
A Proven Methodology for Developing Secure
Software and Applying It to Ground Systems

2/29/16
Brandon Bailey

brandon.t.bailey@nasa.gov
304-629-8992

Ground System Architectures Workshop
Tutorial E

Part 2

NASA’s IV&V Program
Safety and Mission Assurance (SMA) Office

Information Assurance/Cybersecurity Support
http://www.nasa.gov/centers/ivv

mailto:Brandon.t.bailey@nasa.gov

Agenda/Outline

• Tutorial E Part 1:
– Section 1: Cyber Threat – Who, What and Why

– Section 2: Defense-In-Depth

– Section 3: Secure Software Engineering Steps

– Section 4: Errors, Weaknesses and Exploits

– Section 5: Threat Modeling

– Section 6: Testing

– Section 7: Resources

• Tutorial E Part 2:
– Section 1: Ground Systems Overview

– Section 2: Secure Software Development

– Section 3: Defense in Depth for Ground Systems

– Section 4: What Now?

2

Defining “Ground Systems”

3

Spacecraft Ground Systems encompasses the
entire system, beginning with issuing the
command from the MOC up until it emits from the
antenna to the reception of radio signals down at
the antenna to displaying telemetry on the MOC
computer

Scope…

4

• Tutorial will focus on the software developed
for the
• Mission Operations Center (MOC)
• Mission planning area
• Software development environment

TLM
Archive

Threats for Space Missions

5

SECURITY THREATS AGAINST SPACE
MISSIONS

CCSDS 350.1-G-1
March 2015

CCSDS was founded in 1982 by the major space agencies of the world, the CCSDS is a multi-
national forum for the development of communications and data systems standards for
spaceflight. 60+ standards published serving 500+ missions

Security Threats Against Space
Missions was developed to provide
mission planners with an overview on
threat assessment as well as the
common threats and threat sources
that exist for various categories of
civilian space missions.

http://public.ccsds.org/participation/member_agencies.aspx
http://cwe.ccsds.org/

Threats for Space Missions

6

SECURITY THREATS AGAINST SPACE
MISSIONS

CCSDS 350.1-G-1
March 2015

CCSDS was founded in 1982 by the major space agencies of the world, the CCSDS is a multi-
national forum for the development of communications and data systems standards for
spaceflight. 60+ standards published serving 500+ missions

Security Threats Against Space
Missions was developed to provide
mission planners with an overview on
threat assessment as well as the
common threats and threat sources
that exist for various categories of
civilian space missions.

http://public.ccsds.org/participation/member_agencies.aspx
http://cwe.ccsds.org/

Threats in Space

7

Applicable Threats to Space Missions Impacts Could Software Be Involved?

Data Corruption Modification of information

 System damage

Yes; SW attacks could result in data corruption

Ground Facility Physical Attack Loss of command, control and data No

Interception Loss of sensitive data No

Jamming Loss of Command telemetry link

 Loss of access to resources

No

Denial-of-Service Loss of access to resources Yes; SW DoS attacks are common and can affect

both ground, flight and web applications

Masquerade Potential to disrupt operations (uplink)

 Potential to receive false information

(downlink)

Yes; SW protections can be placed to prevent

Replay System damage (possible safety of life issues) Yes; SW protections can be placed to prevent

Software threats Undesirable events

 System damage

 Enable other threats (i.e. Jamming, DoS)

Yes

Unauthorized Access Disruption of operations

 System damage (possible safety of life

issues)

Yes; SW protections can be placed to prevent or

SW can be used to gain unauthorized access

Tainted Hardware Components Hidden, Malicious capabilities

 System instability

 System damage

 Undesirable System effects

No

Cybersecurity in the space domain
Isn’t ONLY an IT function
Security is a part of Mission Success

o Web sites/servers, email,
workstation patching, etc.

o CIO infrastructure focused

8

o Mission Targets / Enterprise Risk

• Software Security (COTS, FOSS, Custom, etc.)

• Network Layer (Routers, Firewalls, etc.)

• Computer Network Defense (IPS/IDS, Sensors,
Continuous Monitoring, etc.)

• Industrial Control Systems (ICS)

• Supply Chain…

o Multiple stakeholders (CIOs, Network Engrs, SW
Developers, Project Managers, etc.)

Must counteract the threat
landscape for Mission environments

with Defense in Depth

Custom SW – Gets Exploited!

9

Multiple vulnerabilities could adversely impact Mission Operations
(Architecture, SW, IT, etc.)
o Preventing vulnerabilities

– Levying requirements from the top in policy, contracts, etc.
• PPPs, A&A process, SW development, etc.

– During mission design/planning
• Designing security in
• Secure software development
• Rigorous mission assurance (SW Assurance, IV&V, etc.)
• Awareness, training, tooling

– Supply chain – know the parts you are building with…
• Hardware
• Software (i.e. COTS and Open Source)

o Discovering vulnerabilities
– Once vulnerabilities are introduced into operation – then what?

• Continuous monitoring
• Vulnerability assessments
• Penetration testing

Reducing SW Risk

10

Requirements…

• Examples of requirements government agencies may invoke
– DOD

• Program Protection & System Security Engineering

– NASA
• NPRs 2810 , 7150.2B, 7120.5E, and the SW Assurance

Standard/Handbook (under draft)

– NIST 800-53
• Example control for SW:

– SA-11 Developer Security Testing and Evaluation
– RA-5 Vulnerability Scanning

– European Space Agency (ESA) - (under draft)
• ESSB-ST-E-008 - Secure Software Engineering Std
• ESSB-HB-E-007 – Secure Software Engineering Handbook

• Other resources to help identify requirements
– Security Quality Requirements Engineering (SQUARE)
– Microsoft Security Development Lifecycle

11

http://www.acq.osd.mil/se/initiatives/init_pp-sse.html
http://nodis3.gsfc.nasa.gov/npg_img/N_PR_2810_001A_/N_PR_2810_001A_.pdf
http://nodis3.gsfc.nasa.gov/npg_img/N_PR_7150_002B_/N_PR_7150_002B_.pdf
https://foiaelibrary.gsfc.nasa.gov/_assets/doclibBidder/tech_docs/1. N_PR_7120_005E_.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
https://web.nvd.nist.gov/view/800-53/Rev4/control?controlName=SA-11
https://web.nvd.nist.gov/view/800-53/Rev4/control?controlName=RA-5
http://www.cert.org/cybersecurity-engineering/products-services/square.cfm?
https://www.microsoft.com/en-us/sdl/

Not Baking in Security

12

• Traditional cost of change curve depicts how
discovering defects last impacts cost

“Bake It In”

If Bug=Exploited
damage could be

more than monetary

Loss of Mission Obj(s)
Loss of Mission

Loss of Life

Secure software
development begins
where all software
begins!

Baking It In

13

Secure software is an
end-to-end development
concept, not patchwork

Secure Development

• Utilize Best Practices

– List is from NASA’s Secure Coding Portal

• Coding Standards (Ex. CERT C, C++ or JAVA Stds)

– Ex: Don’t use unsafe functions (Flawfinder)

• Integrate tools into development environment

– Code Analyzers (i.e. Klockwork, Fortify, Flexelint,
CodeSonar, Sonatype, BlackDuck, etc.)

– Great resource for identifying tools

• Report | Spreadsheet

14

Applies to all SW
development!!
Not just ground

systems

https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
http://www.dwheeler.com/flawfinder/
http://www.klocwork.com/products/insight
http://www8.hp.com/us/en/software-solutions/software-security/
http://www.gimpel.com/html/flex.htm
http://www.grammatech.com/codesonar
http://www.sonatype.com/
https://www.blackducksoftware.com/products/black-duck-hub
http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
http://www.acq.osd.mil/se/docs/P-5061-AppendixE-soar-sw-matrix-v9-mobility.xlsx

Secure Development (cont.)

• Use information from DHS:
– Common Weakness Enumeration (CWE), Common Vulnerabilities

and Exposures (CVE), and Common Attack Pattern Enumeration and
Classification (CAPEC)

– Plan for Defense in Depth and not solely on protective perimeter
• Historically developers depend/plan for Firewalls to protect vice designing

in SW
• Securing the development environment (i.e. prevent injecting of malicious

code)

• Training
– Free:

• FedVTE Ex: Software Assurance Executive Course (SAE)
• SAFECode
• Secure Coding and Standards Tutorial (NASA Only)

– Paid: (Ex: Cigitial, Pluralsight)

15

Applies to all SW
development!!
Not just ground

systems

https://cwe.mitre.org/
https://cve.mitre.org/
https://capec.mitre.org/
https://fedvte.usalearning.gov/
https://training.safecode.org/
https://www.safaribooksonline.com/self-registration/nasatutorials/
https://www.cigital.com/services/training/elearning/
https://www.pluralsight.com/search?q=security&categories=course

Not Baking in Security
Ex: Actual Ground Software
• Insecure random number

generator was used to generate
passphrases that control access to
VPNs and other network
resources

• Could enable someone to monitor
or interfere with a system and be
undetectable
– If this code was deployed with

weak symmetric keys, the
supposedly "secure" data-links
between these devices would be
vulnerable to a "man-in-the-
middle" attack.

• There were several instances
throughout the code
– Klockwork discovered these

during static code analysis

16

Resource Describing Math.random:
http://franklinta.com/2014/08/31/predicting-

the-next-math-random-in-java

Not Baking in Security
Ex: Actual Ground Software

• Code calls a generic exception handler

– Typically is done when a developer assumes
they can only get known types of exceptions

– However, depending on the source of the
exception (input stream for example) someone
can try to cause a different exception resulting
in unpredictable behavior (i.e. DoS)

– Also with a ground system, you want to fail-fast
• Catching and ignoring fatal exceptions makes a program

less robust since it will try to carry on as if nothing
happened in the worst of conditions

• Immediately report at its interface any failure

• Don't pretend like nothing happened, because it's going
to get worse

• Klockwork discovered these during static code
analysis

17

Not Baking in Security
Ex: Actual Ground Software
• Lacking the appropriate code in a finally block (java exception handling)

– Using something and then call a close, doesn’t mean it will actually close if an
exception is encountered either in the use or the close call

– A finally block helps assure proper closure and deallocation
– This can be for any type of resources (file, database, etc.)

• Resource leak could use up all resources, causing the system to become
unresponsive after excessive or continued use, reducing dependability
(i.e. DoS)

• Klockwork discovered these during static code analysis

18

Low Hanging Fruit
Unsafe Functions
• Stop using known unsafe functions and always do bounds checking

if you are copying to a buffer
– Even if you think you know what you are copying from and it’s limited,

defensive coding is best.

• Some samples of unsafe functions due to allowed writing with no
regard to buffer size

• Most of these are unsafe due to allowed writing with no regard to
buffer size
– strncpy, _iota, sscanf, & wcslen have safer _s varieties (ex. _iota_s)

that require a buffer size to be specified
• Resource: Security Development Lifecycle (SDL) Banned Function Calls
• Resource: Stack Overflow Post

• Free tool to help find unsafe functions - Flawfinder
19

memset
memcpy
strcat
strcmp
strcpy
strlen

sprintf
strncpy
_iota
sscanf
wcslen

https://msdn.microsoft.com/en-us/library/bb288454.aspx
http://stackoverflow.com/questions/6747995/a-complete-list-of-unsafe-string-handling-functions-and-their-safer-replacements
http://www.dwheeler.com/flawfinder/

Demo

• Demo Flawfinder

20

Low Hanging Fruit
CERT Rules

• For legacy code:
– MSC00-C. Compile cleanly at high warning levels

• The process of fixing compiler warnings will probably
quash some other vulnerabilities.

– ERR33-C. Detect and handle standard library
errors

• Include any program functions that give some kind of
error indication
– If a function returns some special value on error, such as

NULL, your calls to that function should always check its
return value

21

Low Hanging Fruit
CERT Rules (cont.)
• For new code

– ERR00-C. Adopt and implement a consistent and comprehensive error-handling policy

• This is where programs fail the most easily. They fail to check for errors because the developers
don't know what to do if an unexpected error occurs.

– MEM00-C. Allocate and free memory in the same module, at the same level of
abstraction

• A design issue, but not following it will get your code into hot water quickly.

– MEM12-C. Consider using a goto chain when leaving a function on error when using and
releasing resources

• More specifically, make sure your code frees resources even if errors occur.

• For both new and existing code: execute static code analysis
tools to determine weaknesses

• Free ones are a good place to start; See slide 14 for commercial ones

22

– Cppcheck

– Rosecheckers

– Splint

– Find Bugs

– RATS

– Flawfinder

– SWAMP

http://cppcheck.sourceforge.net/
http://sourceforge.net/projects/rosecheckers/
http://www.splint.org/
http://findbugs.sourceforge.net/
https://code.google.com/p/rough-auditing-tool-for-security/
http://www.dwheeler.com/flawfinder/
https://continuousassurance.org/

Info from DHS

CWE:
• Serves as a common language

for describing software security
weaknesses in architecture,
design, or code

• Provides a:
– Standard measuring stick for

software security tools targeting
these weaknesses

– Common baseline standard for
weakness identification,
mitigation, and prevention efforts

• Utilize CWE to better
understand, identify, fix, and
prevent weaknesses and
vulnerabilities

23

CAPEC:
• Community-developed list of common attack

patterns
• Comprehensive schema and classification

taxonomy
• International in scope

CVE:
• Identifies publicly known information

security vulnerabilities and assign them a
CVE_ID.

• Scored 1 to 10 on CVSS scale

Services sponsored by Department of Homeland Security and managed by Mitre

Taking into account attack pattern and any other factors to generate list of CWEs that are
critical. Tools report findings in CVEs (known) and CWEs (potential) -> Identify then Fix!

https://cwe.mitre.org/
https://capec.mitre.org/
https://cve.mitre.org/

CWEs & Ground Systems

• For NASA, research & analysis has been performed by the IV&V Program to
identify the Top 25 CWEs for Ground Systems

• The following categories are part of the formula for CWSS

24

Attack Surface Sub-score Environmental Sub-scoreBase Finding Sub-score

Ranking

Each factor in the category is
assigned a value. These values
are converted to associated
weights and a category sub-
score is calculated. The three
sub-scores are multiplied
together, which produces a
Common Weakness Scoring
System (CWSS) score. Higher the
score, higher it ranks.

Top 25 CWEs
Ground Systems v2.0

25

Rank CWE ID CWE Title

1 312 Cleartext Storage of Sensitive Information

2 88 Argument Injection or Modification

3 77 Improper Neutralization of Special Elements used

in a Command ('Command Injection')

4 23 Relative Path Traversal

5 73 External Control of File Name or Path

6 798 Use of Hard-coded Credentials

7 353 Missing Support for Integrity Check

8 732 Incorrect Permission Assignment for Critical

Resource

9 22 Improper Limitation of a Pathname to a

Restricted Directory ('Path Traversal')

10 78 Improper Neutralization of Special Elements used

in an OS Command ('OS Command Injection')

11 290 Authentication Bypass by Spoofing

12 20 Improper Input Validation

Rank CWE

ID

CWE Title

13 403 Exposure of File Descriptor to Unintended Control Sphere

('File Descriptor Leak')

14 314 Cleartext Storage in the Registry

15 835 Loop with Unreachable Exit Condition ('Infinite Loop')

16 833 Deadlock

17 764 Multiple Locks of a Critical Resource

18 421 Race Condition During Access to Alternate Channel

19 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer

20 318 Cleartext Storage of Sensitive Information in Executable

21 242 Use of Inherently Dangerous Function

22 497 Exposure of System Data to an Unauthorized Control Sphere

23 772 Missing Release of Resource after Effective Lifetime

24 681 Incorrect Conversion between Numeric Types

25 192 Integer Coercion Error

Rankings are
currently under
peer review.

Version 2.0 of Top
25 now includes
Common Attack
Patterns

https://cwe.mitre.org/data/definitions/312.html
https://cwe.mitre.org/data/definitions/88.html
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/23.html
https://cwe.mitre.org/data/definitions/73.html
https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/353.html
https://cwe.mitre.org/data/definitions/732.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/290.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/403.html
https://cwe.mitre.org/data/definitions/314.html
https://cwe.mitre.org/data/definitions/835.html
https://cwe.mitre.org/data/definitions/833.html
https://cwe.mitre.org/data/definitions/764.html
https://cwe.mitre.org/data/definitions/421.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/318.html
https://cwe.mitre.org/data/definitions/242.html
https://cwe.mitre.org/data/definitions/497.html
https://cwe.mitre.org/data/definitions/772.html
https://cwe.mitre.org/data/definitions/681.html
https://cwe.mitre.org/data/definitions/192.html

Demo

• Demo Fortify w/ CWE Reporting

26

Origin Analysis:
Secure SW Supply Chain
• From Institute for Defense Analyses (IDA) SOAR Report – “Origin analyzers

are tools that analyze source code, bytecode, or binary code to determine
their origins (e.g., pedigree and version).”

• Origin Analysis can be used to reduce the software supply chain risk

– Identifies CVEs that may be present in re-used open source libraries/code

– Also identifies potentially licensing issues

• Examples of tools

– Sonatype
• Binary scanner; Works best on JAVA

– Black Duck HUB
• Provides binary and source tree scanning; Support C/C++ as well has JAVA

– OWASP Dependency Check
• Currently Java, .NET, Ruby, Node.js, and Python projects are supported; additionally, limited

support for C/C++ projects is available for projects using CMake or autoconf.

27

http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
http://www.sonatype.com/
https://www.blackducksoftware.com/products/black-duck-hub
https://www.owasp.org/index.php/OWASP_Dependency_Check

Examples from Ground
Systems

28

Vulnerability Affected File Mitigation

CVE-2014-0003: Allows remote

attackers to execute arbitrary Java

methods via a crafted message.

camel-core-

1.5.4.0-fuse.jar

Upgrade Jar file to 2.11.4 or newer

CVE-2009-4611: Allow remote

attackers to modify a window's

title, or possibly execute arbitrary

commands or overwrite files, via an

HTTP request

jetty-6.1.14.jar;

jetty-util-

6.1.14.jar

Upgrade Jar file to 6.1.25 or newer

CVE-2011-2730: Allows remote

attackers to obtain sensitive

information

spring-web-

2.5.5.jar

Upgrade Jar file to 3.2.9 or newer

CVE-2014-0107: Allows remote

attackers to bypass expected

restrictions and load arbitrary

classes or access external resources

via a crafted messages

xsltc.jar;

xalan.jar

Upgrade Jar file to 2.7.2 or newer

CVE-2013-4002: Allows remote

attackers to affect availability via

unknown vectors.

Xerces2.6.2_xer

cesImpl.jar;

xercesImpl.jar

N/A (new versions exist but also

contain vulnerabilities).

Implement host based restrictions

(i.e., IP tables, file integrity

detection, Host based IDS)

CVE-2010-1244: Allows remote

attackers to hijack the

authentication of unspecified

victims

activemq-web-

5.2.0.2-fuse.jar

Upgrade Jar file to 5.9.0 or newer

Demo

• Demonstrate Sonatype

29

Example: Heartbleed
What is it?
• OpenSSL is an open-source implementation of the SSL and TLS protocols.

The core library, written in the C programming language, implements the
basic cryptographic functions and provides various utility functions.
Wrappers allowing the use of the OpenSSL library in a variety of computer
languages are available.

• Its free!

• As of 2014 two thirds of all webservers use it.

• From Heartbeat to Heartbleed

– Defect could be used to reveal up to 64 kilobytes of the application's
memory with every heartbeat

– The affected versions of OpenSSL allocate a memory buffer for the
message to be returned based on the length field in the requesting
message, without regard to the size of actual payload in that message.

30
Reference: (http://en.wikipedia.org/wiki/Heartbleed)

http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Transport_Layer_Security
http://en.wikipedia.org/wiki/Library_(computer_science)
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Kilobyte
http://en.wikipedia.org/wiki/Heartbeat_(computing)
http://en.wikipedia.org/wiki/Heartbleed

Reference: (http://en.wikipedia.org/wiki/Heartbleed)

31

Example: Heartbleed
How does it work?

http://en.wikipedia.org/wiki/Heartbleed

Example: Heartbleed
How do I find it?
• One way to find it would be to execute Origin Analyzer across source

tree that includes your open source code as well

32

Demo

• Demonstrate BlackDuck Hub

33

• It is difficult to determine what types of tools and techniques
exist for analyzing software, and where their use is appropriate.

– Institute for Defense Analyses (IDA) created the SOAR report and matrix to
assist

• NASA has slight modified version to include tool names <-> contact
brandon.t.bailey@nasa.gov

– Ideally developers will institute static source code and binary analysis to assist
in identifying weaknesses

• Development activities should include analyzing source code before it is compiled to
detect coding errors, non-secure coding constructs, and other indicators of security
vulnerabilities or weaknesses that are detectable at the source code level

– Developers should perform software evaluations throughout the software
development lifecycle to address potential security vulnerabilities early in the
process

– Use research from NSA’s CAS and Institute for Defense Analyses to establish a
blend of tools that will provide the most value

34

Finding Vulnerabilities in SW

http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
http://www.acq.osd.mil/se/docs/P-5061-AppendixE-soar-sw-matrix-v9-mobility.xlsx
mailto:brandon.t.bailey@nasa.gov
http://samate.nist.gov/docs/CAS_2011_SA_Tool_Method.pdf
http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf

Demo

• Demo SOAR Spreadsheet

35

Break
• Tutorial E Part 1:

– Section 1: Cyber Threat – Who, What and Why

– Section 2: Defense-In-Depth

– Section 3: Secure Software Engineering Steps

– Section 4: Errors, Weaknesses and Exploits

– Section 5: Threat Modeling

– Section 6: Testing

– Section 7: Resources

• Tutorial E Part 2:
– Section 1: Ground Systems Overview

– Section 2: Secure Software Development

– Section 3: Defense in Depth for Ground Systems

– Section 4: What Now?

36

Defense in Depth (DiD)

• Secure software development is extremely important but DiD is key to
protecting mission assets

• In Mission environments, DiD can be difficult

– Older architectures/technology

• Unsupported operating systems, older hardware, etc.

– Shared architectures/technology

• Mission X doesn’t own all layers of the defense

• Sometimes vulnerable software depends on something that is out of their
control

– Do you trust the Network Engineers? Should you?

– Do you control the host level configuration?

37

Compounding Problem

• Work with Network Engineers to implement enclaves/network
zoning and/or encryption
– Build a “zero trust” architecture

• Vulnerabilities injected by Mission X may affect Mission Y

– Network layer encryption

• Understand and eliminate pivot points
– From networking perspective, software security perspective, host level

security

• Increase attack depth or eliminate all together

38

Utilize tools like RedSeal Networks, Skybox, etc. to
understand network topology and threat exposures

Example SW Impacting Mission

39

Exploits Custom S/W

Establishes persistent
foothold on Mission

Asset

Mission
Asset

Signs onto Rogue Wifi,
Click Phishing Link, Etc.
Then Signs onto VPN

Often Times F/W Rules
Allow Access

Directly to Assets on
Mission Networks

Mission
Control

Launch Attacks
(DoS, Brute Force,
Extract Data, etc.)

This example will depict how vulnerable software within a
network can potentially impact critical mission assets

Developers can’t assume protection from Firewall. Need
“Defense in Depth”. Can’t assume if knocking on door,
that they are supposed to be there.

Sample Exposure

40

Demonstrates that a pathway exists from the VPN Landing Zone,
Internet, Or Untrusted to a vulnerable piece of software

Vulnerable SW

VPN Landing Zone,
Internet, Or
“Untrusted”

Sample Exposure

41
Demonstrates all outbound access paths (Pivoting) from the vulnerable asset

Vulnerable SW

Sample Exposure

42Demonstrates potential vulnerabilities that could be exploited from this server

Vulnerable Asset
“Pivot Point”

Mission Control that
“wasn’t” network

accessible from VPN,
Untrusted, Etc.

Attack Depth = 1

Defense in Depth (DiD) (cont.)

• Example depicted how vulnerable software in a network
that doesn’t employ zero-trust architecture can expose
mission assets

• Network encryption is another layer of defense that
provides protection
– Protocol machinery below the Network Layer including the

Network Layer protocol (e.g., IP, Data Link, Physical) is exposed

• Data Link Layer services can provide additional protection
– Upper-layer protocols become opaque
– Data Link Layer security may be useful when a threat

assessment indicates a heightened risk of exposure of the
underlying protocols across an RF link or when traffic analysis is
a concern.

– Data link layer is usually under complete control of the Mission
and vulnerabilities within the shared architecture can be
mitigated by added this layer of defense

43

Data Link Layer

• DiD: Network layer unsecure/non-encrypted or frame data is
sensitive post network layer (i.e. RF)

• Secure at data link layer
– Data Link Layer security services may be able to provide all of the mission’s

security needs, which could include authentication, integrity, and
confidentiality, but only on the specific link over which the security services
are provided.

44

Secure Environment

Space-Link
Extension
Protocol

Space
Link

?

• Without protection:

 Spacecraft are vulnerable to spoofing
attacks from rogue ground stations

 Telemetry could be received and processed
by rogue ground stations

 …

TC
Forging

TM
Eaves=

dropping

Securing Space Data Link:
Space-Link Threat Analysis

45

• CCSDS realized that a standardized protocol to integrate
security into space missions with a simple network topology
could be proposed at the data-link layer
 Space Data-Link Layer Security Protocol (SDLS)

• Space Data Link Security (SDLS) Blue Book Published
September 2015
• Protections implemented via software!

CCSDS Space-Link Security

46

http://public.ccsds.org/publications/archive/355x0b1.pdf

SDLS Capabilities

SCC/MCC
G/S

P/L TM User

Space Packet

Protocol
SCPS-NP

TC Synch and

channel coding

TM Synch and

channel coding

RF and Modulations Systems

Network Layer

Data Link Layer

Physical Layer

TC Space Data

Link protocol

TM Space Data

Link protocol

Secured TM/TC Protocol

AOS Space Data

Link protocol

47

SDLS in a Nutshell

• SDLS supports two main security services

1. Authentication only – providing authentication and integrity

2. Authenticated encryption – Adding confidentiality

48

SDLS Baseline Mode

• To promote multi-mission implementations and interoperability:

 3 recommended profiles have been defined covering security requirements of most
missions w.r.t. TC, TM and AOS links

• Baseline mode for TC

 Authentication only, using AES/CMAC, 128-bit key, 32-bit ARC, 128-bit MAC (22-
octet overhead (8%))

• Baseline mode for TM and AOS

 Authenticated encryption, using AES/GCM, 128-bit key, 96-bit initialization vector,
no seq. # needed, 128-bit MAC (30-octet overhead (2.5%))

(bits)

INITIALIZATION

VECTOR

SECURITY HEADER

0

SECURITY

PARAMETER

INDEX

16

PAD

LENGTH

0

SEQUENCE NUMBER

32

(bits)

INITIALIZATION VECTOR

SECURITY HEADER

96

SECURITY

PARAMETER

INDEX

16

PAD

LENGTH

0

SEQUENCE

NUMBER

0

49

What To Do Now?

• In mission environments (esp. mission with extended ops) you
may not be able to patch code; therefore for vulnerable code
that can’t be fixed the “host” owner can

– Harden the servers and hosts by disabling all ports,
protocols and services that are not explicitly required for
operations

– Install file integrity software (i.e., TripWire, Aide) to alert to
changes made to the file system

– Install and finely tune a host-based IDS that will alert to any
anomalous traffic

– Utilize IP tables/IPFilters to limit data flow to specific IP
addresses, ports, protocols and services

50

What To Do Now?

• To prevent future deployments of vulnerable code
– Participate in secure code training

• Educate developers, PMs, Authorizing Officials, Security Personnel (ISSO, ISO, etc.)
on the importance of eliminating vulnerable code from architecture

– Pick the low hanging fruit (see slides 20/21)

– Utilize Best Practices and Secure Coding Standards
• Ex: Best Practices from NASA’s Secure Coding Portal

• Ex: Coding Standards (Ex. CERT C, C++ or JAVA Stds)

– Institute static source code and binary analysis to assist in identifying
weaknesses - https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

• Apply the tools within the development activity (i.e., as an add-on to the developer's
Integrated Development Environment (IDE)) as well as in the Independent Test and
Evaluation (IT&E) activities

• Top 25 CWEs for Ground Systems

– Use NASA’s or create you own based on your mission and threats

51

https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

Help Assure
Ground System Security

• Expand independent assessments of ground
systems for vulnerabilities using latest
technologies
– Perform “Red” and “Blue” Teams across the entire

ground system – End to End

• Promote integration of security early in
acquisition and development life-cycles

• Integrate cyber security activities to
dependably Know, Prevent, Detect, Respond,
and Recover

52

Backup Slides

53

Links
Slide 5/6:

• major space agencies of the world - http://public.ccsds.org/participation/member_agencies.aspx

• multi-national forum - http://cwe.ccsds.org/

Slide 11:

• Program Protection & System Security Engineering - http://www.acq.osd.mil/se/initiatives/init_pp-sse.html

• 2810 - http://nodis3.gsfc.nasa.gov/npg_img/N_PR_2810_001A_/N_PR_2810_001A_.pdf

• 7150.2B - http://nodis3.gsfc.nasa.gov/npg_img/N_PR_7150_002B_/N_PR_7150_002B_.pdf

• 7120.5E - https://foiaelibrary.gsfc.nasa.gov/_assets/doclibBidder/tech_docs/1. N_PR_7120_005E_.pdf

• 800-53 - http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf

• SA-11 - https://web.nvd.nist.gov/view/800-53/Rev4/control?controlName=SA-11

• RA-5 - https://web.nvd.nist.gov/view/800-53/Rev4/control?controlName=RA-5

• Security Quality Requirements Engineering (SQUARE) - http://www.cert.org/cybersecurity-engineering/products-services/square.cfm?

• Microsoft Security Development Lifecycle - https://www.microsoft.com/en-us/sdl/

Slide 14:

• C - https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard

• C++ - https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

• JAVA - https://www.securecoding.cert.org/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java

• Klockwork - http://www.klocwork.com/products/insight

• Fortify - http://www8.hp.com/us/en/software-solutions/software-security/

• Flexelint - http://www.gimpel.com/html/flex.htm

• CodeSonar - http://www.grammatech.com/codesonar

• Sonatype - http://www.sonatype.com/

• BlackDuck - https://www.blackducksoftware.com/products/black-duck-hub

• Report - http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf

• Spreadsheet - http://www.acq.osd.mil/se/docs/P-5061-AppendixE-soar-sw-matrix-v9-mobility.xlsx

Slide 15:

• Common Weakness Enumeration (CWE) - https://cwe.mitre.org/

• Common Vulnerabilities and Exposures (CVE) - https://cve.mitre.org/

• Common Attack Pattern Enumeration and Classification (CAPEC) - https://capec.mitre.org/

• FedVTE - https://fedvte.usalearning.gov/

• SAFECode - https://training.safecode.org/

• Secure Coding and Standards Tutorial - https://www.safaribooksonline.com/self-registration/nasatutorials/

• Cigitial - https://www.cigital.com/services/training/elearning/

• Pluralsight - https://www.pluralsight.com/search?q=security&categories=course
54

http://public.ccsds.org/participation/member_agencies.aspx
http://cwe.ccsds.org/
http://www.acq.osd.mil/se/initiatives/init_pp-sse.html
http://nodis3.gsfc.nasa.gov/npg_img/N_PR_2810_001A_/N_PR_2810_001A_.pdf
http://nodis3.gsfc.nasa.gov/npg_img/N_PR_7150_002B_/N_PR_7150_002B_.pdf
https://foiaelibrary.gsfc.nasa.gov/_assets/doclibBidder/tech_docs/1. N_PR_7120_005E_.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
https://web.nvd.nist.gov/view/800-53/Rev4/control?controlName=SA-11
https://web.nvd.nist.gov/view/800-53/Rev4/control?controlName=RA-5
https://web.nvd.nist.gov/view/800-53/Rev4/control?controlName=RA-5
http://www.cert.org/cybersecurity-engineering/products-services/square.cfm?
https://www.microsoft.com/en-us/sdl/
https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
http://www.klocwork.com/products/insight
http://www8.hp.com/us/en/software-solutions/software-security/
http://www.gimpel.com/html/flex.htm
http://www.grammatech.com/codesonar
http://www.sonatype.com/
https://www.blackducksoftware.com/products/black-duck-hub
http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
http://www.acq.osd.mil/se/docs/P-5061-AppendixE-soar-sw-matrix-v9-mobility.xlsx
http://www.acq.osd.mil/se/docs/P-5061-AppendixE-soar-sw-matrix-v9-mobility.xlsx
https://cwe.mitre.org/
https://cve.mitre.org/
https://capec.mitre.org/
https://fedvte.usalearning.gov/
https://training.safecode.org/
https://training.safecode.org/
https://www.safaribooksonline.com/self-registration/nasatutorials/
https://www.cigital.com/services/training/elearning/
https://www.pluralsight.com/search?q=security&categories=course

Links (cont.)
Slide 16:

• http://franklinta.com/2014/08/31/predicting-the-next-math-random-in-java

Slide 19:

• Security Development Lifecycle (SDL) Banned Function Calls - https://msdn.microsoft.com/en-us/library/bb288454.aspx

• Stack Overflow Post - http://stackoverflow.com/questions/6747995/a-complete-list-of-unsafe-string-handling-functions-and-their-safer-
replacements

• Flawfinder - http://www.dwheeler.com/flawfinder/

Slide 22:

• Cppcheck - http://cppcheck.sourceforge.net/

• Rosecheckers - http://sourceforge.net/projects/rosecheckers/

• Splint - http://www.splint.org

• RATS - https://code.google.com/p/rough-auditing-tool-for-security

• Flawfinder - http://www.dwheeler.com/flawfinder

• SWAMP - https://continuousassurance.org

• Find Bugs - http://findbugs.sourceforge.net/

Slide 23:

• CWE - https://cwe.mitre.org/

• CVE - https://cve.mitre.org/

• CAPEC - https://capec.mitre.org/

Slide 27:

• SOAR Report - http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf

• Sonatype - http://www.sonatype.com/

• Black Duck HUB - https://www.blackducksoftware.com/products/black-duck-hub

• OWASP Dependency Check - https://www.owasp.org/index.php/OWASP_Dependency_Check

Slide 30/31:

• http://en.wikipedia.org/wiki/Heartbleed

55

https://msdn.microsoft.com/en-us/library/bb288454.aspx
http://stackoverflow.com/questions/6747995/a-complete-list-of-unsafe-string-handling-functions-and-their-safer-replacements
http://www.dwheeler.com/flawfinder/
http://cppcheck.sourceforge.net/
http://sourceforge.net/projects/rosecheckers/
http://www.splint.org/
https://code.google.com/p/rough-auditing-tool-for-security/
http://www.dwheeler.com/flawfinder/
https://continuousassurance.org/
https://continuousassurance.org/
http://findbugs.sourceforge.net/
https://cwe.mitre.org/
https://cve.mitre.org/
https://capec.mitre.org/
http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
http://www.sonatype.com/
https://www.blackducksoftware.com/products/black-duck-hub
https://www.owasp.org/index.php/OWASP_Dependency_Check
http://en.wikipedia.org/wiki/Heartbleed

Links (cont.)
Slide 34:

• report - http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf

• matrix - http://www.acq.osd.mil/se/docs/P-5061-AppendixE-soar-sw-matrix-v9-mobility.xlsx

• NSA’s CAS - http://samate.nist.gov/docs/CAS_2011_SA_Tool_Method.pdf

• Institute for Defense Analyses - http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf

Slide 46:

• Blue Book - http://public.ccsds.org/publications/archive/355x0b1.pdf

Slide 51:

• C - https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard

• C++ - https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

• JAVA - https://www.securecoding.cert.org/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java

• https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

56

http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
http://www.acq.osd.mil/se/docs/P-5061-AppendixE-soar-sw-matrix-v9-mobility.xlsx
http://samate.nist.gov/docs/CAS_2011_SA_Tool_Method.pdf
http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
http://public.ccsds.org/publications/archive/355x0b1.pdf
https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

Best Practices from NASA’s
Secure Coding Portal
1. Validate input. Validate input from all untrusted data sources. Proper input validation can eliminate the

vast majority of software vulnerabilities. Be suspicious of most external data sources, including
command line arguments, network interfaces, environmental variables, and user controlled files.

2. Heed compiler warnings. Compile code using the highest warning level available for your compiler and
eliminate warnings by modifying the code.

3. Use Code Analysis Tools. Use static and dynamic analysis tools to detect and eliminate additional
security flaws. Dynamic analysis is the testing and evaluation of an application during runtime. Static
analysis is the testing and evaluation of an application by examining the code without executing the
application. Many software defects that cause memory and threading errors can be detected both
dynamically and statically. The two approaches are complementary because no single approach can find
every error. The primary advantage of dynamic analysis: It reveals subtle defects or vulnerabilities
whose cause is too complex to be discovered by static analysis. Dynamic analysis can play a role in
security assurance, but its primary goal is finding and debugging errors. The primary advantage of static
analysis: It examines all possible execution paths and variable values, not just those invoked during
execution. Thus static analysis can reveal errors that may not manifest themselves until weeks, months
or years after release. This aspect of static analysis is especially valuable in security assurance, because
security attacks often exercise an application in unforeseen and untested ways.

4. Use Binary Analysis Tools. Binary analysis creates a behavioral model by analyzing an application's
control and data flow through executable machine code – the way an attacker sees it. Unlike source
code tools, this approach accurately detects issues in the core application and extends coverage to
vulnerabilities found in 3rd party libraries, pre-packaged components, and code introduced by compiler
or platform specific interpretations.

57

Best Practices from NASA’s
Secure Coding Portal

5. Architect and design for security policies. Create software architecture and design your software to implement
and enforce security policies. For example, if your system requires different privileges at different times,
consider dividing the system into distinct intercommunicating subsystems, each with an appropriate privilege
set.

6. Keep it simple. Keep the design as simple and small as possible. Complex designs increase the likelihood that
errors will be made in their implementation, configuration, and use. Additionally, the effort required to achieve
an appropriate level of assurance increases dramatically as security mechanisms become more complex.

7. Default deny. Base access decisions on permission rather than exclusion. This means that, by default, access is
denied and the protection scheme identifies conditions under which access is permitted.

8. Adhere to the principle of least privilege. Every process should execute with the least set of privileges
necessary to complete the job. Any elevated permission should be held for a minimum time. This approach
reduces the opportunities an attacker has to execute arbitrary code with elevated privileges.

9. Sanitize data sent to other systems. Sanitize all data passed to complex subsystems such as command shells,
relational databases, and commercial off-the-shelf (COTS) components. Attackers may be able to invoke unused
functionality in these components through the use of SQL, command, or other injection attacks. This is not
necessarily an input validation problem because the complex subsystem being invoked does not understand the
context in which the call is made. Because the calling process understands the context, it is responsible for
sanitizing the data before invoking the subsystem.

10. Practice defense in depth. Manage risk with multiple defensive strategies, so that if one layer of defense turns
out to be inadequate, another layer of defense can prevent a security flaw from becoming an exploitable
vulnerability and/or limit the consequences of a successful exploit. For example, combining secure
programming techniques with secure runtime environments should reduce the likelihood that vulnerabilities
remaining in the code at deployment time can be exploited in the operational environment.

58

Best Practices from NASA’s
Secure Coding Portal
11. Use effective quality assurance techniques. Good quality assurance techniques can be effective in

identifying and eliminating vulnerabilities. Fuzz testing, penetration testing, and source code audits
should all be incorporated as part of an effective quality assurance program. Independent security
reviews can lead to more secure systems. External reviewers bring an independent perspective; for
example, in identifying and correcting invalid assumptions.

12. Adopt a secure coding standard. Develop and/or apply a secure coding standard for your target
development language and platform.

13. Define security requirements. Identify and document security requirements early in the development
life cycle and make sure that subsequent development artifacts are evaluated for compliance with those
requirements. When security requirements are not defined, the security of the resulting system cannot
be effectively evaluated.

14. Model threats. Use threat modeling to anticipate the threats to which the software will be subjected.
Threat modeling involves identifying key assets, decomposing the application, identifying and
categorizing the threats to each asset or component, rating the threats based on a risk ranking, and
then developing threat mitigation strategies that are implemented in designs, code, and test cases.

15. Don't trust services. Many organizations utilize the processing capabilities of third party partners, who
more than likely have differing security policies and posture than you. It is unlikely that you can
influence or control any external third party, whether they are home users or major suppliers or
partners. Therefore, implicit trust of externally run systems is not warranted. All external systems should
be treated in a similar fashion.

59

Best Practices from NASA’s
Secure Coding Portal
16. Separation of duties. A key fraud control is separation of duties. For example, someone who requests a

computer cannot also sign for it, nor should they directly receive the computer. This prevents the user
from requesting many computers, and claiming they never arrived. Certain roles have different levels of
trust than normal users. In particular, administrators are different to normal users. In general,
administrators should not be users of the application.

17. Software Supply Chain. IT managers should create and preserve a bill of materials, or a list of
ingredients, for the components used in a given piece of software. The complexities and
interdependencies of the IT ecosystem require software suppliers to not only be able to demonstrate
the security of products they produce, but also evaluate the integrity of products they acquire and use.
Ultimately this should lead to greater confidence through integrity checks incorporated in a defined
secure development lifecycle.

18. Avoid security by obscurity. Security through obscurity is a weak security control, and nearly always
fails when it is the only control. This is not to say that keeping secrets is a bad idea, it simply means that
the security of key systems should not be reliant upon keeping details hidden. For example, the security
of an application should not rely upon knowledge of the source code being kept secret. The security
should rely upon many other factors, including reasonable password policies, defense in depth, business
transaction limits, solid network architecture, and fraud and audit controls. A practical example is Linux.
Linux's source code is widely available, and yet when properly secured, Linux is a hardy, secure and
robust operating system.

19. Fix security issues correctly. Once a security issue has been identified, it is important to develop a test
for it, and to understand the root cause of the issue. When design patterns are used, it is likely that the
security issue is widespread amongst all code bases, so developing the right fix without introducing
regressions is essential. 60Back

