
LOW-THRUST TRANSFERS FROM DISTANT RETROGRADE ORBITS TO L2 HALO 

ORBITS IN THE EARTH-MOON SYSTEM 

 

Nathan L. Parrish1, Jeffrey S. Parker1, Steven P. Hughes2, Jeannette Heiligers1, 3 

 
1Colorado Center for Astrodynamics Research, University of Colorado at Boulder;  

2NASA Goddard Space Flight Center 
3Delft University of Technology 

 

ABSTRACT 

 

This paper presents a study of transfers between distant 

retrograde orbits (DROs) and L2 halo orbits in the Earth-

Moon system that could be flown by a spacecraft with solar 

electric propulsion (SEP). Two collocation-based optimal 

control methods are used to optimize these highly-nonlinear 

transfers: Legendre pseudospectral and Hermite-Simpson. 

Transfers between DROs and halo orbits using low-thrust 

propulsion have not been studied previously. This paper 

offers a study of several families of trajectories, 

parameterized by the number of orbital revolutions in a 

synodic frame. Even with a poor initial guess, a method is 

described to reliably generate families of solutions. The 

circular restricted 3-body problem (CRTBP) is used 

throughout the paper so that the results are autonomous and 

simpler to understand. 

 

Index Terms— Electric propulsion, collocation, CRTBP 

 

1. INTRODUCTION 

 

The goal of this paper is to fill a gap in the types of transfers 

studied, as well as to begin understanding some of the 

families of transfers which exist for any low-thrust transfer in 

an N-body force field. Similar types of transfers that have 

been studied in the literature include: from Earth orbit to 

Moon orbit using low-thrust [1, 2], from Earth orbit to 

libration point orbits using low-thrust [3], from Earth to DRO 

using impulsive maneuvers [4], from Earth to DRO using 

low-thrust [5], from L1 halo orbit to L2 halo orbit, and solar 

sail transfers between libration point orbits of different Sun-

planet systems [6, 7].  

For the most part, results in the literature focus on a 

single example trajectory studied in great detail. However, 

there are few papers that study families of transfers. Topputo 

[8] showed that many distinct families of ballistic transfers 

exist between the Earth and Moon in a four-body model, and 

others have demonstrated that such variations exist for other 

types of transfers in Earth-Moon space [9, 10]. By exploring 

the families of transfers that exist between DROs and L2 halo 

orbits, this paper provides deeper insights into the trade space 

available. 

2. BACKGROUND 

 

2.1. Circular restricted three-body problem 

 

The full three-body problem has eluded analytical 

representation for centuries. Each body has 6 degrees of 

freedom, for a total of 18. There are only 10 known integrals 

of motion, so it is impossible to develop an analytical 

representation. Some common simplifications can be made to 

make the problem tractable.  

The circular restricted three body problem (CRTBP) 

makes two significant assumptions: the mass of the third 

body (the spacecraft) is negligible compared to the primary 

or secondary bodies, and the primary and secondary orbit the 

system barycenter in perfectly circular orbits [11].  

Non-dimensional distance and time units are used such 

that 1 DU is the distance from Earth to Moon, and 2𝜋 TU is 

the orbital period of Earth and Moon about their barycenter. 

The non-dimensional mass ratio 𝜇 (defined as the mass of the 

secondary divided by the system’s total mass) is used instead 

of the gravitational parameter of a two-body system. For the 

Earth-Moon system, 𝜇 is approximately 0.012151. A synodic 

reference frame is used, defined such that the x-axis is 

positive towards the secondary body. Earth is on the x-axis at 

(−𝜇), and the Moon is on the x-axis at (1 − 𝜇). The z-axis is 

defined by the rotation axis of the system, and the y-axis 

completes the right-handed triad. This reference frame is 

shown in Figure 1. The differential equations with thrust in 

the CRTBP in the synodic reference frame are 
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where 𝜇 is the mass ratio of the system, 𝑟1 is the distance 

from the primary, 𝑟2 is the distance from the secondary, and 

𝑇[ ] is the acceleration due to thrust.  

Rate of mass change is given by 𝑚̇ = −|𝑇⃗ |/(𝐼𝑠𝑝𝑔0), 

where 𝐼𝑠𝑝 is the specific impulse and 𝑔0 is the standard sea-

level gravitational acceleration due to Earth.  



 

Figure 1. Illustration of the Earth-Moon system in the 

CRTBP, viewed in the synodic reference frame. The 

Earth and the Moon are plotted, not to scale. Libration 

points L1 through L5 are also shown, as are some zero-

velocity curves of equal Jacobi constant.  

 

2.2. Halo orbits  

 

Halo orbits are so-named because when viewed in a synodic 

reference frame, they trace a “halo” in space. These orbit the 

libration points such as L1 or L2 [12]. The Orion/Moonrise 

mission concept would use Earth-Moon L2 as a low-fuel-cost 

rendezvous location for the manned Orion capsule and the 

proposed Moonrise vehicle carrying lunar samples [13].  

 

2.3. Distant retrograde orbits 

 

DROs are a type of orbit that have received increased 

attention in the past few years because of the unique 

characteristics they exhibit. DROs are a type of repeating 

orbit that exists only in the 3-body problem [11]. When 

viewed in a synodic reference frame, a DRO is retrograde 

about the secondary body, at a relatively high altitude such 

that the orbit is significantly perturbed by both the primary 

and secondary bodies. DROs are unique in that they sit 

between two-body orbits and libration point orbits in terms of 

stability. These orbits are often dynamically stable, though it 

has been shown that perturbations in a high-fidelity model of 

the solar system may cause a spacecraft to depart an 

otherwise stable DRO [14].  Parker, Bezrouk, and Davis 

demonstrated several trajectories that transfer from Earth to a 

DRO, requiring no maneuvers to capture at the DRO and 

remaining on the DRO for thousands of years [4].  

Mission concepts that have examined DROs include the 

proposed NASA/JPL Asteroid Redirect Mission [15] and the 

Orion/MoonRise concept [13], [16]. Both of these mission 

concepts could benefit from the capability to transit between 

an asteroid captured in the DRO and a potential space vehicle 

in the halo orbit. Ongoing research by Davis and Parker is 

finding that impulsive transfers between those orbits do exist, 

but they are costly on the order of 150 m/s and require transfer 

times on the order of weeks to months. The present work 

finds that spacecraft with SEP have the potential to greatly 

reduce the propellant mass required to make such transfers, 

without much increase in time of flight.  

 

2.4. Collocation 

 

The basic principle of collocation is to represent an ordinary 

differential equation with some continuous function which 

obeys the differential equations of motion at a set of nodes. 

Collocation is a direct method that transcribes an optimal 

control problem to a non-linear programming (NLP) problem 

which can be solved by any industry-standard NLP software 

[17]. The IPOPT NLP solver is used here [18]. A variety of 

collocation-based methods exist, distinguished by the node 

spacing and the choice of basis functions. Pseudospectral 

collocation is generally defined on one of three choices of 

meshes: Legendre-Gauss (LG), which does not have a control 

node on either endpoint; Legendre-Gauss-Radau (LGR), 

which has a control node on just one endpoint but not the 

other, and Legendre-Gauss-Lobatto (LGL), which has 

control nodes on both endpoints [19]. 

A helpful way to think of collocation is through a 

comparison to implicit numerical integration schemes. When 

propagating a system with known forces, information about 

the current state and, possibly, the state at previous 

integration steps is used to calculate the state at some time in 

the future. In collocation, rather than propagating a known 

initial state through known forces, the states and controls are 

optimization parameters subject to constraints. In order to 

find a solution which obeys the differential equations of 

motion, a defect is calculated at or between each node. 

Reference [20] has an excellent description of collocation.  

Two collocation methods are used for this research: 

Legendre pseudospectral, and Hermite-Simpson. These are 

used as implemented in the open source, optimal control 

package PSOPT (PseudoSpectral OPTimal control) [21]. In 

both cases, the NLP solver attempts to minimize the 

differential defect constraints while minimizing the cost 

function and minimizing any other constraint defects.  

 

2.4.1. Legendre pseudospectral approximation 

The Legendre pseudospectral method approximates each 

element of the state and control as an Nth order Lagrange 

polynomial at the N quadrature nodes. Time is transformed to 



be in the interval [−1,+1]. The state 𝑥 at node 𝜏 is 

approximated by [19, 20, 21]:  

𝑥(𝜏) ≈ ∑𝑥(𝜏𝑘)ℒ𝑘(𝜏)

𝑁

𝑘=0

 

where ℒ𝑘 are the Lagrange basis polynomials, and 𝜏 is the 

transformed time. The Lagrange basis polynomials ℒ𝑘(𝜏) can 

be expressed as follows: 
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where 𝐿𝑁 are the Legendre polynomials of order N of the 

form  
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where 𝐷 is the differentiation matrix with size (𝑁 + 1) ×
(𝑁 + 1). The elements of 𝐷 are given by 
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Differential defect constraints are calculated by taking 

the difference of the analytical derivative of the approximate 

state vector with the actual differential equations describing 

the dynamics.  

A limitation of PSOPT is that the number of phases must 

be defined a priori. For the Legendre pseudospectral 

approximation, we will use the term “phase” to mean a 

duration of time in the mission that is defined using the 

collocation nodes. Liu, Hager, and Rao have developed [23] 

a method for automatically refining the number of phases in 

addition to refining the number of nodes in each phase, using 

LGR nodes. Automatically refining the number of phases 

would permit greater accuracy near times of quickly-

changing dynamics, such as a lunar flyby, or discontinuous 

dynamics, such as thrust turning on or off. As it is, PSOPT 

suffers decreased accuracy in these situations because it is 

impractical to increase the number of nodes in the single 

phase to be high enough to have more than a few nodes near 

flybys.  

 
2.4.2. Hermite-Simpson approximation 

The Hermite-Simpson method defines a vector of 

differential defect constraints 𝜁 at node 𝜏𝑘 as follows [20, 22]:  

𝜁(𝜏𝑘) = 𝑥(𝜏𝑘+1) − 𝑥(𝜏𝑘) −
ℎ𝑘
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When using the Hermite-Simpson method, PSOPT is 

able to perform automatic mesh refinement – placing more 

nodes near times of quickly-changing dynamics.  

 

3. METHODS AND APPROACH 

 

Throughout the analysis presented here, the initial 

spacecraft mass is 1500 kg, and the 𝐼𝑠𝑝 is 3,000 seconds. The 

DRO used is completely in the Earth-Moon plane. It crosses 

the y-axis with positive y-velocity at x = 0.9 DU. The orbital 

period is approximately 5.55 days. The L2 halo orbit used has 

a maximum z-amplitude of approximately 53,000 km and an 

orbital period of approximately 14.0 days. These initial and 

final orbits are shown in several of the figures below, such as 

Figure 4.  

 

3.1. Optimal control problem implementation in PSOPT 

 

The endpoints of the trajectory were constrained to lie on the 

DRO (for the initial point) and on the halo orbit (for the final 

point), but the optimizer could choose where to depart the 

DRO and where to arrive on the halo orbit: a set of 100 states 

on the DRO and on the halo orbit are hard-coded into the 

software, and then linear interpolation is used to find the state 

at an arbitrary location as requested by the optimizer through 

a static optimization parameter. The initial and final time are 

also free parameters. However, upper and lower bounds for 

time were implemented somewhat above and below the 

expected time of flight in order to scale the problem better.  

The spacecraft state at each node is a 7-element vector: 

3 components for position, 3 for velocity, and 1 for mass. The 

controls were represented as a 3-element vector at each node, 

for the x-, y-, and z-components of the thrust. Three path 

constraints were used: the upper limit of thrust magnitude, the 

lower limit for distance to the Moon, and the lower limit for 

distance to the Earth.  

Three objective functions were used separately: zero 

cost, minimum time of flight, and maximum final mass. The 

zero cost objective function was used to quickly find feasible, 

non-optimal transfers. These transfers were used only as 

intermediaries in order to accelerate the optimization of one 

of the other two objective functions. Resulting families of 

trajectories from each are presented later.  

All states and controls were scaled to be approximately 

of O(1). Non-dimensional units for distance and time were 

used as defined in section 2.1. Mass was scaled by a factor of 

1,000 so that the initial mass was 1.5 mass units rather than 

1,500 kg. Thrust was used in the physical units of Newtons.  



In general, we know that the optimal (minimum fuel) 

transfer will have the form “bang-off-bang” – maximum 

thrust, coast, maximum thrust. Since collocation methods 

represent the states and controls as continuous polynomials, 

it is impossible to find a perfectly sharp thrust cutoff using a 

single phase. This limitation can be avoided by using a multi-

phase problem formulation, where the trajectory is 

continuous only over a phase. Phase endpoints can then be 

constrained to match in position and velocity, but not thrust. 

PSOPT has the capability of solving multi-phase problems; 

however, for this work, a single phase was used. It is expected 

that using three phases (for thrust-coast-thrust) or more will 

allow PSOPT to find slightly more accurate transfers, as the 

thrust cut-off can then be perfectly sharp. Examples of thrust 

profiles found are presented in Figure 2 and Figure 3.  

For all results shown here, the NLP tolerance used was 

10-4, and the maximum number of iterations allowed was 

3,000. A smaller tolerance will lead to solutions that match 

the actual dynamics more accurately, but more iterations 

within the NLP solver will be necessary. Several transfers 

were solved at a tolerance of 10-5, but it was deemed 

unnecessary to use such a small tolerance when performing a 

broad search.  

 

Figure 2. Example of a thrust profile for a single-

revolution transfer. There are two clear coast arcs visible, 

with fairly sharp thrust cutoffs. Use of multiple phases 

could achieve a very small accuracy improvement.  

 

Figure 3. Example of a thrust profile for a two-revolution 

transfer. Here, there are three coast arcs, but the thrust 

cutoffs are not as clean. Using multiple phases would 

clean up the thrust profile substantially and improve 

accuracy.  

 

3.2. Initial guess generation 

 

At the start of this research, attempts were made to find a 

“close” initial guess by choosing various control laws to 

propagate forward from the DRO and backward from the halo 

orbit, searching for intersection points. However, no close 

initial guess could be found in this way. Instead, a method 

was developed that allowed the problem to converge even 

when given a poor initial guess.  

Initial guesses were formed by a very simple means:  

1) Propagate an initial state on the DRO forward in time.   

2) Jump to an arbitrary point on the halo orbit and 

propagate an initial state on the halo orbit forward in 

time.  

3) Concatenate the states in the DRO with the states in 

the halo orbit.  

Now, we have a list of states and times that obey the force 

model at all points except the middle, where there is an 

instantaneous jump from the DRO to the halo orbit. The 

control was initialized to zero.  

 

Figure 4. A 1-revolution transfer, using 0.4 N max thrust 

(for an initial mass of 1500 kg), viewed in the synodic 

reference frame. The spacecraft begins in the DRO and 

ends in the L2 halo orbit. Tick marks appear at ½ day 

intervals, and thrust vectors appear at ¼ day intervals.  

It was found that the optimized trajectories produced by 

PSOPT generally consisted of the same number of 

“revolutions” about the Moon as the initial guess. This was 

found to be true independently for the DRO and for the halo 

orbit. The converged trajectory will generally have the same 

number of revolutions about the Moon as the initial guess, 



and the same number of revolutions about L2 as the initial 

guess. Although collocation methods have been found to 

have a sufficiently wide basin of attraction to solve N-body 

transfers such as these, the solutions found with such methods 

cannot claim to be globally optimal.  

Therefore, families of transfers could be selected to some 

extent by adjusting the number of revolutions about the DRO 

and the halo orbit in the initial guess. Three representative 

examples of transfers from 1-revolution, 2-revolution, and 4-

revolution families are shown in Figure 4, Figure 5, and 

Figure 6, respectively.  

 

 

Figure 5. A 2-revolution transfer, using 0.4 N thrust.  

 

 

Figure 6. A 4-revolution transfer, using 0.4 N thrust. 

 

 

 

3.3. Method for finding families 

 

It was found that for the low-thrust DRO to L2 halo orbit 

transfer problem, the pseudospectral method was more likely 

to converge than the Hermite-Simpson method when given a 

poor initial guess. However, there is a danger that a close 

approach to the Moon will not be represented well by the 

pseudospectral method due to the fixed node spacing. For 

instance, if a transfer involved multiple revolutions about the 

Moon and there are too few nodes, the Legendre 

pseudospectral approximation can break down and have 

extremely poor accuracy. Although the optimizer may 

converge, the solution does not have physical meaning. The 

constraints on the Legendre pseudospectral approximation 

are met, but the nodes are spaced too far apart for the 

approximation to be accurate. An analogous limitation that 

many astrodynamicists are familiar with is the necessity of 

keeping time steps appropriately small when numerically 

propagating an orbit with a Runge-Kutta integration scheme. 

An example of having too few nodes is shown in Figure 7.  

Having too few nodes can be resolved by mesh 

refinement techniques. Pseudospectral methods use global 

polynomials by definition, and since PSOPT uses only the 

phases defined a priori, the pseudospectral collocation 

method used here requires adding more nodes throughout the 

entire transfer in order to add nodes near a close approach to 

the Moon. The Hermite-Simpson method permits local mesh 

refinement, so more nodes could be added near the close 

approach only, without the need to add nodes elsewhere in 

the trajectory.  

 

Figure 7. An incomplete trajectory using too few nodes. 

This is from a converged, minimum propellant solution. 

With only four nodes representing the inner revolution 

about the Moon, the solution has a poor accuracy and 

may change significantly when more nodes are added.  

The Hermite-Simpson method provides a workaround to 

this challenge via automatic mesh refinement – placing more 

nodes near times when the dynamics change quickly. In 

PSOPT, the pseudospectral method becomes very slow as the 



number of nodes grows. The greatest number of nodes used 

with the pseudospectral method was 160, which required a 

few hours to converge. The same transfer with the Hermite-

Simpson method required less than one hour to converge. 

With these considerations in mind, the following algorithm 

was developed to reliably generate families of transfers:  

1) Generate an initial guess with the appropriate number 

of revolutions about the Moon, as described in section 

3.2.  

2) Using the pseudospectral method, run the problem 

with zero cost function. This allows the optimizer to 

quickly find a feasible (but not optimal) transfer.  

3) Using the Hermite-Simpson method, set the objective 

function to maximize the final mass, and run the 

optimizer.  

4) Decrease the maximum thrust limit slightly. Using the 

Hermite-Simpson method again and the solution from 

step (3) as the initial guess, run the optimizer.  

5) Repeat step (4) until the problem no longer converges.  

By following the above algorithm, the families of transfers 

described in the figures below were found.  

In some cases, the optimizer would not converge. Even 

when the problem has not been fully solved, PSOPT will print 

solution files. Re-running the optimizer, with the failed 

solution as the new initial guess would sometimes result in a 

successful solution. This is due to PSOPT automatically 

recalculating the Jacobian and re-weighting the problem.  

One difficulty that was encountered many times was that 

the optimizer would (correctly) find that thrusting during a 

lunar flyby would improve the cost function. However, unless 

a large number of nodes were used initially, the lunar flyby 

would be represented by only one or two nodes. The accuracy 

of the entire trajectory would then deteriorate to a point such 

that it was impossible to interpolate the existing solution 

accurately enough to add more nodes.  

 

 

Figure 8. Multiple close approaches to the Moon 

represented by too few nodes. 80 nodes are used here with 

the pseudospectral method. The close approaches result 

in a lower propellant mass (only 15 kg, as opposed to 23-

28 kg for most of the transfers represented in this paper). 

We can see that the closest approach is represented by 

only a single node, which is not enough.  

 

Figure 9. An example of a successfully-converged solution 

which uses a powered, close lunar flyby. The powered 

flyby results in lower propellant costs, but comes at the 

expense of a more sensitive trajectory.  

In order to make the trajectory in Figure 8 more 

meaningful, either a larger number of nodes should be used 

in the pseudospectral method, or the Hermite-Simpson 

method should be used with automatic mesh refinement. In 

this case, the trajectory did not converge when the solution 

shown in Figure 8 was used as an initial guess for the 

Hermite-Simpson method.  

In a few rare circumstances (such as shown in Figure 9), 

the optimizer succeeded in adding subsequent nodes such that 

the trajectory became physically meaningful. However, this 

was not reliable.  



Additionally, a powered lunar flyby would be dangerous 

from an operations standpoint. Due to the chaotic nature of 

the dynamics, slight errors in the state estimate or in 

maneuver execution could have drastic effects on the orbit 

after the flyby. Looking at Figure 9, we can see that the 

duration of a close approach is roughly 0.5-1 days, depending 

on the definition of “close approach”. Ground control during 

the close approach would be difficult at the least. In order to 

avoid these complications, a “keep-out” zone was enforced 

so that the spacecraft could never get closer than 0.04 DU, or 

about 9 lunar radii.  

 

4. ANALYSIS OF RESULTS 

 

Using the methods described above, four families of transfers 

were examined: 1-, 2-, and 3-revolutions, minimizing 

propellant; and 1-revolution, minimizing time.  

Within a family of transfers, lower thrust generally 

requires higher time of flight. Within each family, there are 

also branches which connect the families. For instance, in 

Figure 10, the 1-revolution, minimum time case has three 

points which appear to lie on the 1-revolution, min propellant 

curve.  

The propellant mass required for these transfers 

generally lies between 23-28 kg. There were no observed 

trends between propellant mass and any other parameters 

used to describe the families of transfers. Figure 11 shows the 

propellant mass as a function of the thrust limit.  

Within a family of transfers, decreasing the thrust 

requires departing further from the Moon, as seen in Figure 

12. This could have implications for navigation and/or 

science objectives. At some point, each family hit a limit for 

thrust, below which they would not converge. In general, the 

trajectory would take on an extra loop far from the Moon and 

violate the differential constraints from the dynamics. An 

example of this is shown in Figure 13. Although a similar 

feature may exist in some real solutions, whenever it 

appeared in this work, the optimizer could not converge.  

 

 

Figure 10. Time of flight as a function of the thrust limit. 

The 2-revolution and 3-revolution cases were only 

examined at thrust levels of 0.4 N and below.  

 

 

Figure 11. Propellant mass as a function of thrust. There 

is no clear relationship, and the propellant mass for 

almost every case lies between 23-28 kg. It is clear in the 

1-revolution, min time case, especially, that there are 

multiple branches within each family, some of which are 

more favorable than others.  



 

Figure 12. Maximum distance from the Moon asd a 

function of the thrust limit.  

 

Figure 13. A non-physical solution illustrating a common 

failure mode for the continuation method described. The 

loop which appears near x=0.8, y=0.45 came in for many 

cases in which the optimizer could not converge.  

 

5. CONCLUSION & FUTURE WORK 

  

Trajectories in N-body force fields are among the most 

difficult in astrodynamics to understand and optimize. 

Whenever possible, the problem has been effectively 

simplified by using the CRTBP. Even with those 

simplifications, however, there are only a handful of special 

types of orbits which are well-defined, such as the DRO and 

the L2 halo orbit used in this paper. Predicting a transfer 

trajectory between any two N-body orbits remains a great 

challenge.  

This work provides a modest advancement in generating 

such transfers and exploring the design space of all possible 

transfers. The greatest challenge faced so far is the extreme 

sensitivity of the dynamics – even the error in evaluating a 

collocation approximation can be great enough to change a 

solution.  

Further study is warranted to explore a wider variety of 

initial guesses and their impact on the optimized trajectories. 

Although it is possible to find solutions even from poor initial 

guesses, the structure of the initial guess has a strong impact 

on the structure of converged solutions. Thus, different initial 

guesses should reveal even more distinct families of 

solutions. Exploration of low-thrust “manifolds” connecting 

the DRO and halo orbit should help identify more families of 

transfers – including some that travel to the opposite side of 

the Earth-Moon system and back again. Similarly, the size 

and out-of-plane motion of the DRO and L2 halo orbit could 

be varied.  

PSOPT is an effective tool, but it has limitations. The 

most significant limitation encountered in this research is that 

it cannot use adaptive mesh refinement for the pseudospectral 

method. Other implementations of pseudospectral optimal 

control permit automatically adding more phases as 

necessary.  

In further study, more accurate dynamics should be used. 

This would involve using a full ephemeris model (rather than 

the CRTBP), and a shadowing model to cycle thrusting when 

the spacecraft is not in view of the Sun.  

Other future research areas include examination of other 

Earth-Moon system transfers and reducing the maximum 

thrust level to the capability of existing EP systems. Doing so 

will require new initial guesses and possibly new 

methodology.  
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