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 Enable future missions

 Any mission to a DRO or halo orbit could benefit from the capability 

to transfer between these orbits

 Chemical propulsion could be used for these transfers, but at high 

propellant cost

 Fill gaps in knowledge

 A variety of transfers using SEP or solar sails have been studied for 

the Earth-Moon system

 Most results in literature study a single transfer

 This is a step toward understanding the wide array of types of 

transfers available in an N-body force model

Motivation
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 N-body problem still has not been solved analytically

 For three-body case: 18 degrees of freedom, 10 known 

integrals of motion

 Rely on simplifying assumptions when possible

 Circular Restricted Three Body Problem (CRTBP)

 “Restricted” three-body problem: mass of the third body (the 

spacecraft) is negligible compared to the primaries

 “Circular”: the primaries’ orbit about their barycenter is perfectly 

circular

Background: CRTBP
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Equations of motion: 
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3 𝑧 + 𝑇𝑧

Background: Synodic reference 

frame
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𝜇 = mass ratio

𝑇∙ = thrust

𝑟1 = distance from Earth

𝑟2 = distance from Moon
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Distant Retrograde Orbit

 Highly-perturbed orbit about the Moon

 When viewed in synodic frame, orbit is repeating and 

retrograde about the Moon

 Situated between libration

point orbits and two-body 

orbits in terms of stability

 Currently being considered 

as destination orbit for 

Asteroid Redirect Mission

concept

Background: DROs

5ICATT 201614-17 March, 2016



Colorado Center for 

Astrodynamics Research

University of Colorado

Boulder, Colorado

Halo orbit

 When viewed in synodic reference frame, traces a “halo” 

Background: Halo orbits
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Examples of 

orbits about L1
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 Collocation: direct optimization method, transcribes optimal 

control problem to NLP problem

 Analogy: Runge-Kutta implicit integration for orbit 

propagation

 Solution described by a set of discrete nodes, or  

collocation points

 Can classify methods as “global” or “local”

 Global: a continuous, high-order polynomial used for the entire time 

history. Differential defect constraints are difference between 

function derivative and dynamics

 Local: a low-order polynomial is used to relate a few adjacent 

collocation points. Differential defect constraints are difference 

between local polynomial and dynamics

Background: Collocation
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 Global method used: Pseudospectral collocation on 

Legendre-Gauss-Lobatto nodes

 Approximation:

𝑥 𝜏 ≈  𝑘=0
𝑁 𝑥 𝜏𝑘 ℒ𝑘 𝜏

ℒ𝑘 𝜏 =
1

𝑁 𝑁+1 𝐿𝑁 𝜏𝑘

𝜏2−1  𝐿𝑁 𝜏

𝜏−𝜏𝑘

𝐿𝑁 𝜏 =
1

2𝑁𝑁!

𝑑𝑁

𝑑𝜏𝑁
𝜏2 − 1 𝑁

Background: Collocation
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ℒ𝑘 ∶ Lagrange basis 

polynomials

𝜏 ∶ transformed time s.t.

𝜏 ∈ −1,1

𝐿𝑁 ∶ Legendre polynomials of 

order N
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Global method used: Pseudospectral collocation on 
Legendre-Gauss-Lobatto nodes

 Derivative of the state vector analytically approximated as

 𝑥 𝜏𝑘 ≈  𝑖=0
𝑁 𝐷𝑘𝑖𝑥

𝑁 𝜏𝑖

𝐷𝑘𝑖 =

−
𝐿𝑁 𝜏𝑘

𝐿𝑁 𝜏𝑖

1

𝜏𝑘−𝜏𝑖
, 𝑘 ≠ 𝑖

𝑁 𝑁+1

4
, 𝑘 = 𝑖 = 0

−
𝑁 𝑁+1

4
, 𝑘 = 𝑖 = 𝑁

0, 𝑒𝑙𝑠𝑒

Background: Collocation
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𝐷𝑘 ∶ Analytical 

differentiation matrix

Differential defect constraints: difference between 

approximation & differential equations
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Local method used: Hermite-Simpson

Defect constraints: 

𝜁 𝜏𝑘 = 𝑥 𝜏𝑘+1 − 𝑥 𝜏𝑘 −
ℎ𝑘
6

𝑓𝑘 + 4  𝑓𝑘+1 + 𝑓𝑘+1

Where

 𝑓𝑘+1 = 𝑓  𝑥𝑘+1,  𝑢𝑘+1, 𝑝, 𝜏𝑘 +
ℎ𝑘
2

 𝑥𝑘+1 =
1

2
𝑥 𝜏𝑘 + 𝑥 𝜏𝑘+1 +

ℎ𝑘
8

𝑓𝑘 − 𝑓𝑘+1

Background: Collocation
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The optimal control problem is defined as follows: 

Minimize the performance index

𝐽 = 𝜑 𝑥 𝑡𝑓 , 𝑝, 𝑡𝑓 + 
𝑡0

𝑡𝑓

𝐿 𝑥 𝑡 , 𝑢 𝑡 , 𝑝, 𝑡 𝑑𝑡

𝑡 ∈ 𝑡0, 𝑡𝑓

Subject to differential constraints

 𝑥 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 , 𝑝, 𝑡

Path constraints

ℎ𝐿 ≤ ℎ 𝑥 𝑡 , 𝑢 𝑡 , 𝑝, 𝑡 ≤ ℎ𝑈
Event constraints

𝑒𝐿 ≤ 𝑒 𝑥 𝑡0 , 𝑢 𝑡0 , 𝑥 𝑡𝑓 , 𝑢 𝑡𝑓 , 𝑝, 𝑡0, 𝑡𝑓 ≤ 𝑒𝑈

Background: optimal control 

problem definition
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𝑥 state

𝑢 control

𝑝 parameters

𝑡 time
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Bound constraints

𝑢𝐿 ≤ 𝑢 𝑡 ≤ 𝑢𝑈
𝑥𝐿 ≤ 𝑥 𝑡 ≤ 𝑥𝑈
𝑝𝐿 ≤ 𝑝 ≤ 𝑝𝑈

𝑡0, 𝐿 ≤ 𝑡0 ≤ 𝑡0, 𝑈
𝑡𝑓, 𝐿 ≤ 𝑡𝑓 ≤ 𝑡𝑓, 𝑈

and

𝑡𝑓 − 𝑡0 ≥ 0

Initial guesses are given for 𝑥, 𝑢, 𝑝, and 𝑡

Background: optimal control 

problem definition
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𝑥 state

𝑢 control

𝑝 parameters

𝑡 time
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 PSOPT (PseudoSpectral OPTimal control) used for 

implementation of collocation 

 Open-source software, uses collocation to transcribe optimal 

control problem to NLP problem

 NLP problem then solved by IPOPT (Interior Point OPTimizer)

Problem implementation
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Collocation

(PSOPT)

NLP solver

(IPOPT)

Optimal 

control 

problem

All 3 of these boxes must be well implemented

This research focuses on the 1st box: defining the optimal 

control problem
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 Low-thrust transfers in N-body force fields have many local 

minima

 Collocation yields a locally optimal solution

 Established tools exist for optimizing a transfer when there 

is a good initial guess available

 Systematic, well-informed choice of a trajectory requires 

knowledge of the relationship between the initial guess and 

the solutions it can yield. 

 Generating an initial guess is perhaps the least-understood 

aspect of the problem

 This research used initial guesses that stayed in the vicinity 

of the Moon, with varying #’s of revolutions

Initial guess generation
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Initial guess generation
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Propagated states 

in DRO

----------------

----------------

----------------

----------------

Propagated states 

in L2 halo orbit

----------------

----------------

----------------

----------------

Concatenate 

list of states 

in each orbit

Interpolate 

to nodes
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 Initial guess has large discontinuity in the middle

 Shapes the converged solution: 

 # of revolutions in DRO

 # of revolutions in halo orbit

Initial guess generation
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Close lunar flybys save propellant, but are very sensitive

 Harder to converge solutions

 More nodes required to represent quickly-changing dynamics 

accurately

 Approximation methods may have trouble representing the transfers

 Automatic mesh refinement necessary (in PSOPT, only available with 

Hermite-Simpson)

 More dangerous for operations

 Errors in state execution or in maneuver execution are magnified after 

the flyby

 Risks could be mitigated by enforcing a coasting period before the 

flyby (to obtain an accurate OD solution)

 To avoid these challenges, a “keep-out” zone was used. 

Spacecraft not allowed closer than ~9 lunar radii to the Moon

Lunar flybys
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Lunar flybys
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Close approach to moon, poorly represented 

by single-phase pseudospectral method

Close approach to moon, well-

represented by Hermite-

Simpson method automatic 

mesh refinement

14-17 March, 2016



Colorado Center for 

Astrodynamics Research

University of Colorado

Boulder, Colorado

Strategy to find families of transfers
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1. Generate an initial guess

2. Using the pseudospectral method, run the problem with zero 

cost function. This allows the optimizer to quickly find a 

feasible (but not optimal) transfer. 

3. Using the Hermite-Simpson method, set the objective 

function to maximize the final mass, and run the optimizer. 

4. Decrease the maximum thrust limit slightly. Using the 

Hermite-Simpson method again and the solution from step 

(3) as the initial guess, run the optimizer. 

5. Repeat step (4) until the problem no longer converges. 
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 Four families examined:

 1-revolution, minimum time

 1-revolution, minimum propellant

 2-revolution, minimum propellant

 3-revolution, minimum propellant

 For 1-revolution: started at 1-Newton thrust, then used that 

solution as the new initial guess, with thrust slightly 

reduced

 Repeat until solution no longer converges (0.4 N)

 Then, use different initial guess (2-rev, 3-rev)

 For 2-revolution & 3-revolution: started at 0.4 N

Results: Families of transfers
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Results: Families of transfers
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Not all cases converged 

completely – easy to get 

stuck in local optima

Lower thrust generally 

requires greater time of 

flight
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Results: Families of transfers
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Most solutions require 

23-28 kg propellant (of 

1500 kg initial mass)

Adding a lunar flyby 

reduces propellant to as 

low as 18 kg, but these 

were hard to find 

systematically
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Results: Families of transfers
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Within a family, lower 

thrust generally requires 

traveling further from the 

Moon

Initial guesses kept 

solutions near the Moon 

– when thrust was 

reduced too much, the 

solution failed to 

converge after 3,000 

iterations
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Conclusion

Summary

 A variety of transfer trajectories exist from DRO to L2 halo orbit

 Collocation methods are capable of optimizing transfers in N-body force model

 When a good initial guess is not available, it is possible to use a poor one

 Shape of initial guess strongly influences shape of converged solution

Future Work

 Explore different types of initial guesses 

 Use other implementations of collocation-based optimal control

 Use higher-fidelity dynamics

 Extend to other transfers in Earth-Moon system
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