drawings
 Most new WTCs have DLA drawings based on commercial 

specifications.

 The number of drawings is increasing, and currently exceeds 15.
Example of Vishay DLA Drawings
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DSCC DWG Features Case C VR
#06013 (CLR79), 

#06014 (CLR81), 

#06015 (CLR90), 

#06016 (CLR91), 

2012

Space level screened, MIL approved; 

established reliability; tin/lead terminations; 

“R” or 0.001 %/1000 failure rate; “H” or 

high shock and vibration rate.

1.7 µF to 

2200 µF

6 V to 

125 V

#93026 (ST), 

1993

Super extended capacitance range;  hi-rel

screened; Tin/lead terminations.

10 µF to 

1800 µF

25V to 

125V

#10004 (STE, 

HC2, T18), 2015

SuperTan® Extended Capacitors, Wet 

Tantalum Capacitors with Hermetic Seal

22 µF to 

10 mF

10 V to 

125 V

#13017 (T16), 

2013

Extended Capacitance, Tantalum Case 

with Glass-to-Tantalum Hermetic Seal, for -

55 °C to +125 °C operation.

10 µF to 

1.8 mF

25 V to 

125 V

#15005 (T18),

2014

Ultra-High Capacitance, Improved reverse 

voltage and vibration capability, DLA 

Approved.

470 µF to 

1 mF

25 V to 

100 V

#10011 (HE3),

2012

Wet Tantalum Capacitors Tantalum-Case 

with Glass-to-Tantalum Hermetic Seal, for -

55 °C to +125 °C operation.

1.1 mF to 

72 mF

25 V to 

125 V



M39006 and DLA Drawing Requirements

Part Type
Rev. 

Bias
HF vib Random vib

Mechanic

al shock

Thermal 

shock 

cycles

Life test

M39006 3V
cond. D (20g) or 

cond H* (80g)

cond. II-K* 

(53.79 grms)

cond. I 

(100g), 

D* (500g)

30 or 300*
10khr at VR, 85C or 

2khr at 125C, 2/3VR

#93026, 

1993
<0.05C cond. D (20g) NS

cond. I 

(100g)
30

10khr at VR, 85C or 

2khr at 125C, 2/3VR

CLR93,

2012
<0.05C cond. D (20g) NS

cond. I 

(100g)

300 (DDCL 

increased from 

125% to 200%)

10khr at VR, 85C or 

2khr at 125C, 2/3VR

#13017 

(T16), 2013
1.5V cond. E (50g)

cond. II-G 

(27.78 grms)

cond. I 

(100g)
300

2khr at VR, 85C or 

1khr at 125C, 2/3VR

#15005 

(T18), 2014
1.5V cond. E (50g)

cond. II-G 

(27.78 grms)

cond. I 

(100g)
300

2khr at VR, 85C or 

1khr at 125C, 2/3VR

*CLR93, CLR79, CLR81, CLR90, and CLR91 only (?)
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 Parts that cannot pass RVT cannot be used for space projects.

 Contrary to M39006 statement, CLR93 caps are similar to #93026.

 Due to insufficient reliability data, the specified performance of DLA 

DWG capacitors should be verified for each lot.



Introduction: Failure Modes
 Parametric failures (typically during qualification testing).

 Temperature dependence of capacitance.

 Degradation of leakage currents during life testing.

 Degradation of leakage current during TS testing.

 Unstable leakage currents.

 Catastrophic failures (can happen during box-level testing or 

during the mission).
 Open circuit caused by bulging that results either in fractured 

anode riser wire or case rupture and leak of electrolyte.

Electrolyte leak due to 

case rupture resulting in 

open circuit

fracture

Open circuit

due to bulging
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Introduction: Self-Healing in WTC

 The capability of self-healing plays an important role in assuring 

reliability, but should not be abused.

 If Ta2O5 is damaged, anodic oxidation continues resulting in 

oxide growth thus effectively eliminating the defect.

 However, (i) the quality of oxide is not the same as for normal 

oxidation, and (ii) self-healing goes along with gas generation.
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Introduction: why DCL is Critical?
H2 generation at cathode:

2e- + 2H2O(L) => H2(g) + 2OH-(aq)

Fz

tI
n






V

RT
nP 

For a capacitor with volume ~1 cc, 

leakage current ~1 mA  can result 

in ~40 atm after 10 years.
 What pressure cases can sustain?

 What are real leakage currents?

 What requirements we should 

have to mitigate the risk of case 

rupture and explosion?
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 The significance of DCL. Electrolysis → gas generation → increasing 

pressure and H2 embrittlement → risks of failures.

 Over crimping and hydrogen embrittlement can reduce the 

strength of the case substantially.



Screening and Qualification of WTCs

Screening (M39006):
 Voltage conditioning (48 hr, 85 ºC, VR through 1.1k). Visual examination. 

 Seal leak (gross).

 AC (C at 120Hz, DF at 120Hz or 1 kHz), and DC (DCL) measurements at RT 

(IR and DWV are not related to Ta2O5 dielectric).

 Stability at LT and HT (13 samples only as gr.B insp., some DWGs do not require this test).

 Qualification:
 Reverse bias (different from M39006);

 Random vibration test (different from M39006);

 Ripple current life test (specifics for vacuum?);

 Thermal shock (might be less than M39006);

 Voltage surge (1000c at 85 ºC, 1.15VR, 30sec pol and 390sec depol through 1kOhm);

 Mechanical shock;

 HF vibration;

 DC life test;

 Moisture.
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 Screening does not guarantee reliable 

operation and is not sufficient for space 

applications.

 Qualification testing is not required by 

DLA DWGs, but can be requested in PO.



 Introduction.  Specific features of WTC.

 Design and DPA.

 Parameters, their measurements and specifics.
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 Ripple currents.
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 Recommendations.
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Design

 Common features in all WTC: 
 Hermetically sealed Ta case; 

 Cathode coatings or plates; 

 Electrolyte;

 Anode slug.

 Specific features:
 Different cathode materials;

 Different additions to electrolyte;

 Presence of separators or 

wrapping cloth;

 Case: cylinder style (dual

seal) and button style 

(single seal).
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 Assembly (fixing the anode slug) is an art of compromise: 
insufficient pressure might cause failures during vibration, while too much 

pressure might damage the dielectric or reduce the strength of the case.



Cylinder-Style Design

M39006: Ta/Ta2O5 

sleeve as a cathode.

To reduce the 

thickness of cathode 

layers and increase 

CC, new materials are 

used:
AVX: NbO-based.

Vishay: Pd-based/ 

Ta2O5.

Evans: RuO2-based.

Higher CV powder.

Lower VF.M39006                                                          New technology capacitors
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Button-Style Design
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 Cathodes are made of thin Ta disks with 

special coatings to increase CC.

 The disks have tugs welded to cases.

 An “internal seal” introduced to prevent 

electrolyte from the tube: a rubber washer 

compressed between the slug and the case.

 How effective is this sealing?



DPA per MIL-STD-1580

 External visual: glass seal, weld.

 Hermeticity.

 Internal examinations:

 Absence of electrolyte, or insufficient level of liquid. (?)

 Scratches or cracks that are not oxidized. (?)

 Secondary color or spot graying …cause for rejection.(?)

 Any other defect that may reduce part reliability. (?)

 Foreign material in electrolyte. (?)

 Improper seating (fit) of the Teflon, rubber.                    (!)
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 The existing DPA requirements are ambiguous, 

XRF and X-ray are not required.

 For new technology WTC, DPA can be limited to 

external examinations, XRF, and radiography.

 Construction analysis might be useful.
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17To be presented by Alexander Teverovsky at the 2016 20th Annual CMSE Components for Military & Space Electronics Training & 

Exhibition, Los Angeles, CA, March 7-9, 2016.



Characteristics of WTC

Characteristic Comments

C, DF, ESR C at 120 Hz, DF or ESR at 120 Hz or 1 kHz. Effect of f, T, V?

Rated voltage
How much margin compared to VBR we have and how to 

set derating?

DCL
Specified at VR at T ≤ 85 ºC and 2/3VR at T = 125 ºC. How 

determined, and what is the significance? Effect of t, T, V?

Hermeticity
10-8 atm_cm3/s He per qual tests. Screening: only gross leak 

testing. Is it sufficient to avoid drying of electrolyte?

Ripple current
Ripple life test: 40 kHz, 2/3VR, still air, Tamb= 85 °C. How Irm is 

determined? What if application f is different? Derating? Operation 

in vacuum?

Operating Temp. -55 ºC to +125 ºC (2/3VR). Problems with stability at LT and HT?

Storage Temp.
Typically for button style: -62 ºC to 125/130 ºC.  Tmin is 

verified by LT test (72 hrs at -62 ºC). What verifies Tmax? The 

specific and significance of Tmax?
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Specified Values of C, DF, and ESR

 ESR is closely correlated with capacitance: ESR ~C-n, n ~ 0.41.    

 Specified ESR values are not related to power dissipation 

caused by ripple currents due to frequency dependence.  

 Some data sheets specify DF, others ESR.

 Test frequencies are different (120Hz, #93026 and 1kHz #04005).  

 Both parameters determine active portion 

of the impedance. fC

DF
ESR

2
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Stability of C and ESR at Low and 

High Temperatures 
Measurements are sequentially at +25C, -55C, +25C, +85C, +125C, +25C.

C/ESR/DF and DCL should stay within the specified tolerances.

Only 13 samples from each lot are tested even for M39006.
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 A lot failed stability test after life testing, but passed for virgin parts.

 There is no requirements for stability for DWG#04005, which is a 

drawback in QA system. 

 “Stability” is not specified for #0400X parts; substantial variations 

are possible.



Temperature Stability of Capacitance

Failures of dC are common and due to (i) 
substantial C(T) variations  that are specific 

to design, and (ii) non-adequate criteria.

part -55C +85C +125C

560uF 25V -49% +10% +15%

560uF 25V CLR91 -72% +20% +25%

110uF 75V -30% +6% +10%

1200uF 25V -54% +12% +18%

Examples of requirements for dC
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Failures at +125C

 More analysis is necessary to understand mechanism.

 Capacitance variations likely do not indicate reliability risks.

 Getting used to accepting parametric failures might result in 

disregarding anomalies that might be significant.
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C(f, T) and ESR(f, T)
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 Variations of C and ESR are related to temperature dependence 

of conductivity of electrolyte (roll-off) and increasing e of Ta2O5 

with temperature at low frequencies.

 High C at 125C might be also due to excessive leakage currents.



Effect of DC Bias on AC Characteristics
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 At low frequencies and high temperatures DC bias affects C 

and ESR.

 Measurements at 120 Hz: Vosc=0.5 V, VDC = 2.2 V or 10%VR (!?).

 Ambiguous requirements for VDC are not consistent with QA 

practice.



Rated and Breakdown Voltages
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 Based on voltage drop during CCS, the self-healing capability 

changes in a row: WTC  > MnO2 > polymer.

 For a given VR, VBR decreases with C. (i) thinner dielectrics; (ii) 

greater probability of having a defect for higher ratings. 

 Breakdown margin decreases with VR. This might explain a higher 

probability of life test failures for HV WTC.  

 Different derating might be used for different rated voltages.



 Introduction.  Specific features of WTC.

 Design and DPA.

 Parameters, their measurements and specifics.

 Leakage currents.

 Hermeticity.

 Gas generation and internal pressure.

 Effect of reverse bias.

 Ripple currents.

 Random vibration testing.

 Recommendations.
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DCL: Existing Requirements
 I ~ S/d×V, C ~ S/d => DCL =a×C×VR. (a = 0.01 for MnO2, 0.1 for polymers)

Similar relationships are used for aluminum electrolytic capacitors.

Significance of DCL: (i) most sensitive to quality of dielectrics, 

(ii) leakage current determines the rate of gas generation. 

Correlation between DCL requirements and CV values 
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 There is no standard procedures to set DCL requirements.

 The spread of the limits for similar CV parts is substantial.

 A procedure for DCLmax should be set and requirements revised.



Absorption and Intrinsic Leakage 
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 Absorption currents:
 Decrease with time, I ~ 1/t Curie-von-Schweidler law;

 Prevail during first minutes of electrification;

 Increase linearly with voltage and capacitance;

 Have poor temperature dependence.

 Intrinsic currents caused by conduction of Ta2O5:
 Typically, are much smaller than absorption currents at RT;

 Increase exponentially with voltage and temperature.



Absorption Capacitance and DCL Model
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 Absorption model allows for reasonable assessments of DCL.



Intrinsic Leakage Currents

Simmons/Schottky model:
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Intrinsic conduction is 

limited by the barrier 

at the Ta2O5 -

electrolyte interface 

(0.9 eV < B < 1 eV).

Extrapolations to RT 

show that intrinsic 

leakage currents are 

several orders of 

magnitude below the 

specified limits:
DCLmax for 470 mF 75 V 

capacitors is 5 mA; measured 

value after 5 min is ~1.6 mA, 

while intrinsic currents are 

from 6 nA to 20 nA.



Long-term Variations of Leakage 

Currents at RT
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In normal quality 

parts currents 

continue decreasing 

during operation. 

Some parts might 

pass DCL screening, 

but have unstable 

and wide spread 

leakage currents.

Currently, there is no 

control over stability 

of currents.
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 High quality WTCs should have limited intrinsic currents and 

their stability should be verified during qualification testing.



Life Testing
 M39006: 
gr. B (each lot) – 10/0 pcs for 2 to 10 khr (periodic measurements) at VR, 85 ºC. (≤ 1.25 DCL);

gr. C (periodic, every 6 months) -10/1(?) pcs (representative samples) 2000 hr (periodic 

measurements) at 2/3VR, 125 ºC (≤ 1.25 DCL).

 DLA DWGs – testing can be done by PO.
#93026: capable to withstand 10 kh at VR, 85 ºC or 2000 hr at 2/3VR, 125 ºC . (≤ 1.25 DCL);

#13017, #10004 capable: 2,000 hr at VR, 85 ºC or 1000 hr at 2/3VR, 125 ºC . (≤ 1.25 DCL);

#10011 – life testing is not mentioned.

 Specifics of life testing:
Carried out at rated conditions, so derating is necessary.

Leakage currents often increase with time and might cause 

parametric failures.

Results of testing typically come when parts are installed.

 If high currents are due to localized damage 

(e.g. field-induced crystallization), substantial gas 

generation is possible.

 If degradation is due to charge instability (migration of VO
++), then 

voltage drop across electrolyte might be negligible (no gas generation).
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Hermeticity
Qualification requirements: 10-8 atm_cm3/s, He.

Screening: only gross leak test is required. (R1  up to ~10-5 atm_cc/s He)

DC0849 DC0850 DC0947 DC1006

SN1 6.21E-11 5.38E-08 3.16E-10 7.84E-11

SN2 7.40E-11 2.04E-08 3.11E-10 7.01E-11

SN3 5.22E-11 5.97E-11 2.85E-10 6.10E-11

SN4 6.32E-11 8.28E-08 2.74E-10 4.99E-11

SN5 5.12E-11 3.69E-08 2.41E-10 4.86E-11

SN6 4.43E-11 2.98E-08 2.73E-10 5.01E-11

SN7 2.75E-11 5.64E-11 2.36E-10 4.99E-11

SN8 4.34E-11 4.84E-08 1.96E-10 4.90E-11

SN9 4.46E-11 3.16E-08 2.02E-10 4.65E-11

SN10 4.38E-11 2.13E-07 2.06E-10 4.05E-11

Four lots of DWG93026 110uF 75V T2 DWG #04005

33To be presented by Alexander Teverovsky at the 2016 20th Annual CMSE Components for Military & Space Electronics Training & 

Exhibition, Los Angeles, CA, March 7-9, 2016.

Hermeticity failures and electrolyte leaks are sample- and lot-

related problems and should be revealed by screening.

The capability to sustain high internal pressure should be 

addressed by HTS testing.



How Much Electrolyte can be Lost?

Internal pressure at 150°C is ~ 5 atm (some WTC can operate at 200°C).

At 10-8 atm_cc/s He the loss is ~1 mg at 22°C and ~30 mg at 85°C in 

10 years after sealing, which is negligible for large size WTCs.

At 10-5 atm_cc/s He (gross leak), the risk of evaporation is real, so 

requirements should be tightened.

The rate of evaporation in g/s was calculated based on R1 

atm_cc/s He at different temperatures.
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Hermeticity and Internal Gas Pressure
 Gas generation in the presence of leaks: 
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 The lower the leak rate, the higher pressure can be developed.

 At R1= 10-10 atm*cc/s He, and current of 1 mA, the pressure 

during 10 years of operation can exceed 20 atm.

 In the range 10-9 to 10-11 atm*cc/s He,  varies from 20 days to 

half a year for T1 cases to many years for DWG04003 capacitors.



Critical Pressure and Maximum Current

Cylindrical surface of the case:

Clamped membrane:

Tantalum: E =185 GPa, 

m = 0.34,  the strength is ~280 MPa, but considering 

embrittlement, for conservative estimations scr = 100 Mpa. 

 Icr was calculated based on Pcr for a 10 year mission.
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#93026 

T1

#93026 

T2

#93026 

T3

#93026 

T4

#93026 

L2
#04005 #04003

Pcr, atm 83.3 69.4 52.1 52.1 69.4 50.8 21.2

DRcr, mm 1.3E-03 1.9E-03 2.6E-03 2.6E-03 1.9E-03 6.1E-03 9.7E-03

m_cr (bulging), mm 0.031 0.067 0.16 0.16 0.067 0.92 3.6

Icr,10 years, mA 2.1 5.9 9.5 13.1 9.2 5.6 29.0

 Requirements for intrinsic currents should be verified by 

measurements during voltage conditioning.
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Factors Mitigating and Aggravating  

Excessive Gas Pressure

 Overpressure and failures are more likely to be caused by fast 

gas generation due to overvoltage, RB or damage to the 

dielectric during RVT.

 WTCs will operate reliably if proper control over leakage 

currents is established.

Mitigating:
 Hermeticity leak.

 Hydrogen absorption in Ta and penetration through the 

case reduce the pressure.  Generated oxygen 

(~50% of H2) remains in the case.

 Non-Faradaic currents.

Aggravating:
 Presence of defects in oxide.

 Presence of electrolyte at the glass seal.

 Damage to dielectric caused by vibration or TS.

 Increased temperatures due to excessive ripple currents.
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DWG#93026 RB Degradation at 0.5V

 Degradation might appear after 

hundreds of hours.

 In most failure cases the 

transfer charge is below the 

specified value of 0.05 C.

 Time to failure varies from 

part-to-part substantially.
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Bulging under Reverse Bias

 Strain increases linearly with time due to the pressure building up.

 Strain ~0.07% corresponds to pressure of dozens of atmospheres.

 H2 generation at cathode:

2e- + 2H2O(L) => H2(g) + 2OH-(aq)

 Temperature and deformation of 

the case were measured using 

flexible sensors.
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Example of RBS Failure 

470uF 75V part failed RBS 100hr 2V due to 

lead fall-off caused by electrolyte leak.

 Pressure deforms the case, forces electrolyte above the 

Teflon bushing, and causes corrosion of the weld. 

Radiographic views of a normal (top 

picture) and bulged (bottom picture) 

capacitors
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Failures of #04005 Capacitors

 A sharp decrease in RB current and open circuit failure mode.

 At RT 2V time-to-failure ~10hr; at 1.5V ~ 100hr; at 1V ~ 1000hr? 
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Introduction

 Ripple-current-induced heating affects the failure rate of capacitors.

 Typical requirements for temperature derating: 70 °C at 60% of VR 

to 110 °C at 40% VR.  

 There is no derating requirement for ripple currents (effect of 

vacuum?).

 Self-heating caused by ripple current can be calculated as:

This requires knowledge ESR(T, f), and thermal resistance, Rth.

 A complex character of DT dependence on a variety of external 

and internal parameters explains difficulties with Irm specification.

 Case-to-ambient thermal resistance: 

Rth= (1/Rconv + 1/Rrad +1/Rcond)
-1

 Analysis shows that Rconv, Rrad, and Rcond, have comparable values.

.),_,(),(2 envirsizecaseTRfTESRIT thr D
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Existing Ripple Current Requirements

 MIL-PRF-39006 specifications have tables with maximum ripple 

current, Irm, at standard conditions: 40 kHz, 2/3VR, still air, Tamb =85°C. 
“The ripple current listed in table represents a rating calculated by using a maximum internal temperature rise (ΔT) at 

50°C at 40 kHz at 85°C ambient temperature, with a maximum peak rated voltage of 66.67 percent of the 85°C peak 

voltage rating.”

 To account for different frequencies, voltages, and temperature 

conditions current multiplying factors (CM) are suggested.

 No details on selection of CM are given, but It is assumed that 

maximum internal temperature should be less than 135 °C.

 A method to determine Irm is not specified, and MIL-PRF-39006 does 

not require temperature rise measurements.  

 The specified values of Irm are based on historic data that are adjusted 

for the frequency dependence of ESR for new capacitors; however, the 

method of the adjustment is not specified and different manufacturers 

might use different techniques.
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ESR(T, f)

ESR is a complex function of T and f.

Power dissipation depends on the value of ESR(T, f): P = I2r × ESR(T, f)
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 ESR is decreasing with temperature at high frequencies (HF), but is 

rising at low frequencies (LF).

 There is a risk of thermal run-away at LF, typically below ~1 kHz.

 ESR(T) at HF (> 1kHz) corresponds to the temperature dependence 

of resistance of sulfuric acid. ESR(f) at LF is determined by the AC 

resistance of Ta2O5 layer, but at HF - by resistance of the electrolyte.
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IR Imaging

 IR images were recorded with time during heating and cooling of the 

parts to check for a possible formation of hot spots.

 Analysis of temperature distributions did not reveal hot 

spots in any of the parts.

 Temperature distributions corresponded to the location of 

the anode slug.
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Effect of Power in Still Air

 At f >1 kHz, Rth is frequency independent.

 At LF (60 Hz and 120 Hz), Rth is 2 to 10 times greater than at HF.

 The anomaly corresponds to much larger  at LF, and is likely due 

to different temperature distributions in the capacitor.

 For low-size cases, contrary to the large-size cases, DT is 

noticeable at LF even at relatively low levels of the dissipated 

power.

DT(P) at different frequencies and amplitudes of ripple currents
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Temperature Rise at Different Test 

Conditions

Temperature rise changes substantially depending on environments.

Compared to still air, temperature rise in vacuum can be more than 

2 times greater, and ~3 times less in the forced air convection 

temperature chamber.
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Rth and DT at Different Environments
 Average Rth values were calculated using two test methods.

 Temperature rise, DT, was calculated for standard conditions: 40 kHz 

and specified values of  Irm.

Part 
Rth still 

air, K/W 

Rth conv., 

K/W 

Rth vac., 

K/W 

DT still 

air, °C

DT conv., 

°C

DT vac., 

°C

470uF 75V T4 V 30.4 12.2 70.7 28.8 9.1 51.3

470uF 75V T4 A 31.9 11.8 111 47.5 14.6 114.3

470uF 50V T3 V 36.2 17.4 89 22.5 8.2 38.2

220uF 50V T2 V 37.3 18.2 113.3 43.4 15.6 81

120uF 25V T1 V 40.9 27.1 21

33uF 75V T1 V 34.8 30.4 130.4 27.9 18.9 52

210uF 125V E 24.3 14.1 50.9 31.3
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 Four out of 7 part types had low rated currents, DT << 50 °C.

 In a convection chamber temperature rise decreases by 40% to 60% 

compared to still air conditions.

 Temperature rise increases by 60% to 140% in vacuum and can 

exceed 100 °C.



How Stressful is Ripple Current Testing?

 Experience shows that ripple life testing does not generate more 

failures compared to a regular, DC bias only, life testing.

 At ripple life test conditions for M39006/33 capacitors (85°C, 40kHz, 

Irm, 2/3VR), the temperature rise is from 10 °C to 20 °C only.

 Assuming acceleration factors for reliability testing for solid and wet 

capacitors are similar,

AF can be expressed as:

where B = 10 to 20, Ea = 0.7 to 2 eV.

 At T = 85 °C, an increase in the case temperature by 10 to 20 °C 

would increase FR in 2 to 34 times; however, a decrease in DC bias 

from VR to 2/3VR would decrease FR in 30 to 785 times.  

 The level of stress during ripple life testing is typically below the 

level of stress during regular life testing at 85°C and VR.
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 Introduction.  Specific features of WTC.

 Design and DPA.

 Parameters, their measurements and specifics.

 Leakage currents.

 Hermeticity.

 Gas generation and internal pressure.

 Effect of reverse bias.

 Ripple currents.

 Random vibration testing.

 Recommendations.
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Introduction to RVT

 History of RVT failures.

 During RVT larger anodes in advanced 

WTCs experience greater stress that MIL 

capacitors, and are more susceptible to damage.

 Requirements for space modules: typical range of RVT is from 

4.5 to 12.9 g rms.

 General Environmental Verification Specification (GEVS): an 

overall qualification level for testing is 14.1 g rms.

 Assuming a 3dB margin to the system-level, capacitors should 

sustain 19.64 g rms (condition II-E per MIL-STD-202, TM214).

 RVT cannot be replaced with sinusoidal testing.  Peak 

accelerations during RVT are up to 4-5 times of the rms value.

 Capacitors per DLA DWG#93026 are not specified for RVT.
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Existing Requirements and Practice

 MIL-PRF-39006: up to 53.8 g rms; 1.5hr in 3 directions; last 30 min by 

monitoring every 0.5 msec “to determine intermittent open-circuiting or short-

circuiting”. DCLpost test= 125% of DCLinit.

 Test techniques and failure criteria are not specified allowing 

different test labs to carry out testing differently.

 Intermittent open circuit can be relatively 

easily detected during AC measurements.

 Intermittent shorts result in spiking during 

DC measurements and require 

establishing critical levels.

 Used circuits vary substantially, e.g limiting resistors from ohms to 

dozens of  kohms, and failure criteria vary from 5% to 90% of VR.

 Different set-ups have different sensitivity to short-circuiting.

 Different failure criteria cause inconsistency in test results.

 A single scintillation event is sufficient to cause lot failure.

Some test labs 

assume this level of 

spiking acceptable
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Experiment
 24 types of military and DLA DWG#93026 capacitors from 4 

manufacturers. 4 to 5 samples in a group.

 Step stress RVT: from 10.76 g rms (Cond. II-C) to 53.79 g 

rms (Cond. II-K) consequentially for 15 min.

 DCL were monitored every 100 msec through 10k resistors.

 Vibration started after 5 min of electrification.
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Results of Step Stress Testing
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Results of Step Stress Testing, Cont’d
Proportion of failures detected by current spiking 

for different case sizes
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Capacitors can 

fail at  low stress 

levels (~10 g rms)

Failures increase 

with the level of 

stress.

Some parts are 

recovering at 

greater stresses.

The probability of 

failure is greater 

for larger size 

capacitors.
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Post-RVT Leakage Currents
 Leakage currents were monitored with time under bias  after RVT.
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Currents during RVT              Currents after RVT
 Spiking during 

RVT might not result 

in DCL degradation 

after the testing.

 Capacitors that 

“fail” RVT at 53.8 g 

rms did not change 

DCL and passed 

HALT.

 Parts with 

excessive currents 

are recovering with 

time under bias.
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Post-RVT Leakage Currents, Cont’d
Variations of leakage currents at RT through the testing

 RT measurements of leakage currents might be more effective 

in revealing damage compared to high temperature 

measurements (Intrinsic DCL have a stronger temperature dependence 

compared to currents in damaged areas).

 The susceptibility to RVT failures is lot related.
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Assessment of RVT Results

 Capacitors with minor spiking 

can self-heal and restore their 

performance and reliability.

 Different tests for different 

risk levels.

 Each lot should be tested.

 Typical testing:

 19.6 g rms , 6 samples.

 15 min in each direction.

 DCL is monitored (10k, 0.1sec 

sampling).

 Criterion I: Isp > 3×I300

 Criterion II: Q > Qcr

 Criterion III: 

I300_RVT  > 1.25×I300_init
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Crit. I

Crit. II

Crit. III



 Introduction.  Specific features of WTC.

 Design, DPA and CA.

 Parameters, their measurements and specifics.

 Leakage currents.

 Hermeticity.

 Gas generation and internal pressure.

 Effect of reverse bias.

 Ripple currents.

 Random vibration testing.

 Recommendations.
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Recommendations
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 Requirements for screening and qualification procedures 

for advanced WTCs are given in NASA Electronic Parts 

and Packaging (NEPP) Program reports 

(https://nepp.nasa.gov/):

 “Leakage currents and gas generation in advanced wet tantalum 

capacitors”, 2015.

 "Random Vibration Testing of Advanced Wet Tantalum Capacitors“, 

2015.

 “Ripple Current Testing and Derating for Wet Tantalum Capacitors”, 

2013.

 “Guidelines for Selection, Screening and Qualification of Advanced 

Wet Tantalum Capacitors Used for Space Programs”, rev.A - 2012, 

rev.B – 2016.


