

Vehicle Integrated Propulsion Research (VIPR) III Volcanic Ash Environment (VAE) Preliminary Visual and Teardown Observations

> Michael Venti, NASA Armstrong Flight Research Center John Lekki NASA Glenn Research Center Grizelda Loykraft Air Force Research Laboratory (AFRL)

Slides containing PW data generated under NASA Space Act Agreement for approval for public release Pgs 8, 9, 10, 11, 12, 13,14, 15, 16,17, 18, 19, 20, 22, 23, 24

Slides containing PW data generated under Air Force Contract for release by Air Force Pgs 28, 29, 30, 31

NASA/Air Force Data provided for context of presentation Pgs 1, 4, 5, 6, 25

Entire presentation will be cleared by NASA and Air Force for Public Release

Volcanic Ash Environment

EXPERIMENT SUMMARY

VIPR III Volcanic Ash Environment

Μ	otivation	Fleet grounded					
P	rediction	 <u>Degradation</u> within <u>1hr @ low;</u> <u>EGT Exceedance</u> @ <u>3hr high</u> 					
A	pproach	• Fed small ash amounts \rightarrow installed engine \rightarrow low & high feed r					
E	xperiment	 Used best practices for on-wing test → Fleet vehicle & engine 					
	enefit	 May assist in safe flying protocols & engine monitoring 					
A	ctual	 10 hours → Measurable degradation (7 hours low and 3 hours high) 14 hours → Engine had several degrees of margin remaining 					
W	/hy	 Conservative thresholds set to protect vehicle/engine asset Real-world test needed on relevant equipment 					

 \mathbf{r}

Overview

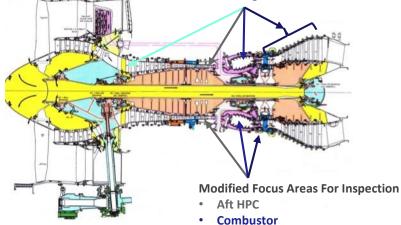
	Summary of Run Schedule					
Water Wash						
Ash Run 1 Low Rate						
Ash Run 2 Low Rate						
Ash Run 3 Low Rate						
Ash Run 4 High Rate						
Ash Run 5 High Rate						
	14-Jul	28-Jul	29-Jul	31-Jul	4-Aug	5-Aug

- LOW RATE IS A TARGET CONCENTRATION
 - ~1mg/M³ \approx .11 gm/sec feed rate
- •HIGH RATE IS A TARGET CONCENTRATION
 - ~10mg/M3 ≈ 1.1 gm/sec feed rate
- •BASELINE ENGINE INSPECTION
 - •INDUSTRY AND GOVERNMENT EVALUATIONS
 - •FORWARD AND AFT COMPRESSOR
 - •ENTIRE TURBINE WAS SELECTED

•FINDINGS

•AFT COMPRESSOR, BURNER SECTION & FORWARD TURBINE

•MOST CRITICAL •CONTROL LINES (PB/P4.9)



High Pressure Turbine – HPT High Pressure Compressor – HPC Fuel Nozzle – FN Stage of Compressor – SC Trailing Edge – TE Leading Edge – LE Combustor Liner - CL

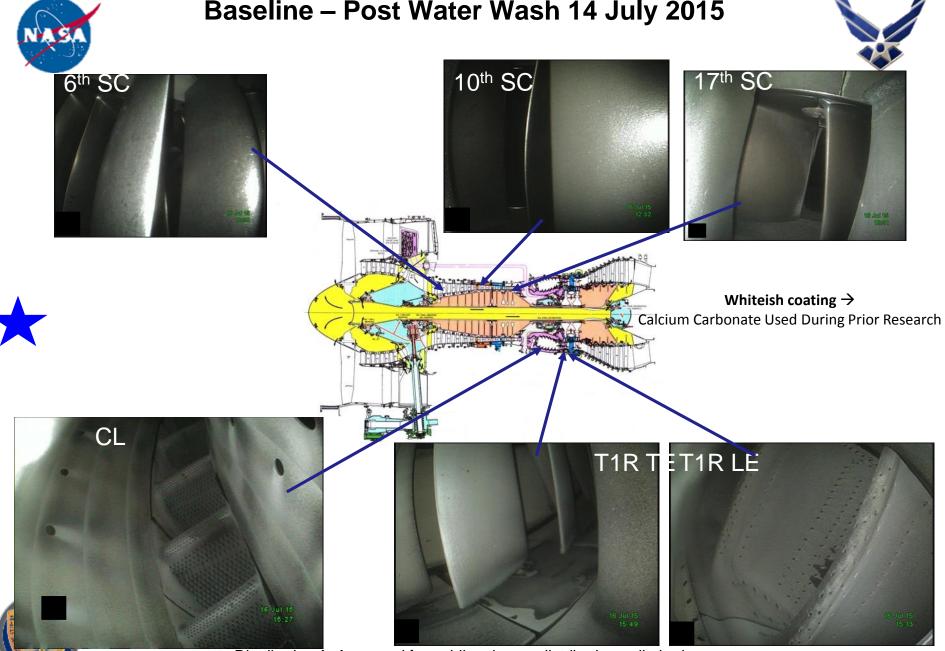
Original Focus Areas For Inspection

- Forward Compressor
- Aft Compressor
- Combustor

Forward Stage of HPT

Volcanic Ash Delivery

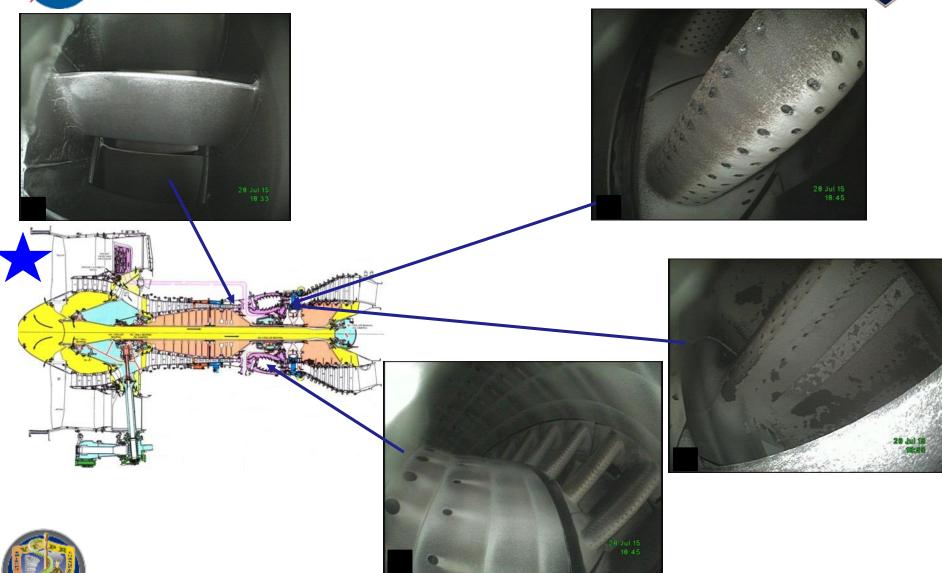
	Date	Target Rate	Ash Flow Duration	Initial Ash Wt	Ash out during auger prime	Ash added during test	Ash augered out post- test	Actual Rate	Total Ash Delivered
		g/sec	minutes	g	g	g	g	g/sec	wt
-	28-Jul-15	0.1	90	2991	40	0	2221	0.14	730
	29-Jul-15	0.1	68	3014	39	0	2426	0.13	549
	31-Jul-15	0.1	269	2967	35	1000	1776	0.13	2156
	4-Aug-15	1	175	2998	57	8977	901	1.05	11017
	5-Aug-15	1	235	3001	64	12449	921	1.03	14465
	All Tests Sum:	N/A	837	N/A	N/A	N/A	N/A		28917



5 Days of Engine Tests

ENGINE ASH INGESTION OBSERVATIONS

Baseline – Post Water Wash 14 July 2015


- No issues with blades or vanes
- TBC intact
- No blade distress
- Darker areas on blades potentially soot from shutdown
- No appearance of coating or alloy burning

Run 1 Low Ash Rate 28 July 2015

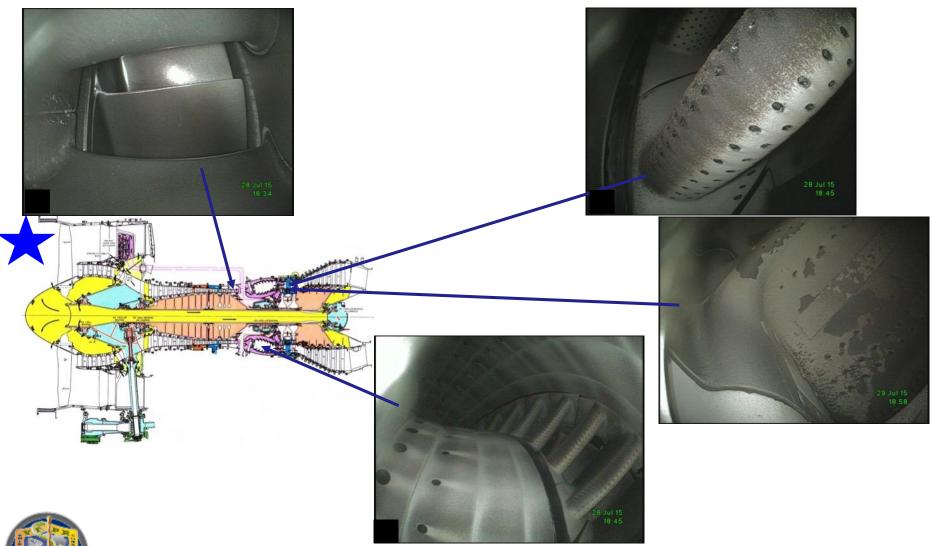
Run 1 Low Ash Rate 28 July 2015

• No evidence of ash accumulation on turbine parts

• Slight plugging of cooling holes in first stage turbine vane

• Cooling air still flowing, not a concern to continue running

• Mild ash accumulation on 10th stage bleed cap



HPC very clean, no obvious wear or discoloration

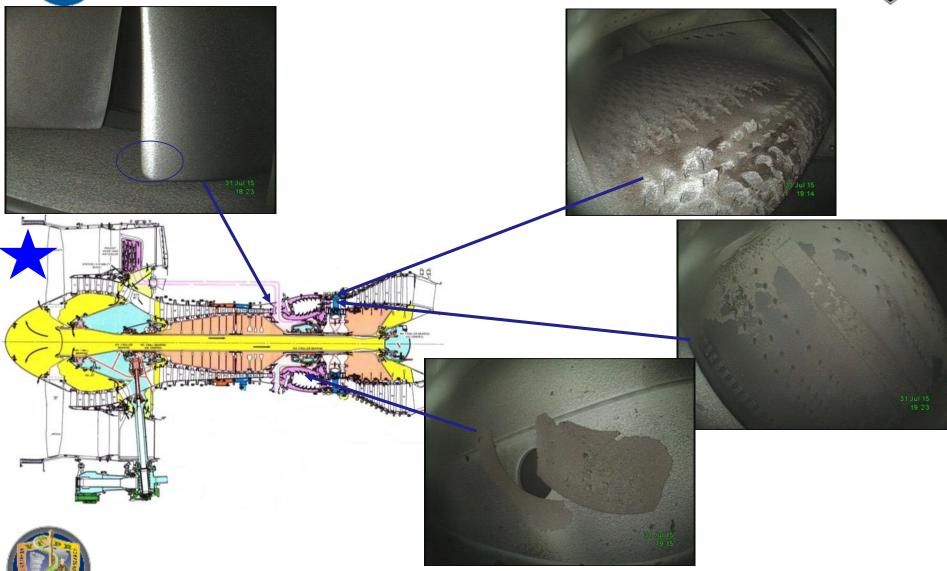
Run 2 Low Ash Rate 29 July 2015

Run 2 Low Ash Rate 29 July 2015

• Slight ash seen on first vane leading edge

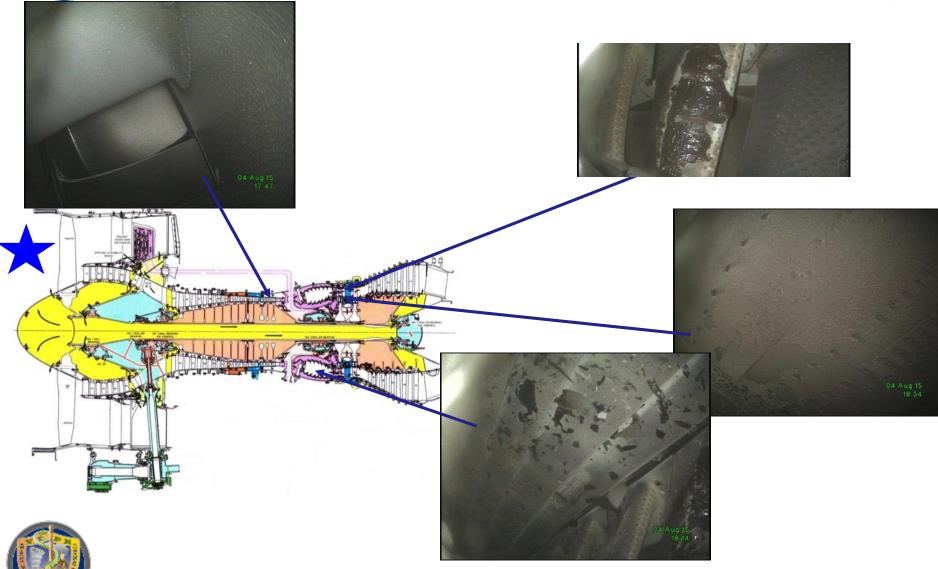
• No ash seen on gauge point area of 1st vane

• No ash seen on first blade


- 1st blade outer edge seal leading edge region
 - May have small ash particles

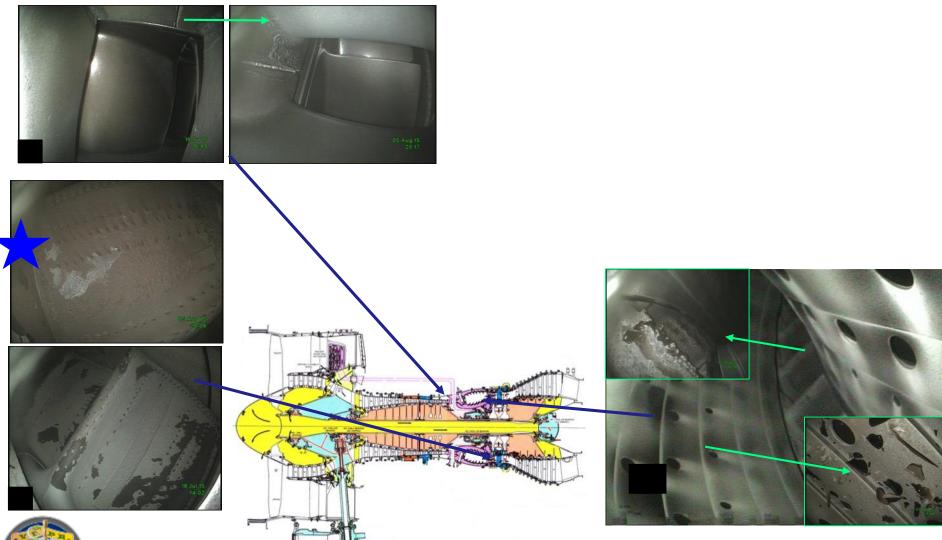
Run 3 Low Ash Rate 31 July 2015

Run 3 Low Ash Rate 31July 2015


- More build up
 - 1st vanes leading edge and forward pressure side
- Aft pressure side gauge area (A4)
 - No built up thus -not reducing the gauge area
- 1st blades
 - Still show very little effect of the ash
- Shedding material starting to show up in combustor area
- Other areas around the fuel nozzle show some very local ash accumulation
- Turbine ash accumulation in is still very low
 - Not expected to impact the durability or ability to continue to high rate

Run 4 High Ash Rate 4 August 2015

Run 4 High Ash Rate 4 August 2015


- 1st stage turbine vanes
 - Build up appears to be glassified ash as expected
 - Gauge point region -still not significantly closed down
- Combustor and turbine
 - Show large thin flakes of ash shedding
- 1st blades still are relatively clean
 - No concerns
- Recommend
 - Continue running at this point

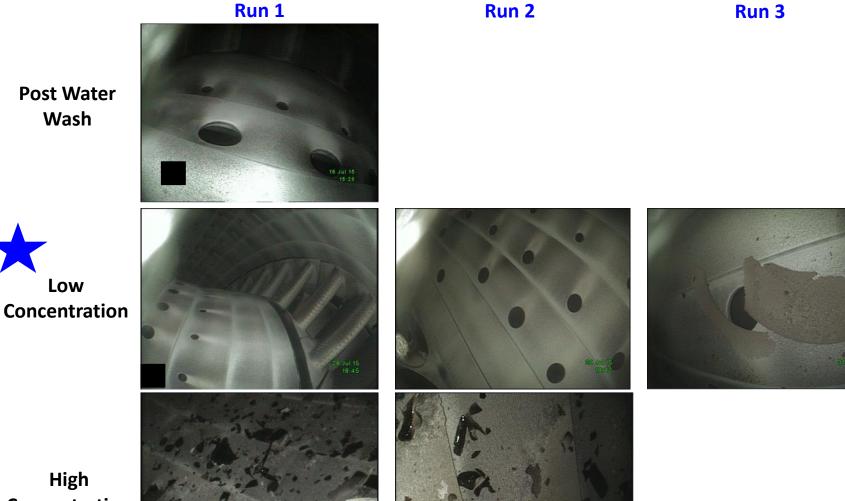
Run 5 High Ash Rate 5 August 15

Run 5 High Ash Rate 5 August 15

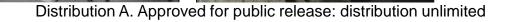
- 1st vane
 - Build up and shedding looks similar to the 1st high rate run day
 - Gauge area (A4) still not built up.
- Combustor looks similar to first high run day
- New boroscope finding on last day
 - Slight build up on some 1st blade leading edges
 - Assume it's ash, but does not look "glassified"
 - Disassembly will be required to tell if it's ash or not

Summary by Engine Module

ENGINE ASH INGESTION OBSERVATIONS

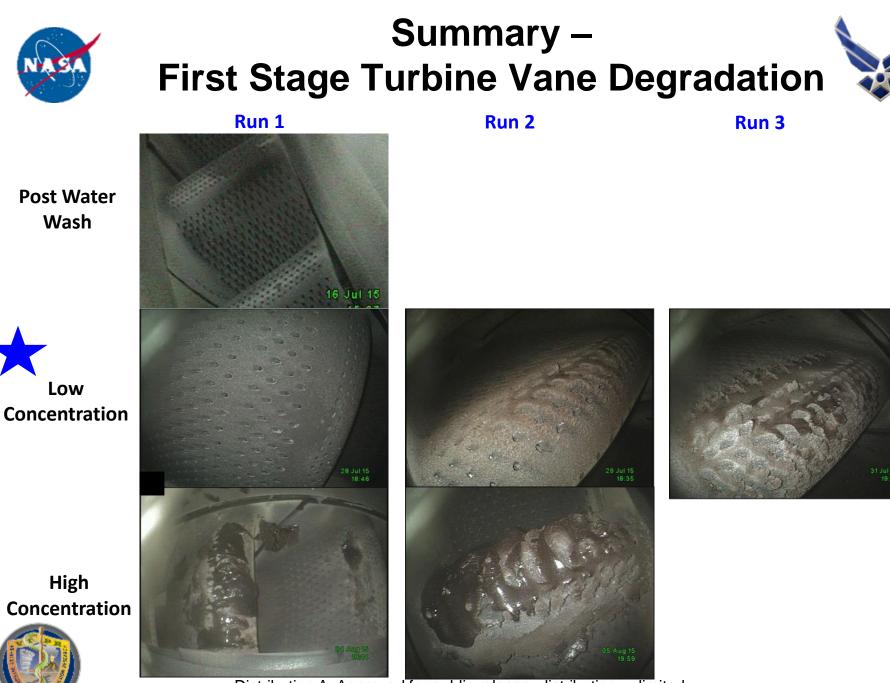


Summary – Combustor Degradation



Run 1

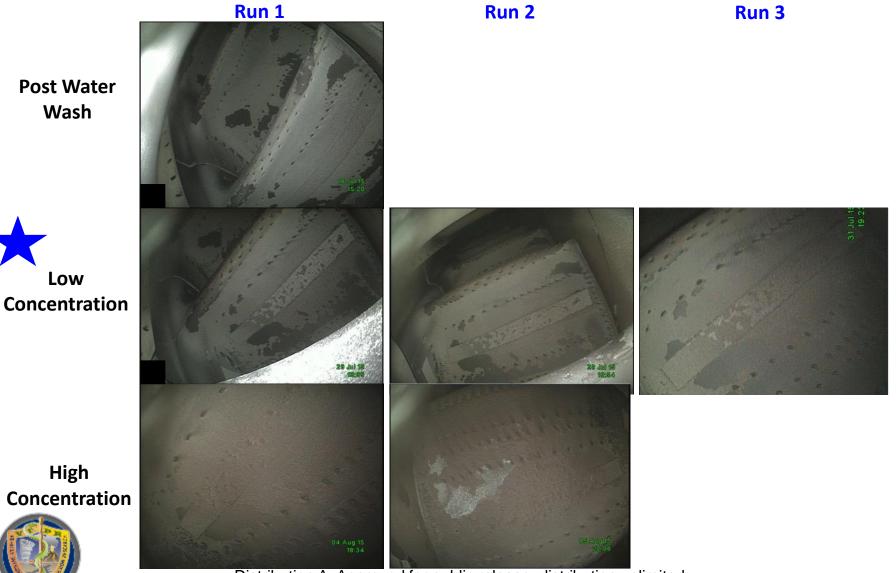
Concentration



Post Water Wash

Low

High



Summary – 1st Stage Turbine Rotor Degradation

Run 2

Run 3

Volcanic Ash Experiment

- VIPRIII is only one data point
 - Very important for modern high-performance turbine engines

Particulate Feed Rates Do Matter

Volcanic Ash Experiment Consideration In Follow-on Testing

Operational/Environmental

- On-wing or in test stand
- Type F117 or other
- Volcano/ash and mixture (gas or foam) type
 - Pacific NW vs SW-CONUS vs Asia vs Iceland vs standard model ash
- Non-vis/vis ash concentrations for fly/no fly decision
- Known validated/monitored performance conditions

Post VAE Engine Teardown

ENGINE ASH INGESTION OBSERVATIONS

- Fan/Fan Case
 - No indication of ash buildup in fan bypass, transitions, joints, or interfaces
 - Fan blade leading edges had slight change in roughness and rounding
 - Spinner components and fan exit guide vanes did not have any visible erosion

Low Pressure Compressor

- Not disassembled during the period of the initial teardown report
- 1st stage LPC appeared to have surface finish changes between blade platforms
- 5th stage LPC contained blades with trailing edge tip distress and polishing
- Ash accumulation on outer side of flanges

- High Pressure Compressor
 - All blades and stator vane assemblies were "polished" on the outer 1/4 -1/3 span
 - 8th stage HPC wear at leading edge tips
 - 11th stage HPC wear at trailing edge tips
 - *Variable stator segments (6th- 10th stages) were "stiff", normally smooth when turning by hand
 - Blade Outer Air Seals (BOAS) intact for forward stators (6th 10th stages)
 - Blue tinting appearing on metal disk stages 10-17, with heaviest notes on 14th and 15th
 - HPC exit stators contain leading edge distress extending radially outwards

* Reported as atypical

- Combustor
 - Inner and outer combustor liner intact with no evidence of distress
 - Ash accumulation on inner and outer liner surfaces with additional build up in the outer cavity between the burner and diffuser case
 - Inner liner had a light tan ash deposits aft of the cooling holes
 - *Green tint on outside wall of outer basket, increasing further aft
 - Combustor was more difficult to remove than typical
 - Glass-like deposits found at 6 o'clock position when engine held horizontal

* Reported as atypical

- Combustor (cont'd)
 - Fuel nozzle air holes had significant ash build up but did not appear to obstruct air flow

- High Pressure Turbine
 - 1st Stage Vane Assemblies
 - Ash deposits of various transformations accumulated on most of the vanes and varied in thickness, reflectivity, color and coverage
 - Shedding appeared to have occurred multiple times at some locations
 - Some deposits were estimated to be 7-10 mm thick
 - Some of the heavier deposits completely covered leading edge cooling holes, preventing flow
 - Trailing edge surface accumulation was notably different in texture and color compared to leading edge buildup

- High Pressure Turbine (cont'd)
 - 1st Stage Vane Assemblies
 - Cooling circuit inner flow path appeared to be clear of ash
 - 1st Stage Blades
 - Majority of leading edge of blades had sporadic blockage of cooling holes
 - Leading edges of blades exhibit mechanical impact erosion and some appear to have divots

- High Pressure Turbine Continued
 - 1st Stage Blades Continued
 - The pressure side of the blades a matte tan color was evident

- Various levels TBC spallation and removal observed throughout blades
- Ash accumulation found in cooling passage at root but did not show plugging
- Platform cooling holes were not plugged
- Typical wear on outer edge BOAS

- High Pressure Turbine Continued
 - 2nd Stage Vane Assemblies
 - No visual evidence of cooling flow blockage on vane and inner cooling flow path circuit is clean
 - Few vanes had TBC missing
 - 2nd Stage Blades
 - Blades were normal, unremarkable
 - Loose ash found on blades and blade roots
 - Heavy ash content found below the platform
 - Coating material on BOAS missing in blade path

