Ground System @ emence
Architectures Workshop

},k “Embracing the Rapid Rate of Change”
3 & " Renaissance Los Angeles Airport Hotel
Feb. 29-March 3, 2016

Ground System Architectures Workshop
Tutorial E
Part 2

A Proven Methodology for Developing Secure
Software and

2/29/16
Brandon Bailey

304-629-8992
Wl Yave "
800.79,9,
NASA’s IV&V Program

Safety and Mission Assurance (SMA) Office

Information Assurance/Cybersecurity Support
http://www.nasa.gov/centers/ivv

mailto:Brandon.t.bailey@nasa.gov

Tutorial E Part 1:

Tutorial E Part 2:

Section 1: Ground Systems Overview

Section 2: Secure Software Development
Section 3: Defense in Depth for Ground Systems
Section 4: What Now?

TM/TC data
& Control

=

Ground Stations

Mission Ops /

TM/TC data
& Control

Scientific Community

TC CMD
CLTUs Fl ames Packets Language|

mg?

/ E
%4—} Diplexer Ground :

Comm'lnd Command Command Command Command Comimand
Exciter : Encoder Framer Packetizer Generator Dictionary
Front MOC
Station End HW/SW

%
1

Bit
Syne

Receiver

i| Telemetry |2
i | Decoder

Channel

= | Separator
H

Telemetry
Deframer

Telemetry
Interpreter

Telemetry
Dictionary

TLM TLM TLM TLM
Clk & Data Frames VCs Packets

Spacecraft Ground Systems encompasses the

entire system,

beginning with

issuing

the

command from the MOC up until it emits from the
antenna to the reception of radio signals down at
the antenna to displaying telemetry on the MOC

computer

RN

Ground Stations

— / TM/TC data
TM/TC data Mission Ops & Control
& Control e
&

Scientific Community

. TC TC CMD
CLTUs Frames Packets Language|
4 Command | 3 | Command i Command Command Command Command
Exciter |i| Encoder |i| Framer Packetizer Generator Dictionary
HPA' T
== i :
= ; Ground : Front : MOC
«—p| Diplexer i : B .
Station :* End i HW/SW USER
LNA? T
Receiver 1ol Bit Telemetry H Channel Telemetry Telemetry Tjele.metry
Syne i| Decoder || Separator Deframer Interpreter Dictionary
TLM TLM TLM TLM e TM
Clk & Data Frames VCs Packets ? Archive

e Tutorial will focus on the software developed
for the
* Mission Operations Center (MOC)
* Mission planning area
* Software development environment

SECURITY THREATS AGAINST SPACE
MISSIONS
CCSDS 350.1-G-1

CCSDS was founded in 1982 by the major space agencies of the world, the CCSDS is a multi-
national forum for the development of communications and data systems standards for
March 2015 spaceflight. 60+ standards published serving 500+ missions

Security Threats Against Space
Missions was developed to provide
mission planners with an overview on
threat assessment as well as the
common threats and threat sources
that exist for various categories of
civilian space missions.

Consultative Committee Interception
Software Threats |
(S —] D A —) Social Engineering

for Space Data Systems Physical Attacks

Space Debris

Replay

Link Jamming
Unauthorized Access

Software Threats |

Replay

Link Jamming
Interception (theft)
Unauthorized Access

Software Threats |

Traffic Analysis

Replay
Unauthorized Access

Software Threats |

Hardware Failures

Social Engineering
Physical Attacks

http://public.ccsds.org/participation/member_agencies.aspx
http://cwe.ccsds.org/

Threats fo

SECURITY THREATS AGAINST SPACE
MISSIONS

CCSDS 350.1-G-1
March 2015

CCSDS was founded in 1982 by the major space agencies of the world, the CCSDS is a multi-
national forum for the development of communications and data systems standards for
spaceflight. 60+ standards published serving 500+ missions

Security Threats Against Space
Missions was developed to provide
mission planners with an overview on
threat assessment as well as the
common threats and threat sources

Relay Satellite owned Satellite owned by company A

By company B
*Replay
Lsllnanthonced Accoce |
I_ +Software Threats .I m

that exist for various categories of wJamming
.. .. +Eavesdropping
civilian space missions. “Replay *Replay
Lellnaithonzed Accase *Unauthorized Access
I_ *Software Threals .I *Traffic Analysis *Replay
LCenial of =enice +Data Modification 2 i
~Social Engineering E 1Software Threals
QOwned by =Denial of Senice
Agency A «Data Modification
m L 2
‘ ‘ Eza (9] d b B
whed by company “Replay
Consultative Commities SLE Ground Tracking Network aslloauthoocod Arcgee
Lnme e Ced) Spacecraft L sofware Threats
Control Centre GsG "DEnial o Sevice
for Space Data Systems «Social Enginesring
Agency B University A
| SLE gency ersity
Instrument Science
«Denial of Senice Coentrol Facility
: Cent FTP
*Eavesdropping entre
+Replay
sUnauthonzed Access
+Traffic Analysis

+Data Modification

http://public.ccsds.org/participation/member_agencies.aspx
http://cwe.ccsds.org/

Could Software Be Involved?

Applicable Threats to Space Missions
Data Corruption

Impacts
° Modification of information
° System damage

Yes; SW attacks could result in data corruption

Ground Facility Physical Attack Loss of command, control and data No

Interception Loss of sensitive data No

Jamming ° Loss of Command telemetry link No
° Loss of access to resources

Denial-of-Service

Loss of access to resources

Yes; SW DoS attacks are common and can affect
both ground, flight and web applications

° System instability
° System damage
° Undesirable System effects

Masquerade ° Potential to disrupt operations (uplink) Yes; SW protections can be placed to prevent
° Potential to receive false information
(downlink)
Replay System damage (possible safety of life issues) Yes; SW protections can be placed to prevent
Software threats ° Undesirable events Yes
° System damage
° Enable other threats (i.e. Jamming, DoS)
Unauthorized Access ° Disruption of operations Yes; SW protections can be placed to prevent or
. System damage (possible safety of life SW can be used to gain unauthorized access
issues)
Tainted Hardware Components ° Hidden, Malicious capabilities No

- /
o Mission Targets / Enterprise Risk
* Software Security (COTS, FOSS, Custom, etc.)

* Network Layer (Routers, Firewalls, etc.)

* Computer Network Defense (IPS/IDS, Sensors,
Continuous Monitoring, etc.)

* Industrial Control Systems (ICS)

* Supply Chain...

o Multiple stakeholders (CIOs, Network Engrs, SW
Developers, Project Managers, etc.)

Must counteract the threat
landscape for Mission environments
with Defense in Depth

1,800
1,600
§ 1,400
k|
% 1,200
B
2:.
= 1,000
e
L
=
2 800
Q
o
S 600
3
2
— 400
200
0

ZHN

1H12

2H12 1H13 2H13

Key: 2H11 =2nd half 2011; 1H14 = 1st half of 2014

Source: Microsoft Security Intelligence Report, Vol. 17, June 2014

1H14

@5’.’;‘ :::: Industry-wide Operating System, a

Twacss Browser and Application Vulnerabilities

Other
applications

Core operating
system

Web browsers

Reducing

Multiple vulnerabilities could adversely impact Mission Operations
(Architecture, SW, IT, etc.)

o Preventing vulnerabilities

— Levying requirements from the top in policy, contracts, etc.
* PPPs, A&A process, SW development, etc.
— During mission design/planning
* Designing security in
* Secure software development
* Rigorous mission assurance (SW Assurance, IV&YV, etc.)
* Awareness, training, tooling
— Supply chain — know the parts you are building with...
e Hardware
» Software (i.e. COTS and Open Source)

o Discovering vulnerabilities

— Once vulnerabilities are introduced into operation — then what?
* Continuous monitoring
* Vulnerability assessments
* Penetration testing 10

 Examples of requirements government agencies may invoke
— DOD

* Program Protection & System Security Engineering

— NASA

* NPRs 2810, 7150.2B, 7120.5E, and the SW Assurance
Standard/Handbook (under draft)

— NIST 800-53

* Example control for SW:
— SA-11 Developer Security Testing and Evaluation
— RA-5 Vulnerability Scanning

— European Space Agency (ESA) - (under draft)
* ESSB-ST-E-008 - Secure Software Engineering Std
e ESSB-HB-E-007 — Secure Software Engineering Handbook

e Other resources to help identify requirements
— Security Quality Requirements Engineering (SQUARE)
— Microsoft Security Development Lifecycle

11

http://www.acq.osd.mil/se/initiatives/init_pp-sse.html
http://nodis3.gsfc.nasa.gov/npg_img/N_PR_2810_001A_/N_PR_2810_001A_.pdf
http://nodis3.gsfc.nasa.gov/npg_img/N_PR_7150_002B_/N_PR_7150_002B_.pdf
https://foiaelibrary.gsfc.nasa.gov/_assets/doclibBidder/tech_docs/1. N_PR_7120_005E_.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
https://web.nvd.nist.gov/view/800-53/Rev4/control?controlName=SA-11
https://web.nvd.nist.gov/view/800-53/Rev4/control?controlName=RA-5
http://www.cert.org/cybersecurity-engineering/products-services/square.cfm?
https://www.microsoft.com/en-us/sdl/

@Z’T‘ Effects of Building Security
| s in from the Get-Go

« Better Code Quality - Better Security Posture
- Testing up front reduces cost - Increases Cybersecurity
- Easier to meet schedule - less - Total Lifecycle Cost is Reduced
ework - Itis estimated that bolting-on
+ Smaller Attack Surface security post-development,

costs roughly three times more
than the cost of built-in security.

- Reduces the number of
vulnerabilities

- Reduces overall risk to

Not Baki ;

* Traditional cost of change curve depicts how
discovering defects last impacts cost

If Bug=Exploited
— damage could be
more than monetary
ufl:h::::
Loss of Mission Obij(s)
Loss of Mission
Loss of Life
“Bake It In”

1l

Requirements Analysis and Coding Testing in the Production
Design Large

| Time > 12
Copypright 2003 Zeatk W. Ambler

Secure software
development begins
where all software
begins!

< Abuse Cases

< Establish
Security
Requirements

<4 Risk Analysis

< Risk Analysis

< Attack Surface
Analysis /
Reduction

<4 Threat

Modeling

< Static Analysis
< Peer Code
Reviews

< Penetration
Testing

< Attack Surface
Review

<4 Application
Fuzzing

< Final Security
Review

< Operational
Security

Integrating Security into the Software Development Life Cycle
© Capstone Security, Inc.

cXTERNAL REVIEW

Security
Requirements
ABUSE
CASES

Risk
Analysis

Y

o § J‘(
REQUIREMENTS ARCHITECTURE
AND USE CASES ~ AND DESIGN

Source: Software Security: Building Security In, by Gary McGraw

Risk-based
Security Tests

CODE

PLANS

Code Review
(Tools)
Risk
Analysis

Penetration
Testing

TESTS AND
TEST RESULTS

Security
Operations

FEEDBACK FROM
THE FIELD

TWARE

SO
SE

e

SARY McERED
v i

F
CURITY
AT

Secure software is an

end-to-end development
concept, not patchwork

13

Applies to all SW
development!!

SeCU re De v/ | I ~- ;—-:~_ . : i-"'j‘;‘ — just ground

systems

e Utilize Best Practices

— List is from NASA’s Secure Coding Portal

e Coding Standards (Ex. CERT C, C++ or JAVA Stds)
— Ex: Don’t use unsafe functions (Flawfinder)

* |Integrate tools into development environment

— Code Analyzers (i.e. Klockwork, Fortify, Flexelint,
CodeSonar, Sonatype, BlackDuck, etc.)

— Great resource for identifying tools
e Report | Spreadsheet

14

https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
http://www.dwheeler.com/flawfinder/
http://www.klocwork.com/products/insight
http://www8.hp.com/us/en/software-solutions/software-security/
http://www.gimpel.com/html/flex.htm
http://www.grammatech.com/codesonar
http://www.sonatype.com/
https://www.blackducksoftware.com/products/black-duck-hub
http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
http://www.acq.osd.mil/se/docs/P-5061-AppendixE-soar-sw-matrix-v9-mobility.xlsx

- Applies to all SW
— development!!

t (co nt) just ground

systems

e Use information from DHS:

— Common Weakness Enumeration (CWE), Common Vulnerabilities
and Exposures (CVE), and Common Attack Pattern Enumeration and
Classification (CAPEC)

— Plan for Defense in Depth and not solely on protective perimeter

 Historically developers depend/plan for Firewalls to protect vice designing
in SW

* Securing the development environment (i.e. prevent injecting of malicious
code)

* Training
— Free:

* FedVTE Ex: Software Assurance Executive Course (SAE)
* SAFECode
» Secure Coding and Standards Tutorial (NASA Only)

— Paid: (Ex: Cigitial, Pluralsight)

15

https://cwe.mitre.org/
https://cve.mitre.org/
https://capec.mitre.org/
https://fedvte.usalearning.gov/
https://training.safecode.org/
https://www.safaribooksonline.com/self-registration/nasatutorials/
https://www.cigital.com/services/training/elearning/
https://www.pluralsight.com/search?q=security&categories=course

Insecure random number
generator was used to generate
passphrases that control access to
VPNs and other network

resources

Could enable someone to monitor

or interfere with a system and be

undetectable

— If this code was deployed with

weak symmetric keys, the
supposedly "secure" data-links
between these devices would be
vulnerable to a "man-in-the-
middle" attack.

There were several instances
throughout the code

— Klockwork discovered these
during static code analysis

for (int i = 0; 1 < randomStringLength; i++)
{

// randomly select i == iwln dom list
int selChar = (int (Math.random() *| (randomList.length() - 1)):
if (allowSpecialCharacters) {...}

// make sure we pick a non special character
while (specialcCharacters.indexOf (randomList.charit (selchar)) != -1)

{

selchar = (int)] (Math.random() *| (randomList.length() - 1)):

}

// make sure we pick a special character from the list

while (specialCharacters.index0f (randomList.charit (selchar)) < 0)
{
selChar = (int
}

(Math.random() *| (randomList.length() - 1));

Resource Describing Math.random:

http://franklinta.com/2014/08/31/predicting-
the-next-math-random-in-java

16

* Code calls a generic exception handler

— Typically is done when a developer assumes
they can only get known types of exceptions

— However, depending on the source of the
exception (input stream for example) someone
can try to cause a different exception resulting
in unpredictable behavior (i.e. DoS)

— Also with a ground system, you want to fail-fast

* Catching and ignoring fatal exceptions makes a program
less robust since it will try to carry on as if nothing
happened in the worst of conditions

* Immediately report at its interface any failure

* Don't pretend like nothing happened, because it's going
to get worse

* Klockwork discovered these during static code
analysis

oftware

* @throws Exception

*/

EPostConstruct

public void initializer ()

{

* @throws Exception

*/

EPostConstruct

public void initializer ()

{

* @throws Exception

*/

EPreRemove

public void onPreRemove ()

{

throws Exception

throws Exception

throws Exception

17

Lacking the appropriate code in a finally block (java exception handling)

— Using something and then call a close, doesn’t mean it will actually close if an
exception is encountered either in the use or the close call

— Afinally block helps assure proper closure and deallocation
— This can be for any type of resources (file, database, etc.)
Resource leak could use up all resources, causing the system to become

unresponsive after excessive or continued use, reducing dependability
(i.e. DoS)

Klockwork discovered these during static code analysis

public ICommunicationProcessorXX¥ connectUsingRemoteXXX ()
throws Genera l1SecurityException, NamingException
{

try
{

Initialcontext context = new InitialContext (properties);

m_ctmProcessorRemote =
(ICommunicationProcessor¥X¥) context.loockup (CommunicationProcessorXxXXClientUtils.PROCESSOR_REMOTE_JNDI_NAME) ;

return m_ctmProcessorRemote;

} 18

Stop using known unsafe functions and always do bounds checking
if you are copying to a buffer

— Even if you think you know what you are copying from and it’s limited,
defensive coding is best.

Some samples of unsafe functions due to allowed writing with no
regard to buffer size memset sprintf

memcpy strncpy
strcat _iota
strcmp sscanf
strcpy wcslen

strlen

Most of these are unsafe due to allowed writing with no regard to
buffer size
— strncpy, _iota, sscanf, & wcslen have safer _s varieties (ex. _iota_s)
that require a buffer size to be specified

* Resource: Security Development Lifecycle (SDL) Banned Function Calls
e Resource: Stack Overflow Post

Free tool to help find unsafe functions - Flawfinder

19

https://msdn.microsoft.com/en-us/library/bb288454.aspx
http://stackoverflow.com/questions/6747995/a-complete-list-of-unsafe-string-handling-functions-and-their-safer-replacements
http://www.dwheeler.com/flawfinder/

e Demo Flawfinder

20

Low Hanging &

CERT Rules™

* For legacy code:

— MSCOO0O-C. Compile cleanly at high warning levels

* The process of fixing compiler warnings will probably
guash some other vulnerabilities.

— ERR33-C. Detect and handle standard library
errors
* Include any program functions that give some kind of
error indication

— If a function returns some special value on error, such as
NULL, your calls to that function should always check its
return value

21

* For new code

— ERROO-C. Adopt and implement a consistent and comprehensive error-handling policy

* This is where programs fail the most easily. They fail to check for errors because the developers
don't know what to do if an unexpected error occurs.

— MEMOO-C. Allocate and free memory in the same module, at the same level of
abstraction
* Adesign issue, but not following it will get your code into hot water quickly.

— MEM12-C. Consider using a goto chain when leaving a function on error when using and
releasing resources
* More specifically, make sure your code frees resources even if errors occur.

* For both new and existing code: execute static code analysis
tools to determine weaknesses

* Free ones are a good place to start; See slide 14 for commercial ones

— Cppcheck — RATS
— Rosecheckers — Flawfinder
— Splint — SWAMP

— Find Bugs 22

http://cppcheck.sourceforge.net/
http://sourceforge.net/projects/rosecheckers/
http://www.splint.org/
http://findbugs.sourceforge.net/
https://code.google.com/p/rough-auditing-tool-for-security/
http://www.dwheeler.com/flawfinder/
https://continuousassurance.org/

CWE:

* Serves as a common language .
for describing software security
weaknesses in architecture,
design, or code

* Provides a:

— Standard measuring stick for
software security tools targeting
these weaknesses .

— Common baseline standard for
weakness identification,
mitigation, and prevention efforts

e Utilize CWE to better
understand, identify, fix, and)
prevent weaknesses and
vulnerabilities

el Common Weakness e
ey Enumeration (CWE) I CAPEC

DHS' office of Cybersecurity and Communications
8 - Web site sponsored and managed by MITRE http:/icwe.mitre.org
- Serv describing software security
n, or code

~ International in scope
- Co-Sponsored by DHS
Sponsored and Managed by MITRE

- http:/icapec.mitre.org/index.htm!

Services sponsored by Department of Homeland Security and managed by Mitre

CVE:

Identifies publicly known information
security vulnerabilities and assign them a
CVE_ID.

Scored 1 to 10 on CVSS scale

CAPEC:

Community-developed list of common attack
patterns

Comprehensive schema and classification
taxonomy

International in scope

Taking into account attack pattern and any other factors to generate list of CWEs that are

critical. Tools report findings in CVEs (known) and CWEs (potential) -> Identify then Fix! 23

https://cwe.mitre.org/
https://capec.mitre.org/
https://cve.mitre.org/

4’ GSAW
- W 2016

* For NASA, research & analysis has been performed by the IV&V Program to
identify the Top 25 CWEs for Ground Systems

* The following categories are part of the formula for CWSS

\ (Attack Snrl‘aee\

R
:
g
5

Each factor in the category is
assigned a value. These values
are converted to associated
weights and a category sub-
score is calculated. The three
Asthentication Strength sub-scores are multiplied
together, which produces a
Common Weakness Scoring
System (CWSS) score. Higher the
score, higher it ranks.

Acquired Privilege

Fiadiog Confidence

Acquired Privilege Layer

Iaternal Control Effectiveness

Level of Interaction

\ ———

[Base Finding Sub-score] Attack Surface Sub-score ‘ Environmental Sub-score ’

Ranking

24

Rankings are

currently under
peer review.

Version 2.0 of Top
25 now includes
Common Attack
Patterns

SAPEC.

=

[y

312

88

w
w

~
w
N

|N
o

Cleartext Storage of Sensitive Information 403

Argument Injection or Modification

w
[y
I

[oe]
w
(03]

Improper Neutralization of Special Elements used
in a Command (‘Command Injection')

00
w
w

Relative Path Traversal

External Control of File Name or Path

[y
~N
~
N
IS

IS
N
[

Use of Hard-coded Credentials

Missing Support for Integrity Check

w
—
[oe]

Incorrect Permission Assignment for Critical
Resource

N
IS
N

Improper Limitation of a Pathname to a
Restricted Directory ('Path Traversal')

EaN
o]
~

Improper Neutralization of Special Elements used
in an OS Command ('OS Command Injection')

|\l
~
N

Authentication Bypass by Spoofing

(o))
[e)
-

=
el
N

N = = = =
= o ()] (5] H
|I—I
[EEY
©

Improper Input Validation

w CWE ID CWE Title w CWE Title

Exposure of File Descriptor to Unintended Control Sphere
('File Descriptor Leak')
Cleartext Storage in the Registry

Loop with Unreachable Exit Condition ('Infinite Loop')

Deadlock

Multiple Locks of a Critical Resource

Race Condition During Access to Alternate Channel

Improper Restriction of Operations within the Bounds of a
Memory Buffer

Cleartext Storage of Sensitive Information in Executable

Use of Inherently Dangerous Function

Exposure of System Data to an Unauthorized Control Sphere

Missing Release of Resource after Effective Lifetime

Incorrect Conversion between Numeric Types

Integer Coercion Error

25

https://cwe.mitre.org/data/definitions/312.html
https://cwe.mitre.org/data/definitions/88.html
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/23.html
https://cwe.mitre.org/data/definitions/73.html
https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/353.html
https://cwe.mitre.org/data/definitions/732.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/290.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/403.html
https://cwe.mitre.org/data/definitions/314.html
https://cwe.mitre.org/data/definitions/835.html
https://cwe.mitre.org/data/definitions/833.html
https://cwe.mitre.org/data/definitions/764.html
https://cwe.mitre.org/data/definitions/421.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/318.html
https://cwe.mitre.org/data/definitions/242.html
https://cwe.mitre.org/data/definitions/497.html
https://cwe.mitre.org/data/definitions/772.html
https://cwe.mitre.org/data/definitions/681.html
https://cwe.mitre.org/data/definitions/192.html

* Demo Fortify w/ CWE Reporting

26

- EZMW Can You Answer: u

+ What open source components are being used?

+ Where are these components being used?

« What is the “Bill of Materials” for my application and/or software we
have purchased?

+ Are we using open source components with known vulnerabilities?

+ What are the security, licensing and quality risks for each
component in my application?

* From Institute for Defense Analyses (IDA) SOAR Report — “Origin analyzers

are tools that analyze source code, bytecode, or binary code to determine
their origins (e.g., pedigree and version).”

e Origin Analysis can be used to reduce the software supply chain risk ﬁ\/J
— Identifies CVEs that may be present in re-used open source I|brar|es/code

ANT

— Also identifies potentially licensing issues

YRG 1 U AUNEEMENT

renws SOFTWARE o~

* Examples of tools AW LICENSE -
m.‘ﬂ“t"jc;
— Sonatype E 5t

* Binary scanner; Works best on JAVA

— Black Duck HUB

* Provides binary and source tree scanning; Support C/C++ as well has JAVA

— OWASP Dependency Check

* Currently Java, .NET, Ruby, Node.js, and Python projects are supported; additionally, limited
support for C/C++ projects is available for projects using CMake or autoconf.

27

http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
http://www.sonatype.com/
https://www.blackducksoftware.com/products/black-duck-hub
https://www.owasp.org/index.php/OWASP_Dependency_Check

Stvarx
Ticmoiocus
e

Can You Answer:

+ What open source components are being used?

+ Where are these components being used?

« What is the “Bill of Materials” for my application and/or software we

have purchased?

+ Are we using open source components with known vulnerabilities?

+ What are the security, licensing and quality risks for each

component in my application?

Vulnerability

Affected File

Mitigation

CVE-2014-0003: Allows remote
attackers to execute arbitrary Java
methods via a crafted message.

camel-core-
1.5.4.0-fuse.jar

Upgrade Jar file to 2.11.4 or newer

CVE-2009-4611: Allow remote | jetty-6.1.14.jar; | Upgrade Jar file to 6.1.25 or newer
attackers to modify a window's | jetty-util-

title, or possibly execute arbitrary | 6.1.14.jar

commands or overwrite files, via an

HTTP request

CVE-2011-2730: Allows remote | spring-web- Upgrade Jar file to 3.2.9 or newer
attackers to obtain sensitive | 2.5.5.jar

information

CVE-2014-0107: Allows remote | xsltc.jar; Upgrade Jar file to 2.7.2 or newer
attackers to bypass expected | xalan.jar

restrictions and load arbitrary

classes or access external resources
via a crafted messages

CVE-2013-4002: Allows remote
attackers to affect availability via
unknown vectors.

Xerces2.6.2_xer
ceslmpl.jar;
xerceslmpl.jar

N/A (new versions exist but also
contain vulnerabilities).
Implement host based restrictions
(i.e., IP tables, file integrity
detection, Host based IDS)

CVE-2010-1244: Allows remote
attackers to hijack the
authentication of unspecified
victims

activemqg-web-
5.2.0.2-fuse.jar

Upgrade Jar file to 5.9.0 or newer

Scope of Analysis

239

PN
&Jj COMPONENTS IDENTIFIED

@ security Issues

74

POLICY ALERTS SECURITY ALERTS

How bad are the vulnerabilities and how many are there?

Critical (7-10) 02
[

Severe (4-6)

s =

4 6 81012141618202224262830
[N

The summary of security issues demonstrates
the breakdown of vulnerabilities based on
severity and the threat level it poses to your
application.

The dependency depth highlights quantity and
severity and distribution within the

4
Moderate (1-3) 3

:

License Analysis

What type of licenses and how many of each?

Critical (8-10)

Severe (4-T)

.

Moderate (1-3)

No Threat (0)

n's

The summary of license analysis
3% demonstrates the number of licenses
detected in each category.
The dependency depth compares
17% quantity by category and the
distribution within your application's
dependencies.

= Sonatype

52
LICENSE ALERTS

Dependency Depth

e

e °
C PN N X J

Dependency Depth

® o O

28

* Demonstrate Sonatype

29

* OpenSSL is an open-source implementation of the SSL and TLS protocols.

The core library, written in the C programming language, implements the
basic cryptographic functions and provides various utility functions.
Wrappers allowing the use of the OpenSSL library in a variety of computer
languages are available.

e |ts free!
 As of 2014 two thirds of all webservers use it.
* From Heartbeat to Heartbleed

— Defect could be used to reveal up to 64 kilobytes of the application's
memory with every heartbeat

— The affected versions of OpenSSL allocate a memory buffer for the
message to be returned based on the length field in the requesting
message, without regard to the size of actual payload in that message.

30
Reference: (http://en.wikipedia.org/wiki/Heartbleed)

http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Transport_Layer_Security
http://en.wikipedia.org/wiki/Library_(computer_science)
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Kilobyte
http://en.wikipedia.org/wiki/Heartbeat_(computing)
http://en.wikipedia.org/wiki/Heartbleed

Server, send me
this 4 letter word

if you are there; Us'm Bob.'m.z. :

Reference: (http://en.wikipedia.org/wiki/Heartbleed)

"bird"

Server, send me
this 500 letter
word if you are
there: "bird"

bird. Server
master key is

31431498531054.

User Carol wants
to change
password to
"password 123"...

connected. User
Alice wants 4
letters: bird. Servy
master key is
31431498531054
User Carol wants |
change password

5) - .
User Bob has
connected. User
Mallory wants 50
letters: bird. Servg
master key is
31431498531054
User Carol wants |
change password

http://en.wikipedia.org/wiki/Heartbleed

et

R

et

et

LS

S

by

S

et

One way to find it would be to execute Origin Analyzer across source

tree that includes your open source code as well

Identifier *
VulnDB| 107729
VulnDB| 113251

CVE-2014-0160 ' '

CVE-2015-1788
CVE-2015-1789
CVE-2015-1790
CVE-2015-1791
CVE-2015-1792
CVE-2015-4000

Published

Jun s, 2014
Oct 14, 2014
Oct 27, 2015
Jun 15, 2015
Jun 15, 2015
Jun 15, 2015
Jun 15, 2015
Jun 15, 2015

Jul 22, 2015

Base Score

6.5 EEEEE

26N

(O BLackouck

Exploitability

5.6 IR

4.9 N

10 I

8. 6 I

5.6 IR

10 I

8.6 I

10 I

5.6 IR

Impact
b4 N
2.0
2.9
2.9
2.9
2.9
6.4 N
2.0

29 .

32

e Demonstrate BlackDuck Hub

33

Finding Vulné

e [tis difficult to determine what types of tools and techniques ‘, h
exist for analyzing software, and where their use is appropriate. \g:(
— Institute for Defense Analyses (IDA) created the SOAR report and matrix to 7
assist

* NASA has slight modified version to include tool names <-> contact
brandon.t.bailey@nasa.gov

— Ideally developers will institute static source code and binary analysis to assist
in identifying weaknesses
* Development activities should include analyzing source code before it is compiled to
detect coding errors, non-secure coding constructs, and other indicators of security
vulnerabilities or weaknesses that are detectable at the source code level
— Developers should perform software evaluations throughout the software
development lifecycle to address potential security vulnerabilities early in the
process

— Use research from NSA’s CAS and Institute for Defense Analyses to establish a
blend of tools that will provide the most value

34

http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
http://www.acq.osd.mil/se/docs/P-5061-AppendixE-soar-sw-matrix-v9-mobility.xlsx
mailto:brandon.t.bailey@nasa.gov
http://samate.nist.gov/docs/CAS_2011_SA_Tool_Method.pdf
http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf

* Demo SOAR Spreadsheet

= — — T T R T e e M TR) RN S T S — o)
X i 9~ =TT SOAR_Matrut2) dsx - Microsoft Excel [P
“ Hore Developer Prert Page Layout Forrmoass Oata Bevew ew Acrobat Levelink - 0 = o B
A C2 Py - - (o g} - ~4 = X Astotem « A
Y Calibeh 11 AN T amw ¥ S Wrap Texnt General o = .i ;- : I' X Ir
<) Copy ~ a thl- -
A B 7 . . W - - EEX ER AivergesCenter= $ = % o y - &~ ditional Format Cell Insert Delete Format - 5ot & Pnd &
l Format Panier ¥ — A . 21 7 433 Formatting = a1 Table » Styles . . - £ Oear = Fiter = Select
geoard . Foot rent : Yeumber e tding
C1 - S+ Source code quality analyzer -~
€ [E =
-
1 Sonace code gk srsbie SO0 GO v sress Wt e Cortemt-0ordQued sounce (ode washrass snaht Source (ode broviedge e sot o 1o s
Suppier Coventy Suppler Coverty

v

Product Neme Covenn) Qe Advsor Covainy Save
Languages Suppened C Cor Java O in grogrens o advisce
LR hetp vww coventy comd

Supple Kocwok

Product Neme Traepat® Flel actonrg®

Languages Suppened Tampatn CiCe+ Java and 08 Relactorng CXCes

UL herp vww Moowork comiproducerinaightindes pho

Sppher S

Product Name: ScnwSource

Languages Supponed € Coe, Jave, T8 VB e, PLN COBOL. PP, Python, VBE, Nanaal
S0, XL @00 [Carmm it wheen vt 530G Thane 0en 10urce Croba S siion, et ondy
sorme Largusges we cpen rouwce and loenased as such] Commencial lcenae suppon nchudes »
Leowdue st of larunpes

URL hip vww sonaacuece ongl

Supphed CAST

Product Name: Acphcation bteligerce Plafom

Languages Supponed Inchudes NET, Jaya. COBOL

URL horp e casrsobte e comiproductsdhe- sopdo stcrmteligence—plaiorm

Product Nume Coveney Sacunn) Advsoe
Languspes Sugported C.Cor, Jova CF n progent loe advacr
UL hap vww coventy cond

Sugpher Grammatech

Product Name CodeSona

Languapes Sugporied C Coe

LRL hop vww o ch comiproducercode

Sugppiec M9 Fomty
Product Nasw Seao Codednabes ISCA)

Sppher €M
Produce Name Rascnal Asser Aoshst

NA LRL hepdhvww <03 b comdsoioe melpeoc

Seppber Moo Foous
Prodasct Narw Lrderpose Aosbcer
URL hop Mhvww microfoour. comiproducen!

Languages Supported C Ces, C8 and crher NET languages, COBOL, Java, JavaScrged AMX, P+

PUSTL. Pythen. T-S08

URL g v w8 hp comduniendsole meschaioralacite se hami? complUie 1332500 LIWEF -MOC-NM

Suppber Chackmans
Froduct Name Orechmans

Language: Supported Jave, CHNET, PP C, Coe Vious!Basic 6.0, VB NET, Flash, APEX, Puby,

SwvaSongn. AP Andhosd. Cbpctive . Ped

LURL g Wvww checkmans comd

Supplec BM [larmerdy Ounce Labal

Product Neme: AgpSomn Sowrce

Languapes Sugported C.Coe, Jove VBNET.CO

UL hap Avww <01 B condpobiv selavdoclc'sppsoany

e Tutorial E Part 1:

e Tutorial E Part 2:

— Section 3: Defense in Depth for Ground Systems
— Section 4: What Now?

36

SGT Defense-In-Depth
Approach

sGT Dofense-ln-n.,,“'

7
ie

i

+ Yod Compl
=
:E,:h-
e B

TECHNOLOGY

Secure software development is extremely important but DiD is key to
protecting mission assets
In Mission environments, DiD can be difficult
— Older architectures/technology
* Unsupported operating systems, older hardware, etc.
— Shared architectures/technology

e Mission X doesn’t own all layers of the defense

Sometimes vulnerable software depends on something that is out of their
control

— Do you trust the Network Engineers? Should you?

— Do you control the host level configuration? L Network Partiioning

Il. Access Controls
Ill. Protect

o-\n-Depth Meg;,
‘0“’ dol

°° 2

*DLP -« Enclave/Data Center Firewall
* Enterprise Remote Access * Messaging Security
* Mobile Security « NAC/Endpoint Profiler
*Network IDS/IPS + Virtual Firewall + VolP Protection
*Web Proxy Content Filtering « Wireless Security

Network Security

Perimeter Security

Work with Network Engineers to implement enclaves/network
zoning and/or encryption

— Build a “zero trust” architecture

* Vulnerabilities injected by Mission X may affect Mission Y

— Network layer encryption

Understand and eliminate pivot points

— From networking perspective, software security perspective, host level
security

Increase attack depth or eliminate all together

Utilize tools like RedSeal Networks, Skybox, etc. to

understand network topology and threat exposures

38

> .. .
=] Sran
@‘;E:: Changing the Current Mindset r

+ Cybersecurity is not just about firewalls

jon

Developers can’t assume protection from Firewall. Need
“Defense in Depth”. Can’t assume if knocking on door,
that they are supposed to be there.

Signs onto Rogue Wifi,
Click Phishing Link, Etc. Asset Launch Attacks

Mission

(DoS, Brute Force,

‘ Extract Data, etc.)

Exploits Custom S/W

Then Signs onto VPN

Mission

Control

Establishes persistent
foothold on Mission
Asset

irectly to Assets on
Mission Networks

This example will depict how vulnerable software within a

network can potentially impact critical mission assets

39

VPN Landing Zone,
Internet, Or

“Untrusted”
===]

0000 CO0CEOOODO0O0:
0000000 CO0CO0GO0O:

2
&
--------------------- _“-—‘_..__‘G
o 2
sesee

Demonstrates that a pathway exists from the VPN Landing Zone,
Internet, Or Untrusted to a vulnerable piece of software 40

-

Demonstrates all outbound access paths (Pivoting) from the vulnerable asset

Sample ExpOSeie

o

Mission Control that
“wasn’t” network
accessible from VPN,
Untrusted, Etc.

(.

Vulnerable Asset
“Pivot Point”

Demonstrates potential vulnerabilities that could be exploited from this server .,

Defense in B W 2016

* Example depicted how vulnerable software in a network
that doesn’t employ zero-trust architecture can expose
mission assets

* Network encryption is another layer of defense that
provides protection

— Protocol machinery below the Network Layer including the
Network Layer protocol (e.g., IP, Data Link, Physical) is exposed

* Data Link Layer services can provide additional protection
— Upper-layer protocols become opaque

— Data Link Layer security may be useful when a threat
assessment indicates a heightened risk of exposure of the
underlying protocols across an RF link or when traffic analysis is
a concern.

— Data link layer is usually under complete control of the Mission
and vulnerabilities within the shared architecture can be
mitigated by added this layer of defense s

I Protection of Data
Il Encryption
Ui Flle identity

Perimetar security

DiD: Network layer unsecure/non-encrypted or frame data is
sensitive post network layer (i.e. RF)

e Secure at data link layer

— Data Link Layer security services may be able to provide all of the mission’s
security needs, which could include authentication, integrity, and
confidentiality, but only on the specific link over which the security services

are provided.

SPP = Space Packet Protocol
SDLP = Space Data Link Protocol
SCC = Synchronization and Channel Coding

SCPS-FP
(FTP)
|

Im‘
Application Application Compression
Security “*H%Layer :
— \
p—
Transport
L.
— ayer
Network _ |, T

\ [ScPsTP
(TCPIUDP)
A\

=

\ - =
| sep | | sceswp | | Puave |
T

Layer Security Network
Layer |
. Logical
Data L_|nk Link Prox1Data [~
Security Data Sub-layer
- Link
Link
Layer Broed
Channel)
Coding Ceding and
Sub-layer Sync
Physical Layer . Prow1
Security Physical Physcal
(bulk encryption) Layer

{
/

]
|
| Tcsoe | | msowe | | aossole |

[tesce || TMSCC |

RF and Modulafion Systems I

‘ Application Layer Security
eg.SSL

Network Layer Security
eg. IPSec

Link Layer Security

CCsD ore
ecurity Suite

Agency Specific

Mission Specific 4 5
Security Suite

Security Suite

44

e

Space-Link
Extension
Protocol

Secure Environment

Forging
™

Eaves=
dropping

e Without protection:

= Spacecraft are vulnerable to spoofing
attacks from rogue ground stations

= Telemetry could be received and processed
by rogue ground stations

45

* CCSDS realized that a standardized protocol to integrate
security into space missions with a simple network topology
could be proposed at the data-link layer

= Space Data-Link Layer Security Protocol (SDLS)

e Space Data Link Security (SDLS) Blue Book Published
September 2015

* Protections implemented via software!

46

http://public.ccsds.org/publications/archive/355x0b1.pdf

<4—SLE services——p \
Wide Area| P/L TM User

Network

Payload

_ Downlink
T ‘_—-—-— V o IC
SDL AN
rotoco \

Network Layer

Space Packet

Protocol SCPS-NP

Data Link Layer

TC Space Data TM Space Data AOS Space Data

Link protocol Link protocol Link protocol
(Secured TM/TC Protocol)
| | | 1
TC Synch and TM Synch and
channel coding channel coding

<4—SLE services——» G S
SCC/MCC / /

Physical Layer

RF and Modulations Systems

47

1. Authentication only — providing authentication and integrity
2. Authenticated encryption — Adding confidentiality

SDLS supports two main security services

SECURITY SEQUENCE PAD
PARAMETER 'N'T'AL"(ZSTI"SHNE“)/ECTOR NUMBER LENGTH
INDEX P (Optional) (Optional)
(bits) Managed Managed

(octets)

Wanaged

Security header

TRANSFER FRAME — — — — = — = — = — = — =~ —
i SECONDARY | securiTy MAC €0 |8m
PRIMARY ooy HEADER FRAME DATA s |59
HEADER £ 2z

5 2564 4 2

Security trailer (MAC)
(computed over full transfer frame
minus OCF, ECF and masked subfields of TF headers)

e — - — - - - o oo SECURITY TRAILER

MESSAGE AUTHENTICATION CODE (MAC)

(Optional)

Mansged

48

SDLS Base

* To promote multi-mission implementations and interoperability:

= 3 recommended profiles have been defined covering security requirements of most
missions w.r.t. TC, TM and AOS links

e Baseline mode for TC

= Authentication only, using AES/CMAC, 128-bit key, 32-bit ARC, 128-bit MAC (22-
octet overhead (8%))

e — = SECURITY HEADER- - = = = = — — — e e e »

SECURITY
PARAMETER SEQUENCE NUMBER
INDEX

(bits) 16 0 32 0

e Baseline mode for TM and AOS

= Authenticated encryption, using AES/GCM, 128-bit key, 96-bit initialization vector,
no seq. # needed, 128-bit MAC (30-octet overhead (2.5%))

R Ry U U SECURITYHEADER- - = = = = — — — e e »|

SECURITY
PARAMETER INITIALIZATION VECTOR
INDEX

S E

(bits) 16 96 0 0

49

In mission environments (esp. mission with extended ops) you
may not be able to patch code; therefore for vulnerable code
that can’t be fixed the “host” owner can

— Harden the servers and hosts by disabling all ports,
protocols and services that are not explicitly required for
operations

— Install file integrity software (i.e., TripWire, Aide) to alert to
changes made to the file system

— Install and finely tune a host-based IDS that will alert to any
anomalous traffic

— Utilize IP tables/IPFilters to limit data flow to specific IP
addresses, ports, protocols and services

50

* To prevent future deployments of vulnerable code

— Participate in secure code training

* Educate developers, PMs, Authorizing Officials, Security Personnel (ISSO, ISO, etc.)
on the importance of eliminating vulnerable code from architecture

— Pick the low hanging fruit (see slides 20/21)
— Utilize Best Practices and Secure Coding Standards

* Ex: Best Practices from NASA’s Secure Coding Portal
* Ex: Coding Standards (Ex. CERT C, C++ or JAVA Stds)

— Institute static source code and binary analysis to assist in identifying
weaknesses - https://en.wikipedia.org/wiki/List of tools for static code analysis

* Apply the tools within the development activity (i.e., as an add-on to the developer's
Integrated Development Environment (IDE)) as well as in the Independent Test and
Evaluation (IT&E) activities

* Top 25 CWEs for Ground Systems
— Use NASA’s or create you own based on your mission and threats

51

https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

* Expand independent assessments of ground
systems for vulnerabilities using latest
technologies

— Perform “Red” and “Blue” Teams across the entire
ground system — End to End

* Promote integration of security early in
acquisition and development life-cycles

* |ntegrate cyber security activities to
dependably Know, Prevent, Detect, Respond,

and Recover

52

Backup Slides

Slide 5/6:

major space agencies of the world - http://public.ccsds.org/participation/member_agencies.aspx

multi-national forum - http://cwe.ccsds.org/

Slide 11:

Program Protection & System Security Engineering - http://www.acq.osd.mil/se/initiatives/init_pp-sse.html

2810 - http://nodis3.gsfc.nasa.gov/npg_img/N_PR_2810_001A_/N_PR_2810_001A_.pdf

7150.2B - http://nodis3.gsfc.nasa.gov/npg_img/N_PR_7150_002B_/N_PR_7150_002B_.pdf

7120.5E - https://foiaelibrary.gsfc.nasa.gov/_assets/doclibBidder/tech_docs/1. N_PR_7120_005E_.pdf

800-53 - http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf

SA-11 - https://web.nvd.nist.gov/view/800-53/Rev4/control?controlName=SA-11

RA-5 - https://web.nvd.nist.gov/view/800-53/Rev4/control?controlName=RA-5

Security Quality Requirements Engineering (SQUARE) - http://www.cert.org/cybersecurity-engineering/products-services/square.cfm?

Microsoft Security Development Lifecycle - https://www.microsoft.com/en-us/sdl/

Slide 14:

C - https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard

C++ - https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageld=637

JAVA - https://www.securecoding.cert.org/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
Klockwork - http://www.klocwork.com/products/insight

Fortify - http://www8.hp.com/us/en/software-solutions/software-security/

Flexelint - http://www.gimpel.com/html/flex.htm

CodeSonar - http://www.grammatech.com/codesonar

Sonatype - http://www.sonatype.com/

BlackDuck - https://www.blackducksoftware.com/products/black-duck-hub

Report - http://www.acqg.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
Spreadsheet - http://www.acq.osd.mil/se/docs/P-5061-AppendixE-soar-sw-matrix-v9-mobility.xlsx

Slide 15:

Common Weakness Enumeration (CWE) - https://cwe.mitre.org/

Common Vulnerabilities and Exposures (CVE) - https://cve.mitre.org/
Common Attack Pattern Enumeration and Classification (CAPEC) - https://capec.mitre.org/
FedVTE - https://fedvte.usalearning.gov/

SAFECode - https://training.safecode.org/

Secure Coding and Standards Tutorial - https://www.safaribooksonline.com/self-registration/nasatutorials/
Cigitial - https://www.cigital.com/services/training/elearning/

Pluralsight - https://www.pluralsight.com/search?q=security&categories=course

54

http://public.ccsds.org/participation/member_agencies.aspx
http://cwe.ccsds.org/
http://www.acq.osd.mil/se/initiatives/init_pp-sse.html
http://nodis3.gsfc.nasa.gov/npg_img/N_PR_2810_001A_/N_PR_2810_001A_.pdf
http://nodis3.gsfc.nasa.gov/npg_img/N_PR_7150_002B_/N_PR_7150_002B_.pdf
https://foiaelibrary.gsfc.nasa.gov/_assets/doclibBidder/tech_docs/1. N_PR_7120_005E_.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
https://web.nvd.nist.gov/view/800-53/Rev4/control?controlName=SA-11
https://web.nvd.nist.gov/view/800-53/Rev4/control?controlName=RA-5
https://web.nvd.nist.gov/view/800-53/Rev4/control?controlName=RA-5
http://www.cert.org/cybersecurity-engineering/products-services/square.cfm?
https://www.microsoft.com/en-us/sdl/
https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
http://www.klocwork.com/products/insight
http://www8.hp.com/us/en/software-solutions/software-security/
http://www.gimpel.com/html/flex.htm
http://www.grammatech.com/codesonar
http://www.sonatype.com/
https://www.blackducksoftware.com/products/black-duck-hub
http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
http://www.acq.osd.mil/se/docs/P-5061-AppendixE-soar-sw-matrix-v9-mobility.xlsx
http://www.acq.osd.mil/se/docs/P-5061-AppendixE-soar-sw-matrix-v9-mobility.xlsx
https://cwe.mitre.org/
https://cve.mitre.org/
https://capec.mitre.org/
https://fedvte.usalearning.gov/
https://training.safecode.org/
https://training.safecode.org/
https://www.safaribooksonline.com/self-registration/nasatutorials/
https://www.cigital.com/services/training/elearning/
https://www.pluralsight.com/search?q=security&categories=course

Slide 16:
. http://franklinta.com/2014/08/31/predicting-the-next-math-random-in-java

Slide 19:

. Security Development Lifecycle (SDL) Banned Function Calls - https://msdn.microsoft.com/en-us/library/bb288454.aspx

. Stack Overflow Post - http://stackoverflow.com/questions/6747995/a-complete-list-of-unsafe-string-handling-functions-and-their-safer-
replacements

. Flawfinder - http://www.dwheeler.com/flawfinder/

Slide 22:

. Cppcheck - http://cppcheck.sourceforge.net/

. Rosecheckers - http://sourceforge.net/projects/rosecheckers/

. Splint - http://www.splint.org

. RATS - https://code.google.com/p/rough-auditing-tool-for-security
. Flawfinder - http://www.dwheeler.com/flawfinder

. SWAMP - https://continuousassurance.org

. Find Bugs - http://findbugs.sourceforge.net/

Slide 23:

. CWE - https://cwe.mitre.org/

. CVE - https://cve.mitre.org/

. CAPEC - https://capec.mitre.org/

Slide 27:

. SOAR Report - http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
. Sonatype - http://www.sonatype.com/

. Black Duck HUB - https://www.blackducksoftware.com/products/black-duck-hub

. OWASP Dependency Check - https://www.owasp.org/index.php/OWASP_Dependency_Check
Slide 30/31:

. http://en.wikipedia.org/wiki/Heartbleed

55

https://msdn.microsoft.com/en-us/library/bb288454.aspx
http://stackoverflow.com/questions/6747995/a-complete-list-of-unsafe-string-handling-functions-and-their-safer-replacements
http://www.dwheeler.com/flawfinder/
http://cppcheck.sourceforge.net/
http://sourceforge.net/projects/rosecheckers/
http://www.splint.org/
https://code.google.com/p/rough-auditing-tool-for-security/
http://www.dwheeler.com/flawfinder/
https://continuousassurance.org/
https://continuousassurance.org/
http://findbugs.sourceforge.net/
https://cwe.mitre.org/
https://cve.mitre.org/
https://capec.mitre.org/
http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
http://www.sonatype.com/
https://www.blackducksoftware.com/products/black-duck-hub
https://www.owasp.org/index.php/OWASP_Dependency_Check
http://en.wikipedia.org/wiki/Heartbleed

Slide 34:
. report - http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf

. matrix - http://www.acg.osd.mil/se/docs/P-5061-AppendixE-soar-sw-matrix-v9-mobility.xlsx

. NSA’s CAS - http://samate.nist.gov/docs/CAS_2011_SA_Tool_Method.pdf

. Institute for Defense Analyses - http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
Slide 46:

. Blue Book - http://public.ccsds.org/publications/archive/355x0b1.pdf

Slide 51:

. C - https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard

. C++ - https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageld=637

. JAVA - https://www.securecoding.cert.org/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
. https://en.wikipedia.org/wiki/List of tools for static code analysis

56

http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
http://www.acq.osd.mil/se/docs/P-5061-AppendixE-soar-sw-matrix-v9-mobility.xlsx
http://samate.nist.gov/docs/CAS_2011_SA_Tool_Method.pdf
http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
http://public.ccsds.org/publications/archive/355x0b1.pdf
https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

Validate input. Validate input from all untrusted data sources. Proper input validation can eliminate the
vast majority of software vulnerabilities. Be suspicious of most external data sources, including
command line arguments, network interfaces, environmental variables, and user controlled files.

Heed compiler warnings. Compile code using the highest warning level available for your compiler and
eliminate warnings by modifying the code.

Use Code Analysis Tools. Use static and dynamic analysis tools to detect and eliminate additional
security flaws. Dynamic analysis is the testing and evaluation of an application during runtime. Static
analysis is the testing and evaluation of an application by examining the code without executing the
application. Many software defects that cause memory and threading errors can be detected both
dynamically and statically. The two approaches are complementary because no single approach can find
every error. The primary advantage of dynamic analysis: It reveals subtle defects or vulnerabilities
whose cause is too complex to be discovered by static analysis. Dynamic analysis can play a role in
security assurance, but its primary goal is finding and debugging errors. The primary advantage of static
analysis: It examines all possible execution paths and variable values, not just those invoked during
execution. Thus static analysis can reveal errors that may not manifest themselves until weeks, months
or years after release. This aspect of static analysis is especially valuable in security assurance, because
security attacks often exercise an application in unforeseen and untested ways.

Use Binary Analysis Tools. Binary analysis creates a behavioral model by analyzing an application's
control and data flow through executable machine code — the way an attacker sees it. Unlike source
code tools, this approach accurately detects issues in the core application and extends coverage to
vulnerabilities found in 3rd party libraries, pre-packaged components, and code introduced by compiler

or platform specific interpretations.
57

10.

Architect and design for security policies. Create software architecture and design your software to implement
and enforce security policies. For example, if your system requires different privileges at different times,
consider dividing the system into distinct intercommunicating subsystems, each with an appropriate privilege
set.

Keep it simple. Keep the design as simple and small as possible. Complex designs increase the likelihood that
errors will be made in their implementation, configuration, and use. Additionally, the effort required to achieve
an appropriate level of assurance increases dramatically as security mechanisms become more complex.

Default deny. Base access decisions on permission rather than exclusion. This means that, by default, access is
denied and the protection scheme identifies conditions under which access is permitted.

Adhere to the principle of least privilege. Every process should execute with the least set of privileges
necessary to complete the job. Any elevated permission should be held for a minimum time. This approach
reduces the opportunities an attacker has to execute arbitrary code with elevated privileges.

Sanitize data sent to other systems. Sanitize all data passed to complex subsystems such as command shells,
relational databases, and commercial off-the-shelf (COTS) components. Attackers may be able to invoke unused
functionality in these components through the use of SQL, command, or other injection attacks. This is not
necessarily an input validation problem because the complex subsystem being invoked does not understand the
context in which the call is made. Because the calling process understands the context, it is responsible for
sanitizing the data before invoking the subsystem.

Practice defense in depth. Manage risk with multiple defensive strategies, so that if one layer of defense turns
out to be inadequate, another layer of defense can prevent a security flaw from becoming an exploitable
vulnerability and/or limit the consequences of a successful exploit. For example, combining secure
programming techniques with secure runtime environments should reduce the likelihood that vulnerabilities
remaining in the code at deployment time can be exploited in the operational environment.

58

11.

12.

13.

14.

15.

Use effective quality assurance techniques. Good quality assurance techniques can be effective in
identifying and eliminating vulnerabilities. Fuzz testing, penetration testing, and source code audits
should all be incorporated as part of an effective quality assurance program. Independent security
reviews can lead to more secure systems. External reviewers bring an independent perspective; for
example, in identifying and correcting invalid assumptions.

Adopt a secure coding standard. Develop and/or apply a secure coding standard for your target
development language and platform.

Define security requirements. Identify and document security requirements early in the development
life cycle and make sure that subsequent development artifacts are evaluated for compliance with those
requirements. When security requirements are not defined, the security of the resulting system cannot
be effectively evaluated.

Model threats. Use threat modeling to anticipate the threats to which the software will be subjected.
Threat modeling involves identifying key assets, decomposing the application, identifying and
categorizing the threats to each asset or component, rating the threats based on a risk ranking, and
then developing threat mitigation strategies that are implemented in designs, code, and test cases.

Don't trust services. Many organizations utilize the processing capabilities of third party partners, who
more than likely have differing security policies and posture than you. It is unlikely that you can
influence or control any external third party, whether they are home users or major suppliers or
partners. Therefore, implicit trust of externally run systems is not warranted. All external systems should
be treated in a similar fashion.

59

16.

17.

18.

19.

Separation of duties. A key fraud control is separation of duties. For example, someone who requests a
computer cannot also sign for it, nor should they directly receive the computer. This prevents the user
from requesting many computers, and claiming they never arrived. Certain roles have different levels of
trust than normal users. In particular, administrators are different to normal users. In general,
administrators should not be users of the application.

Software Supply Chain. IT managers should create and preserve a bill of materials, or a list of
ingredients, for the components used in a given piece of software. The complexities and
interdependencies of the IT ecosystem require software suppliers to not only be able to demonstrate
the security of products they produce, but also evaluate the integrity of products they acquire and use.
Ultimately this should lead to greater confidence through integrity checks incorporated in a defined
secure development lifecycle.

Avoid security by obscurity. Security through obscurity is a weak security control, and nearly always
fails when it is the only control. This is not to say that keeping secrets is a bad idea, it simply means that
the security of key systems should not be reliant upon keeping details hidden. For example, the security
of an application should not rely upon knowledge of the source code being kept secret. The security
should rely upon many other factors, including reasonable password policies, defense in depth, business
transaction limits, solid network architecture, and fraud and audit controls. A practical example is Linux.
Linux's source code is widely available, and yet when properly secured, Linux is a hardy, secure and
robust operating system.

Fix security issues correctly. Once a security issue has been identified, it is important to develop a test
for it, and to understand the root cause of the issue. When design patterns are used, it is likely that the
security issue is widespread amongst all code bases, so developing the right fix without introducing
regressions is essential. 60

