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I. PRD Risk Title: Risk of Acute (In-flight) and Late Central Nervous System Effects from 1 

Radiation Exposure 2 
 3 

       Possible acute and late risks to the central nervous system (CNS) from galactic cosmic rays 4 

(GCR) and solar particle events (SPE) are concerns for human exploration of space. Acute CNS 5 

risks may include: altered cognitive function, reduced motor function, and behavioral changes, all 6 

of which may affect performance and human health. Late CNS risks may include neurological 7 

disorders such as Alzheimer’s disease (AD), dementia and premature aging. Although detrimental 8 

CNS changes are observed in humans treated with high-dose radiation (e.g., gamma rays and 9 

protons) for cancer and are supported by experimental evidence showing neurocognitive and 10 

behavioral effects in animal models, the significance of these results on the morbidity to astronauts 11 

has not been elucidated. There is a lack of human epidemiology data on which to base CNS risk 12 

estimates; therefore, risk projection based on scaling to human data, as done for cancer risk, is not 13 

possible for CNS risks. Research specific to the spaceflight environment using animal and cell 14 

models must be compiled to quantify the magnitude of CNS changes in order to estimate this risk 15 

and to establish validity of the current permissible exposure limits (PELs). In addition, the impact 16 

of radiation exposure in combination with individual sensitivity or other space flight factors, as 17 

well as assessment of the need for biological/pharmaceutical countermeasures, will be considered 18 

after further definition of CNS risk occurs. 19 

 20 

II. Executive Summary  21 
 22 

The possible acute and late risks to the CNS from GCR and SPEs are a documented concern 23 

for human exploration of our solar system (NAS 1973; NAS-NRC 1996; NCRP 2006; NAS 2008; 24 

NRC 2008; NCRP 2014). In the past, the risks to the CNS in adults exposed to low to moderate 25 

doses of ionizing radiation (0 to 2 gray (Gy), where 1 Gy = 100 rad or 1 Joule absorbed per kg) 26 

have not been a major consideration, as this is the typical dose fraction used in radiotherapy and 27 

does not produce widespread cell killing or frank tissue degradation. However, the heavy ion 28 

component of space radiation presents distinct biophysical challenges to cells and tissues 29 

compared to artificial terrestrial forms of radiation. Soon after the discovery of cosmic rays, the 30 

concern for CNS risks originated with the prediction of the light flash phenomenon from single 31 

high charge and energy (HZE) nuclei traversals of the retina (Tobias 1952), which was confirmed 32 

by the Apollo astronauts. HZE nuclei are capable of producing a column of heavily irradiated and 33 

potentially damaged cells, or a microlesion, along their path through tissues, raising the concern 34 

over serious impacts on the CNS (Todd 1989, 1986).  In recent years, other concerns have arisen 35 

with the discovery of neurogenesis, new regulatory pathways, improved mapping of neuronal 36 

pathways, new functional molecular assemblies in the CNS, and their vulnerability to HZE nuclei 37 

in experimental models of the CNS. 38 

Human epidemiology is used as a basis for risk estimation for cancer, acute radiation risks, 39 

and cataracts. However, this approach is not viable for estimating CNS risks from space radiation 40 

because there are no human data for low-linear energy transfer (LET) radiation with which to 41 

develop a quantitative scaling approach for space radiation, and HZE particles likely produce 42 

qualitatively different CNS effects compared to X rays or gamma-rays. At doses above a few Gy, 43 

detrimental CNS changes occur in humans treated with radiation (such as gamma rays and protons) 44 

for cancer. Here, local treatment doses of 50 Gy are typical, which is well above the exposures in 45 

space even if a large SPE were to occur. Thus, of the four categories of space radiation risks 46 
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(cancer, CNS, degenerative, and acute radiation syndromes), the CNS risk relies most extensively 47 

on experimental data in animals for its evidence base. Understanding and mitigating CNS risks 48 

requires a vigorous research program that draws on basic understanding gained from cellular and 49 

animal models and includes the organization of radiation-induced pathophysiological effects 50 

according to adverse outcome pathways linked to known diseases and the development of 51 

approaches to extrapolate risks and the potential benefits of countermeasures for astronauts.  52 

Many experimental studies using heavy ion beams simulating space radiation provide 53 

constructive evidence of the CNS risks from space radiation, although the studies are limited by 54 

the small number of GCR particles considered and the restriction of past studies to rodent models, 55 

which are only partially reflective of the human brain. First, exposure to HZE nuclei at low doses 56 

(10-50 cGy) has been demonstrated to induce neurocognitive deficits in several mouse and rat 57 

behavioral paradigms. Exposures to equitoxic doses in excess of 2 Gy of low-LET radiation (e.g., 58 

gamma rays and X-rays) do not necessarily show similar effects. Performance deficits therefore 59 

have been demonstrated at doses similar to those expected for design reference Mars missions (<1 60 

Gy). The threshold for performance deficits following exposure to HZE nuclei depends on both 61 

the physical characteristics of the particles, strain, sex, age at exposure, and post-irradiation 62 

evaluation time. Second, exposure to HZE disrupts neurogenesis in the hippocampal dentate gyrus 63 

(DG) of rodents at low doses (<1 Gy), exhibiting a significant dose-related reduction of new 64 

neurons and oligodendrocytes in the subgranular zone (SGZ) correlated with increases in numbers 65 

of activated microglia.  Neurogenesis contributes to hippocampal memory-related functions.  66 

Third, reactive oxygen and nitrogen species (ROS/RNS) in neuronal precursor cells arise following 67 

exposure to charged particles at low doses (<10 cGy).  Their levels rise more rapidly after high-68 

LET radiation exposure in vitro and in vivo and remain elevated for several months.  In mutants 69 

with elevated or reduced antioxidant enzyme levels, multiple neurological endpoints show 70 

corresponding improvements and impairments after irradiation.  Antioxidants and anti-71 

inflammatory agents could potentially be used to mitigate adverse changes. Fourth, 72 

neuroinflammatory markers are elevated following exposure to HZE nuclei and protons but 73 

generally require doses > 1 Gy.  Fifth, a variety of new studies show that persistent reductions in 74 

neuron arborization and synapse number (dendritic spines) may result from doses of HZE below 75 

50 cGy.  Sixth, electrophysiological properties of individual neurons and functionally integrated 76 

populations of neurons and support cells show impairments below 1 Gy of protons and HZE.  77 

Finally, studies using transgenic mice predisposed to developing pathologies reflective of AD 78 

show that low doses of HZE may accelerate the onset of such pathologies and related molecular 79 

biomarkers.  80 

Research with animal models irradiated with HZE nuclei has shown that important changes 81 

to the CNS occur with the dose levels of concern to NASA. However the operational significance 82 

of these results on the performance or morbidity of astronauts has not been established. One classic 83 

model of late tissue effects (Rubin and Casarett 1968) suggests that significant effects will occur 84 

at lower doses, but with increased latency.  It should be noted that the majority of studies to date 85 

have been carried out with relatively small numbers of animals (N≤10 per treatment group) and 86 

short post-irradiation times (≤ 90 days); therefore, dose threshold effects (if any) at the lowest 87 

doses may not yet have been detected.  Extrapolation of space radiation effects in animals to 88 

humans will be a challenge for space radiation research and may be limited by the population sizes 89 

and time course of animal studies.  Another important limitation of studies using charged particles 90 

is the lack of dose protraction to more closely match the steady low dose rate of the space 91 

environment; however, some recent studies have begun to address this issue with dose 92 
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fractionation over times on the order of 1 week.  The NASA Space Radiation Laboratory (NSRL) 93 

is limited to particles of energy 1 GeV/n, which is the median energy of GCR particles, but ongoing 94 

equipment upgrades will soon extend this to 1.5 GeV/n (Slaba et al. 2015).  So, currently, the 95 

effects of 50% of the GCR HZE particles of highest energy have not been directly measured.  96 

Similarly, the space environment is characterized by a complex mixture of particles and energies 97 

unlike the single-ion, single-energy experiments typically carried out at NSRL.  Technical 98 

upgrades are now being implemented to enable a limited simulation of the GCR environment using 99 

multiple ions in rapid succession to replicate the fluence and LET characteristics of the natural 100 

radiation field.  An approach to extrapolate existing observations to possible GCR environment-101 

induced cognitive and performance degradation or late CNS effects in astronauts has not been 102 

discovered.  However, organizing radiation-induced changes into adverse outcome pathways 103 

reflective of pathologies occurring in humans and guided by new approaches in systems biology 104 

may offer exciting tools to address this challenge. Recently, 8 knowledge gaps reflecting human 105 

CNS morbidities have been identified to guide projection of CNS risks.  New approaches to risk 106 

assessment tuned to CNS properties and responses, rather than carcinogenesis and mortality 107 

criteria, may be needed to develop space radiation risk projection models of the CNS.  108 

 109 

III. Introduction 110 
 111 

Both GCR and SPEs are of concern for CNS risks. The major GCR are composed of protons, 112 

helium nuclei, and HZE nuclei with a broad energy spectra of interest ranging from a few 10s of 113 

MeV/n to above 10,000 MeV/n, with a median energy of about 1 GeV/n. Secondary particles 114 

produced through nuclear reaction in shielding and tissue, including neutrons, protons, helium 115 

nuclei, mesons, and gamma-rays, are also a concern. In interplanetary space, a GCR organ dose 116 

and dose equivalent of more than 0.2 Gy and 0.6 Sv per year, respectively, are expected (Cucinotta 117 

et al. 2003, 2006, 2014). The high energies of GCR allow them to penetrate to 100s of cm through 118 

any material, thus precluding radiation shielding as a comprehensive mitigation measure for GCR 119 

risks on the CNS. For SPEs, the possibility exists for absorbed organ doses over 0.5 Gy from a 120 

SPE if the crew is performing extra-vehicular activity (EVA) or remains in a thinly shielded 121 

spacecraft throughout the duration of the event (Parsons and Townsend 2000; Kim et al. 2007). 122 

The energies of SPEs, although substantial (10s to 100s of MeV), do not preclude radiation 123 

shielding as a potential countermeasure in reducing risks to the CNS. However, the costs of 124 

shielding may be high to protect against the largest events.   125 

GCR exposures occur at low fluences, with each cell in an astronaut’s body being traversed 126 

by a proton about every three days, helium nuclei once every few weeks, and HZE nuclei about 127 

once every few months. For groups of interacting cells, GCR traversals are much more frequent. 128 

The fluence of charged particles hitting the brain of an astronaut has been estimated several times 129 

in the past (Craven and Rycrof 1994; Curtis et al. 2000, 1998, 1989). One estimate is that during 130 

a 3-year mission to Mars at solar minimum (assuming the 1972 GCR spectrum), 20 million out of 131 

43 million hippocampus cells and 230 thousand out of 1.3 million thalamus cell nuclei will be 132 

directly hit by one or more particles with charge Z>15 (Curtis et al. 2000, 1998; Cucinotta et al. 133 

2011 - see Table below in Section VI).  Parihar et al. (2015) provide an additional calculation of 134 

traversal probability for several neuron structures where geometric cross sections are >1000 μm2 135 

for the dendritic tree, ~100 μm2 for the cell soma, and ~5 μm2 for filopodial spines.  Their 136 

calculations yield ratios of traversal probabilities of 200:20:1 for the individual structures at a 137 

given fluence and suggest that most dendritic tress will be traversed while individual filopodial 138 
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spines will not be.  These numbers do not include the additional cell hits by energetic electrons 139 

(delta-rays) produced along the track of HZE nuclei (Cucinotta et al. 1998) or correlated cellular 140 

damage (Cucinotta et al. 1999; Ponomarev and Cucinotta 2006) as well as the much more frequent 141 

interactions with protons and alphas particles.  Norbury et al. (2014) and Slaba et al. (2015) 142 

estimated that within a spacecraft with 10 or more g/cm2 shielding, the dominant contributions to 143 

dose at all locations in the human body will come from protons and helium nuclei.  Calculations 144 

indicate that the average hits per cell nucleus per year will approximate 126 and 7 hits per cell 145 

nucleus for H and He, respectively vs 0.5 for all HZE.  In terms of dose, the values will be about 146 

86, 22, and 8.9 mGy/yr.  The contributions of delta-rays from GCR and correlated cellular damage 147 

increase the number of damaged cells two- to three-fold from estimates of the primary track alone 148 

and present the possibility of heterogeneously damaged regions, respectively. The importance of 149 

such additional damage is poorly understood, but Parihar et al. (2015) point out that with maximum 150 

delta-ray ranges of ~ 1 cm, essentially all neuronal structures would receive multiple ionizations. 151 

At this time, the significance of potential detrimental effects to an astronaut’s CNS from the 152 

HZE component of GCR has yet to be identified. This is largely due to the lack of a human 153 

epidemiological basis to estimate risks and the relatively small number of experimental studies 154 

with animals that have been published. More recent studies by NASA Space Radiation 155 

investigators have broadened to a large extent the types of early and late CNS effects that may 156 

occur. However, studies are limited by the number of GCR particles considered and the use of 157 

only a few doses or dose-rates. To accurately characterize radiation quality and dose response 158 

relationships, a large number of particles must be considered (>6) at sufficiently low to moderate 159 

doses (at least 5 doses below 0.5 Gy).  Intensive effort is now going into creating a simulated GCR 160 

environment with multiple charged particles at the NSRL facility by late 2017 (Slaba et al. 2015).  161 

There is also a limitation in the animals that have been considered, with only mice and rats studied 162 

in the past. The use of a primate animal model is more representative of humans and has been 163 

considered for the NSRL due to the large differences between the brains of primates and rodents 164 

(Weatherall 2006; Herculano-Houzel 2012). The Russian Space Agency is currently conducting 165 

non-human primate studies with 170 MeV protons and 500 MeV/n 12C ions (Krasavin 2015).  For 166 

estimating cancer risks, relative biological effectiveness (RBE) factors are combined with human 167 

data for low-LET radiation exposure to estimate risk. Since this approach is not possible for the 168 

CNS risks, new approaches to risk estimation will be needed. Thus biological research is required 169 

to establish risk levels in space, to establish risk projection models, and, if risks are found to be 170 

significant, to design countermeasures.  171 

Determining radiation exposure risk to the CNS is qualitatively different than that for cancer, 172 

where the risk measure is mortality.  NASA has identified two main classes of risks to the CNS, 173 

namely, 1) cognitive/performance impairments that could compromise missions, and 2) enhanced 174 

morbidity or decreased latency to late degenerative diseases.  There are currently no common 175 

standards for defining "significant" cognitive/performance impairments, and late degenerative 176 

conditions are usually detectable only when they reach clinical thresholds (Anger, 2003). 177 

NCRP report # 153 (NCRP 2006) and four reviews (Obenaus et al. 2012; Wong et al. 2004; 178 

Tofilon et al. 2000; Schultheiss et al.1995) have summarized known high-dose responses of the 179 

CNS that may not sufficiently predict the consequences of space-like low-dose, low-dose-rate 180 

exposures to mixed fields of charged particles.  Recent reviews of data for space-like radiation 181 

fields and low-dose photon studies through 2014 (NCRP 2014; NCRP 2006; Nelson 2009; 182 

Cucinotta et al. 2014) conclude that there is evidence for significant alterations in behavioral, 183 

neurogenic, neurochemical, inflammatory, and electrophysiological changes to the CNS elicited 184 
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by space-like radiation fields generated by accelerators.  New observations described below extend 185 

these largely phenomenological observations to more mechanistic levels and lower doses. 186 

 187 

A. Description of CNS Risks of Concern to NASA 188 
 189 

Acute (during missions) and late CNS risks from space radiation are of concern for 190 

exploration missions beyond low-Earth orbit (LEO), including missions to the moon, asteroids, or 191 

Mars.  Acute CNS risks include changes in cognition, motor function, behavior, and mood, which 192 

may affect performance and human health.  Specific examples of human behaviors and cognitive 193 

function of interest that may be affected by space flight include short-term memory, learning, 194 

spatial orientation, motor function, emotion recognition, risk decision making, vigilance, reaction 195 

time, processing speed, circadian regulation, fatigue, and neuropsychological changes (NASA SP-196 

2009-3405, 2009; Strangman et al. 2014).   The late CNS risks are possible degenerative 197 

neurological disorders such as AD, dementia, and premature aging.  The effects of protracted 198 

exposure to low-dose-rate (< 20 mGy/h) exposures to protons, HZE particles, and neutrons of the 199 

relevant energies for doses up to ≈ 0.5 to 1 Gy (corresponding to exposures estimated for design 200 

reference missions in deep space) on the CNS are of concern. Current Mars design reference 201 

mission exposure estimates vary between 0.25 Gy and 0.5 Gy from galactic cosmic radiation with 202 

shielded SPE exposures on the order of 0.15 to 0.5 Gy to internal body organs within a typically 203 

shielded spacecraft. Approximate relative dose (Gy) contributions to total organ exposure from 204 

GCR include protons delivering ~50-60% of the dose, alphas delivering approximately 10-20%, 205 

high LET particles of  3<Z<9 contributing ~5-10%, high LET particles of Z > 10 contributing ~5-206 

10%, and secondary radiation, including neutrons, pions, and muons, contributing on the order of 207 

10% of the total dose. 208 

The NCRP has recommended that all clinically significant acute risks must be avoided, but 209 

there may be subclinical performance decrements that could compromise mission success and 210 

crew safety.  CNS experimental studies with charged particles have established that statistically 211 

significant structural, functional, and behavioral changes can be quantified after exposure of 212 

rodents to space-relevant doses.  However, the definition of acute CNS risks based on functional 213 

(or mission operational) significance to humans must be established in order to set dose limits, and 214 

this is under-developed at this time. For late effects, such as increased risk of neurodegenerative 215 

diseases such as AD, the occurrence of the disease is fatal, with a mean time from early-stage AD 216 

to death of about 8 years. Therefore, if AD risk or decreased latency derived from space radiation 217 

exposure is established, it could be included in the overall Risk of Exposure Induced Death (REID) 218 

risk formalism for space missions (Cucinotta 2015). 219 

 220 

B. Current NASA Permissible Exposure Limits (PELs) 221 
 222 

PELs for short-term and career astronaut exposure to space radiation have been approved by 223 

the NASA Chief Health and Medical Officer. The PELs set requirements and standards for mission 224 

design and crew selection as recommended in NASA-STD-3001, Volume 1, Rev A (NASA 2014). 225 

NASA has used dose limits for cancer risks and the non-cancer risks to the blood forming organs 226 

(BFOs), skin, and lens since 1970. For exploration mission planning, preliminary dose limits for 227 

the CNS risks are based largely on experimental results from animal models. However, further 228 

research is needed to validate and quantify these risks and to refine values for dose limits. The 229 

CNS PELs correspond to the doses at the deep limbic system region of the brain called the 230 
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hippocampus and are set for time periods of 30 days, 1 year, or a career with values of 500, 1,000, 231 

and 1,500 mGy, respectively. The unit mGy-Eq will be considered in the future, but the RBEs for 232 

CNS effects are largely unknown; therefore, a physical dose limit (mGy) is used, with an additional 233 

PEL requirement for particles with charge Z>10. For particles with charge Z>10, PEL requirements 234 

limit the physical 1-year and career doses (mGy) to 100 mGy and 250 mGy, respectively. NASA 235 

uses computerized anatomical geometry models to estimate the body self-shielding at the 236 

hippocampus. 237 

 238 

 239 

IV. Evidence 240 
 241 

A. Review of Human Data  242 
 243 

Evidence for the deleterious effects of terrestrial forms of ionizing radiation on the CNS has 244 

been derived from radiotherapy patients, although the associated doses are much higher and 245 

inhomogeneous than would be experienced in the space environment (Greene-Schlosser 2012a,b). 246 

Behavioral changes, such as chronic fatigue and depression, occur in many patients undergoing 247 

irradiation for cancer therapy.  Neurocognitive effects are observed at lower doses, especially in 248 

children (Schultheiss et al. 1995; BEIR-V 1990).  249 

Reviews of intelligence and academic achievement of children after treatment for brain 250 

tumors indicate that radiation is related to a decline in intelligence and academic achievement, 251 

including low score of intelligence quotients (IQ), verbal, and performance IQ, as well as in 252 

academic achievement in reading, spelling, mathematics, and attention functioning (Butler and 253 

Haser 2006; Zeltzer 2009).  Similarly, in lower dose whole-body exposures for treatment of 254 

pediatric acute lymphocytic leukemia (ALL), adult survivors of the treatment exhibit decrements 255 

in intelligence scores (Armstrong et al. 2013; Brouwers and Poplack 1990).  Recent studies have 256 

found evidence for deficits in specific cognitive processes, including information-processing 257 

speed, memory, attention, and learning.  Such cognitive impairments generally are not observed 258 

in the first year of radiation therapy but are seen during long-term follow-up.  259 

Radiotherapy for the treatment of several tumors with protons and other charged particle 260 

beams provides opportunistic observations for considering radiation effects on the CNS.  NCRP 261 

Report No. 153 notes charged particle usage “for treatment of pituitary tumors (Kjellberg and 262 

Kliman 1979; Linfoot 1979), hormone-responsive metastatic mammary carcinoma (Tobias 1979), 263 

brain tumors (Castro et al. 1985; Suit et al. 1982), and intracranial arteriovenous malformations 264 

and other cerebrovascular diseases  (Fabrikant et al. 1989, 1985, 1984; Kjellberg et al. 1983; Levy 265 

et al. 1989; Steinberg et al. 1990).  In these studies, associations with neurological complications 266 

are found, such as impairments in cognitive functioning, language acquisition, visual spatial 267 

ability, memory, and executive functioning, as well as changes in social behaviors. Similar effects 268 

did not appear in patients treated with chemotherapy. In all of these examples, the patients were 269 

treated with extremely high doses that were below the threshold for necrosis (Goldberg et al. 1982; 270 

Keime-Guibert et al. 1998). 271 

Atomic bomb and Chernobyl accident victims receiving low to moderate doses of radiation 272 

(≤ 2 Gy) show evidence of memory and cognitive impairments.  They are more frequently seen 273 

medically for psychiatric disorders and exhibit altered electroencephalographic (EEG) patterns 274 

(Bromet et al. 2011; Ron et al. 1982; Hall et al. 2004; Ishikawa et al. 1981, Mickley et al. 1989; 275 

Yamada et al. 2002, 2009; Loganovsky, et al. 2001, 2000).  These studies are limited by individual 276 
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dosimetry uncertainties and cultural inhibitions regarding reporting of mental disorders.  A study 277 

of A-bomb survivors by Yamada et al. (2009) found no increased risk of dementia, but this study 278 

was limited by the small sample set (2000), short observation period, and difficulties in dementia 279 

classification.  Mental retardation was observed in the children of the atomic bomb survivors in 280 

Japan exposed prenatally at moderate doses (<2 Gy) during the 8-15 week period post-conception, 281 

but not at earlier or later times since conception (BEIR-V 1990; Otake 1998). 282 

 283 

B. Review of Space Flight Issues 284 

 285 
The first proposal of the effect of space radiation on the CNS was by Cornelius Tobias in his 286 

1952 description of the light flash phenomenon caused by single HZE nuclei traversals of the retina 287 

(Tobias et al. 1952). Light flashes were observed by the astronauts during the early Apollo 288 

missions and dedicated experiments subsequently performed on later Apollo and Skylab missions 289 

(Pinsky et al. 1974). More recently, studies of light flashes have been made on the Russian Mir 290 

space station and the International Space Station (ISS) (Narici 2008; Sannita et al. 2004).  A 1973 291 

report by the National Academy of Science considered these effects in detail. This phenomenon, 292 

known as a phosphene, is the visual perception of flickering light. It is considered a subjective 293 

sensation of light since it can be caused by simply applying pressure on the eyeball (NCRP 2006). 294 

The traversal of a single highly charged particle through the occipital cortex or the retina was 295 

estimated to be able to cause a light flash. Possible mechanisms for HZE-induced light flashes 296 

include direction ionization and Cerenkov radiation within the retina.  297 

The observation of light flashes by the astronauts brought attention to the possible effects of HZE 298 

nuclei on brain function. The microlesion concept also originated at this time, which considered 299 

the effects of the column of damaged cells surrounding the path of a HZE nucleus traversing 300 

critical regions of the brain (NAS 1973; Todd 1989, 1986).  A more modern view might also 301 

consider functional modification rather than damage in the genotoxic sense.  An important task 302 

still remains to determine whether and to what extent such particle traversals contribute to 303 

functional degradation within the CNS.  304 

The possible observation of CNS effects in astronauts participating in past NASA missions 305 

is highly unlikely because the lengths of past missions were relatively short and the population 306 

sizes of astronauts are small, as well as because astronauts are partially protected by the Earth’s 307 

magnetic field and the solid body of the Earth in LEO, which together reduce the GCR dose-rate 308 

by about 2/3 from its free space values. Furthermore, the GCR in LEO has lower LET components 309 

compared to the GCR to be encountered in transit to Mars or on the lunar surface because the 310 

Earth’s magnetic field repels nuclei with energies below about 1,000 MeV/n, which are of higher 311 

LET. For these reasons, the CNS risks are of a higher concern for long-duration lunar missions or 312 

for a Mars mission than for missions on the ISS. Furthermore, radiation safety standards would 313 

not allow for missions where clinically significant CNS risks would occur during the mission and 314 

would limit late CNS effects to an acceptable risk level. Therefore, it is highly critical to understand 315 

for which space radiation exposure levels violation of safety standards would occur, well before 316 

long-term space missions occur.  317 

 318 

C. Radiobiology Studies of CNS Risks for Protons, Neutrons and HZE Nuclei 319 
 320 

This section presents a review of selected studies on the effects of space radiation in cell, 321 

tissue, and animal models of the CNS using charged particles from accelerators and photons from 322 
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X-ray or gamma sources at doses < 2 Gy. Selected data from higher dose studies are also included 323 

when they provide information regarding dose response trends or potential biological responses 324 

not yet measured at low doses with charged particles.  The section emphasizes the most recent 325 

findings from study designs using space-relevant doses of charged particles. 326 

 327 

1. Overall observations 328 
 329 

Over the last few years, a large amount of new information regarding the CNS has emerged 330 

from investigations of cell and animal models irradiated with space-like radiation fields.  The 331 

proliferating population of neurons in the hippocampus is inhibited from reproducing, and patterns 332 

of differentiation are altered.  This prevents new neurons from integrating into circuits associated 333 

with learning and memory. Persistent oxidative stress develops along with inflammatory responses 334 

to generate an altered microenvironment for the neuronal network.  The blood capillary network 335 

undergoes a reversible decrease in its connectivity with likely reductions in tissue oxygenation.  336 

Low doses of many different particles can result in the remodeling of neurons such that the 337 

complexity of their dendritic branches and the number of their dendritic spines (and associated 338 

synapses) are reduced, which would interfere with information processing. Electrical properties of 339 

individual neurons and their cell membranes are altered, and the ability of neurons to transfer 340 

information from one to another across synapses or to strengthen their connections after 341 

stimulation is impaired.  Levels of numerous molecules associated with synapse structure, ion 342 

movements across membranes, inflammatory signaling, cell survival, and DNA repair are altered.  343 

There is an impairment of the ability of the tissue to recycle damaged proteins.  Additionally, most 344 

importantly, these changes are associated with alterations in behaviors reflecting cognitive abilities 345 

and memory.  The dose responses can be complex and non-linear. There are regional differences 346 

in tissues, and effects are sex-, age-, species-, and genetic background-dependent.  Overall, the 347 

evidence points to persistent measureable changes in the functional status of the CNS similar to 348 

those seen during aging and in some neurological diseases, but we do not yet know if these changes 349 

rise to the level of operational or clinical significance in humans. 350 

 351 

2. Effects in Neuronal Cells and the CNS  352 

 a. CNS Structure  353 

The CNS consists of the brain, spinal cord, and retina and is composed of neurons, glial cells, 354 

and vasculature. NCRP Report No. 153 (NCRP 2006) and NCRP Commentary #23 (NCRP 2014) 355 

provide short introductions on the composition and cell types of interest for radiation studies as 356 

well as excellent reviews of many issues addressed in this Evidence Report.  The cerebral cortex 357 

is the largest subdivision of the human brain.  It is involved in processing and analyzing sensory 358 

and motor information as well as processes underlying cognition.  There are between 1 and 2x1010 359 

neurons in the cerebral cortex portion of an adult human and 5 to 10 times as many glial cells 360 

(Blinkov and Glezer 1968).  Brain tissue is often described as consisting of gray matter and white 361 

matter.  Structures comprised of neuronal cell bodies and their processes are the gray matter, which 362 

is organized into layers.  Structures comprised of axon fiber bundles are the white matter, so-363 

named because of the appearance of the white insulating myelin sheaths.  White matter structures 364 

are much more prominent in humans and primates than in rodents and reflect the need to connect 365 

structures over larger distances. 366 
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The main anatomical units of the CNS are neurons, which exhibit a variety of sizes, shapes, 367 

connectivity, and neurotransmitter and receptor specializations.  Information processing is carried 368 

out by neurons organized into circuits and pathways of varying complexity.  Certain nuclei or 369 

centers consist of closely packed neuron cell bodies (e.g., the granular layer of the hippocampus' 370 

DG), while in other cases, cell bodies may be separated by considerable distances.  Each neuron 371 

is organized into three main parts: the soma or cell body, a dendritic tree, and an axon.  The 372 

dendritic tree and soma receive and integrate signals from other neurons, while the axon is the 373 

transmitting structure.  The dendritic tree consists of one or more branches covered with small 374 

protrusions called spines, the location of most synapses.  Spines and the shafts of the dendrites 375 

receive input from axons of other neurons.  Axons are thin (1 to 20 µm) processes that extend from 376 

the soma for long distances and usually branch at their termini where they exhibit swellings or 377 

boutons, the location of synapses.  Many axons are covered with a lipid-rich myelin sheath 378 

comprised of concentric layers of glial cell membrane and serve to increase conduction velocity 379 

of the axon. 380 

Synapses are the structures that mediate transmission of signals from one neuron to another, 381 

and each neuron may possess thousands of synapses on its surface.  In mammals, the majority of 382 

synapses are considered "chemical synapses", while a minority are termed "electrical synapses" 383 

that function essentially as gap junctions.  Chemical synapses are 1-μm scale complexes that have 384 

a presynaptic component (usually from an axon) and a postsynaptic component (usually from a 385 

dendrite or dendritic spine) separated by a thin space or synaptic cleft.  Neurotransmission is the 386 

process by which an electrochemical signal (action potential) is transferred across the synaptic 387 

cleft by a chemical messenger that initiates electrochemical signals in the recipient cell.  The 388 

process involves a highly regulated sequence of trans-membrane voltage changes, ion movements, 389 

neurotransmitter release, and neurotransmitter binding to specific receptors on the postsynaptic 390 

membrane.  Numerous small molecules act as neurotransmitters, including acetylcholine, 391 

norepinephrine, serotonin, dopamine, glycine, glutamic acid, γ-aminobutyric acid, and several 392 

peptides.  Their binding may result in depolarization (excitatory) or hyperpolarization (inhibitory) 393 

of the recipient neuron. 394 

Of additional importance are the glia, which are supporting cells and consist of astrocytes, 395 

oligodendroglia, and microglia. These cells permeate and support the nervous tissue of the CNS, 396 

providing a scaffold.  The most numerous of the neuroglia are Type I astrocytes, which constitute 397 

about half the brain in primates (a smaller fraction in rodents) and greatly outnumber the neurons.  398 

They cooperate with the vasculature to maintain the blood brain barrier, regulate extracellular 399 

concentrations of neurotransmitters, and mediate inflammatory responses. Oligodendrocytes are 400 

responsible for the production of myelin sheaths.  Microglia are the resident monocytes or 401 

macrophages of the CNS and serve innate immunity functions, but they also participate in the 402 

maintenance of synapses.  Glia retain the capability of cell division in contrast to neurons, and, 403 

therefore, the responses to radiation differ between the cell types. 404 

In recent years, studies with stem cells uncovered that cell proliferation and differentiation 405 

(neurogenesis) occur in the adult subventricular zone and hippocampus of mammals, which is 406 

linked to cognitive activities such as memory and learning (Squire 1992; Eisch 2002).  Neuronal 407 

progenitor cells (NPCs) proliferate throughout life in mammals and differentiate into glia and 408 

neurons that are incorporated into neuronal circuits.  Damage to this population is associated with 409 

the neurocognitive impairments that appear following cranial radiation (Monje 2012).  410 

A final important tissue component of the brain is the vasculature, which exhibits a 411 

comparable vulnerability to radiation damage to that found elsewhere in the body (Reinhold and 412 
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Hopewell 1980). Radiation-induced damage to oligodendrocytes and endothelial cells of the 413 

vasculature accounts for major features of the pathogenesis of high-dose brain damage.  Based on 414 

studies with low-LET radiation and cultured cell killing plus white matter necrosis observation, 415 

the CNS is considered a radioresistant tissue. For example, during radiotherapy, early brain 416 

complications in adults usually do not develop if daily fractions of 2 Gy or less are administered 417 

with a total dose of up to about 50 Gy (NCRP 153). The "tolerance dose" in the CNS (a therapy 418 

concept based primarily on overt tissue destruction), as with other tissues, depends on the volume 419 

and on the specific anatomical location in the human brain that is irradiated (Schultheiss et al. 420 

1995).  421 

b. Neurogenesis 422 

Pluripotent neural precursor cells are the most radiosensitive cells of the mammalian brain 423 

(Mizamatsu et al. 2003;   Monje et al. 2002; Tofilon and Fike 2000; Limoli et al. 2007; Fike et al. 424 

2009).  Studies with low-LET radiation showed that radiation impairs not only proliferation of 425 

NPCs, but also persistently impairs their differentiation into neurons and other neural cells 426 

(Casadesus et al. 2004, 2005; Rola et al. 2004a,b, 2005, 2008). NCRP Report 153 (NCRP 2006) 427 

notes that cells in the dentate subgranular zone (SGZ) undergo dose-dependent apoptosis and that 428 

the production of new neurons in young adult male mice is significantly reduced by relatively low 429 

(≤ 2 Gy) doses of X-rays.  Survival and proliferation of NPCs is inhibited above 0.5 Gy of charged 430 

particles, but patterns of differentiation for descendent cells are altered at doses below 0.5 Gy.  431 

These responses also hold true for neutrons (Yang et al. 2010).  Rivera et al. (2013) found that 432 

dose fractionation had little effect on the inhibition of neurogenesis by iron particles.  Increases in 433 

the numbers of newly-born activated microglia (possibly infiltrating monocytes) accompany 434 

decreases in neurons (Rola et al. 2005; Monje et al. 2002) and may persist for up to 2 months.   435 

Supporting observations on widespread NPC death from brains of developing rodents and 436 

fish have been used to estimate RBEs with values from 1.4 to 9.8 for 12C and 56Fe ions and neutrons 437 

(Ishida et al. 2006; Yoshida et al. 2012; Yasuda et al. 2011), which agrees with the value of 3.4 438 

estimated by Guida et al. (2005) for cultured human neuroblasts (hNT2 cells).  While neurogenesis 439 

is impaired, the magnitude of its contribution to overall cognition is not yet well established. 440 

 c. Oxidative Stress 441 

In vitro studies using rodent neural precursor cells from the hippocampus grown in the form 442 

of neurospheres show an increase in ROS following X-ray exposure (Limoli et al. 2007, 2004).  443 

Similar results are observed with 250 MeV proton exposures (1 to 10 Gy) at post-irradiation times 444 

(6 to 24 hours) compared to unirradiated controls (Giedzinski et al. 2005).  The increase in ROS 445 

after proton irradiation is more rapid than that observed with X-rays and shows a well-defined 446 

dose response at 6 and 24 hours, increasing up to 10-fold, but by 48 hours post-irradiation, ROS 447 

levels fell below those of controls and coincided with minor reductions in mitochondrial content.  448 

Use of the antioxidant α-lipoic acid (before or after irradiation) was shown to reduce the radiation-449 

induced rise in ROS levels. High-LET radiation led to significantly higher levels of oxidative stress 450 

in neurosphere NPCs compared to lower LET radiations (γ-rays, protons).  Tseng et al. (2013) and 451 

Limoli et al. (2007) and Acharya et al. (2011) demonstrated persistent oxidative stress in 1H-, 16O-452 

, 48Ti-, and 56Fe-irradiated mouse and human neurospheres at < 1 cGy, against which α-lipoic acid 453 

was again radioprotective (Manda et al. 2008).  Baulch et al. (2015) extended these observations 454 

using cultured human neural stem cells irradiated with 5–100 cGy doses of 16O, 28Si, 48Ti, or 56Fe 455 

particles (600 MeV/n; 10–50 cGy/min) and 28Si and 56Fe particles at energies of 300 and 1000 456 
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MeV/n.  Radiation-induced oxidative and nitrosative stress was found to be dose-dependent but 457 

largely independent of the LET of the incident particles.  All particles resulted in ROS/RNS 458 

elevations at ≥ 25 cGy, and in some cases at doses as low as 5 cGy; 28Si and 56Fe were equally 459 

effective at all three energies tested.  Figure 1 below illustrates results of iron ions, protons, and x-460 

rays on cultured human neural precursor cells grown in 3D neurospheres (Limoli et al. 2007).  461 

 462 

 463 

Figure 1. Dose response for oxidative stress after 56Fe ion irradiation. Human hippocampal 464 

precursor cells subjected to 56Fe ion irradiation were analyzed for oxidative stress 6 hours after 465 

exposure. At doses ≤1 Gy a linear dose response for the induction of oxidative stress was observed. 466 

At higher 56Fe doses, oxidative stress fell to those values found before using lower LET irradiations 467 

(X-rays, protons). Experiments represent a minimum of three independent measurements (±SE) 468 

and were normalized against unirradiated controls set to unity. ROS levels induced after 56Fe-469 

irradiation were significantly (P < 0.05) higher than those in controls (Limoli et al. 2007).  470 

 471 

In vivo radiation exposure is associated with acute and chronic elevation of oxidative stress.  472 

Baluchamy et al. (2012, 2010) and Suman et al. (2013) demonstrated induction of lipid 473 

peroxidation and ROS in mouse brains accompanied by reduced levels of glutathione and 474 

superoxide dismutase activity following γ-ray, 1H, and 56Fe ion exposures.  In mice, persistent 475 

oxidative changes are induced by <1 Gy of charged particles.  At early times (<1 week) after 476 

irradiation, ROS and RNS increases were generally dose responsive but were less dose-dependent 477 

weeks to months post-irradiation (Tseng et al. 2014).   Exposure to ion fluences at less than one 478 

ion traversal per cell nucleus was sufficient to elicit radiation-induced oxidative stress. When 479 

antioxidant enzyme levels were assessed in brain tissue, whole-body irradiation triggered a 480 

compensatory response in the rodent brain with increased antioxidant enzyme activities 2 weeks 481 

after exposure that returned to baseline levels by 4 weeks. 482 

The Raber and Fike laboratories addressed the impact of superoxide dismutase isoform 483 

deficiencies on neurogenesis, activation of microglia, and cognitive impairment and found that 484 

x-ray-induced effects were reduced in knockout mutant mice for all isoforms of superoxide 485 

dismutase (Fishman et al. 2009; Raber et al. 2010; Rola et al. 2007) even though baseline 486 

neurogenesis was impaired.  In a pharmacological approach, the cell-permeable superoxide 487 

dismutase mimetic, metalloporphyrin compound (MnTE-2-PyP), was observed to reduce 488 

apoptosis induced by 1 and 4 Gy of protons in the rat retina (Mao et al. 2012) when given before 489 

irradiation. 490 
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Enhancing H2O2 detoxification capacity using a catalase-overexpressing transgenic mouse 491 

(MCATtg) suppresses proton-induced impairment of neurogenesis (Liao et al. 2013) and cognition 492 

(Olsen et al. 2013; Parihar et al. 2015).  Manda et al. (2008) and Villasana et al. (2013) showed 493 

that α-lipoic acid administration ameliorated lipid peroxidation and impaired memory elicited by 494 
56Fe exposure in mice.  Together, these observations support a functional role for ROS in mediating 495 

the pathogenesis of radiation effects in the brain.  496 

ROS play normal roles in signaling when their concentrations and cellular locations are 497 

controlled.  It is when dysregulation occurs that adverse consequences arise (Joseph and Cutler, 498 

1994).  Critical regulatory sites for neuronal activity are receptor-gated ion channels, and recent 499 

evidence suggests that multiple channels are regulated by their redox status.  It was shown that 500 

oxidation of K+ channels (which control neuronal excitability and survival) by ROS is a major 501 

mechanism underlying the loss of neuronal function in a eukaryotic model and survival (Sesti et 502 

al. 2009).  Similarly, γ-aminobutyric acid type A receptors, important in inhibitory neuron 503 

function, were found to be susceptible to oxidation, which resulted in changes in ion conductance 504 

and channel opening probability.  Altered reduced glutathione levels were effective in modulating 505 

these responses (Amato et al. 1999).   NMDA and acetylcholine receptors also have shown redox 506 

modulation of activity (Derkach et al. 1991; Janaky et al. 1993).  Thus, there is a potential for 507 

perturbation of the regulation of major ion channels directly by radiation or the persistent radiation-508 

induced metabolic shift toward pro-oxidant tissue status. 509 

Another potential redox regulatory site is the cytoskeleton of neuronal processes.  The protein 510 

cofilin, which regulates the actin filament system in dendrites and spines, has been shown to be 511 

redox-sensitive (Samstag et al. 2013), and cofilin and its regulatory network have recently been 512 

shown to be highly responsive to irradiation (cf. below, Kempf et al. 2014a). 513 

Rabin and Shukitt-Hale (2014) and Raber et al. (2005, 2009, 2015) reviewed the similarities 514 

between the effects of aging and radiation exposure on neuronal and behavioral function and drew 515 

attention to the efficacy of natural product anti-oxidants in ameliorating deficits from both causes.  516 

In particular, components of berry-rich diets are shown to participate in signaling pathways 517 

involved in neurotransmission and plasticity, inflammation, and cell survival such that treatments 518 

reducing oxidative stress and inflammation also improve performance in older animals and 519 

irradiated subjects. 520 

d. Neuroinflammation 521 

       Neuroinflammation is a fundamental reaction to brain injury and is associated with the 522 

progression of numerous disease processes.  Neuroinflammation and microvascular changes are 523 

well-known pathological sequelae of cranial irradiation (Greene-Schloesser et al. 2012b), and 524 

microvasculopathy, blood brain barrier dysfunction, and neuroinflammation are now clinically 525 

recognized as interrelated processes contributing to a wide range of acute and delayed neurological 526 

disorders that affect CNS function (Obermeier et al. 2013; Zlokovic 2011).  The brain and immune 527 

system are are linked by bi-directional communication activities of neurons (e.g. vagus) and the 528 

various cytokines and chemokines that coordinate inflammation, cell trafficking and immune cell 529 

differentiation (Maier 2003).  Thus, many topics addressed below should also be viewed in the 530 

context of immunity in the spaceflight environment.  This is described in the Immune Discipline 531 

Evidence Report “Risk of Crew Adverse Health Event Due to Altered Immune Response” 532 

describing changes in immune system associated with spaceflight has been added to the SRPE 533 

ERs. https:// humanresearchroadmap. nasa.gov/evidence/reports/Immune_2015-05.pdf?rnd= 534 

0.566203442665843 535 
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Neuroinflammation disturbs CNS function and is mediated by altered activation states of 536 

microglia and astrocytes, interruption of the blood brain barrier, and local expression of a wide 537 

range of inflammatory mediators, including pro-inflammatory cytokines, chemokine receptors, 538 

and adhesion molecules (Tofilon and Fike 2000).  Microglial activation and inflammatory cytokine 539 

production have been implicated in cognitive deficits (Jenrow et al. 2013).  Myeloid cell 540 

recruitment appears by 6 months following exposure.  Acute and chronic neuroinflammation has 541 

been studied in the mouse brain following exposure to HZE.  The acute effect of HZE is easily 542 

detectable at 6 and 9 Gy; however, fewer studies have investigated lower doses. Rola et al. (2005) 543 

estimated the RBE value for induction of an acute neuroinflammatory response by HZE irradiation 544 

compared to gamma irradiation at ≈ 3. COX-2 pathways are implicated in neuroinflammatory 545 

processes caused by low-LET radiation. COX-2 up-regulation in irradiated microglia cells leads 546 

to prostaglandin E2 production, which appears to be responsible for radiation-induced gliosis (over 547 

proliferation/activation of astrocytes in damaged areas of the CNS) (Kyrkanides et al. 2002; Moore 548 

et al. 2005; Hwang et al. 2006).  Robbins and colleagues demonstrated the importance of MAP 549 

kinase pathways in radiation-induced microglial activation and neuroinflammation (Schnegg et al. 550 

2012). 551 

Moravan et al. (2011), York et al. (2012), and Morganti et al. (2014) found that mouse cranial 552 

exposure to γ-rays and protons at doses above 1 Gy elicits persistent elevation of TNF-α, CCL2, 553 

T cell infiltration, GFAP, MHC II+, and CD11c+, accompanied by T lymphocyte infiltration and 554 

increased numbers of activated microglia.  Sweet et al. (2014) found persistent (1 - 12 months) 555 

decreases in ICAM-1 after ≥ 10 cGy whole-body irradiation of mice with 1 GeV/n protons with a 556 

pronounced sex difference; specifically, females were sensitive while males were not.  Rosi et al. 557 

(2008) and York et al. (2012) found significant increases in activated microglia numbers (x-rays 558 

and protons) that were correlated with reductions in behaviorally-induced gene expression.  559 

Poulose et al. (2011) observed astrocyte activation (rat hippocampus) after 16O exposure 560 

accompanied by altered neurotrophic factor signaling, and Sanchez et al. (2010) reported 561 

reductions in cultured human astrocyte glutamate transport following 1H, 12C, and 56Fe irradiation.  562 

Kempf et al. (2014b) quantified the number of CD11b+ cells in the hippocampus and found 563 

increases of 49 - 62% depending on the field 6-7 months after 1 Gy of 60Co γ-rays.  These changes 564 

were accompanied by increased hippocampal transcription and translation of TNFα after 1.0 Gy 565 

and a 69-82% elevation of GFAP+ astrocytes in the hilus at doses ≥ 10 cGy.   CCR2-/- knockout 566 

mice (involved in monocyte activation and trafficking) were resistant to 10 Gy head-only 137Cs γ-567 

ray-induced decrements in cognitive and memory behaviors (hippocampus-dependent Morris 568 

water maze but not hippocampus-independent short delay novel object recognition, see below), 569 

behaviorally-induced Arc gene expression, and neurogenesis (Belarbi et al. 2012).  These results 570 

highlight a role of CCR2 signaling in radiation-induced cognitive impairment and inflammation. 571 

The neuroinflammatory response to radiation is not brain-autonomous. Body-only irradiation 572 

can elicit the production of pro-inflammatory cytokines in the brain in a process mediated by the 573 

vagus nerve.  Thus, Marquette et al. (2003) showed that 15 Gy 60Co-γ to rats elicited IL-1β, TNF-574 

α, and IL-6 production 6 hrs post-irradiation in the thalamus, hypothalamus, and hippocampus; 575 

vagotomy abrogated this response.  Inflammation generated by peripheral lipopolysaccharide 576 

administration modified 56Fe-induced electrophysiological responses with a complex time course 577 

(Vlkolinský et al. 2008, 2007).  Taken together, these findings suggest that radiation-induced 578 

inflammatory processes may have a causal role in CNS dysfunction, affecting many component 579 

cell types and processes and developing with a complex time course. 580 
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e. Microvascular Changes 581 

Late necrotic brain tissue damage after high radiation doses is well known to be associated 582 

with damage to the vascular system (Lyubimova et al. 2004), but limited evidence now suggests 583 

that low doses of charged particles also disrupt vascular structure and function.  Yang and Tobias 584 

(1984) observed petechial hemorrhages on the cortical surfaces of 1.5-day-old rat neonates 24 hrs 585 

post-irradiation using 670 MeV/n Ne, 600 MeV/n Fe, and 225 kVp X-rays at doses from 0.5 to 8 586 

Gy and calculated an RBE of 1.4 - 2.1.  Recently, Mao et al. (2010) demonstrated substantial (34%) 587 

microvessel loss at 9-12 months (with later recovery) in the mouse hippocampus after 0.5 - 2 Gy 588 

of 1H or 56Fe exposure.  The CA1 region was markedly more sensitive than the DG, possibly 589 

reflecting the greater vessel connectivity in the DG.  In rat retinas, vessel loss was linear with time, 590 

with rates that increased with proton dose above 8 Gy (Archambeau et al. 2000).  When male 591 

C57BL mice were brain-only irradiated with 20 Gy of 6 MV photons and scored at 3 - 120 days 592 

post-irradiation, reductions in the number of anatomical vessels and perfused vessels were 593 

observed from 3 to 7 days with later recovery; measures of hypoxia accompanied the reduction of 594 

perfused vessels, and effects were reduced by blocking of TNF-α (Ansari et al. 2007). 595 

Monolayers and 3D cultures of human umbilical cord endothelial cells (HUVECs) and 596 

cultured human brain microvascular endothelial cells were irradiated with 10 to 75 cGy of 1 GeV/n 597 
56Fe and evaluated for maintenance of cell layer integrity for up to 72 hrs post-irradiation 598 

(Grabham et al. 2013; Sharma et al. 2014).  Transendothelial electrical resistance was 599 

progressively compromised after ≥ 50 cGy, accompanied by permeability to fluorescent dextrans 600 

(3 and 10 kDa).  Tight junction (ZO-1 immunofluorescence) breakdown occurred in both 2D and 601 

3D cultures of HUVEC cells.  These observations suggest that impaired perfusion, hypoxic 602 

conditions, and loss of the blood brain barrier may ensue from space-like radiation exposures. 603 

f.  Neuronal and Brain Tissue Structural Changes 604 

The topology of neuronal networks and structural plasticity are important regulators of 605 

cognitive performance, as they control synapse number, strength, and organization.  Recent 606 

neuronal morphometry investigations using Golgi silver stain in mice and rats and fluorescence 607 

microscopy of transgenic mice expressing enhanced green fluorescent protein (EGFP) in 608 

neurons have demonstrated that γ-rays, protons, and 56Fe radiation cause reductions in 609 

hippocampal neuron arborization (>50% at 30 days) as well as loss of dendritic spines, each of 610 

which would limit the complexity of signal processing (Chakraborti et al. 2012; Parihar et al. 2013; 611 

Quasem et al. 2007).  Parihar et al. (2014, 2015b) further showed reduction of dendritic complexity 612 

10 and 30 days after 1 Gy of 250 MeV protons and spine reductions at ≥ 10 cGy.  Immature 613 

filopodial spines were more sensitive than stubby or mushroom-shaped spines.  The presynaptic 614 

marker synaptophysin was reduced in these tissue samples, while the post-synaptic marker PSD-615 

95 was elevated.  Most recently, investigations have shown that 600 MeV/n 16O and 48Ti ions at 616 

doses of 30 cGy can cause ~30% reductions in dendritic length and branching parameters 8 weeks 617 

post-irradiation in the median prefrontal cortex (mPFC), an area associated with executive 618 

functions (Parihar et al. 2015a).  The number of dendritic spines was also significantly reduced at 619 

5 and 30 cGy (see Figure 2, below), but neurons exhibited ~60% increased postsynaptic PSD-620 

95 levels in the mPFC, perhaps a compensatory change.  Notably, spine density correlated with 621 

cognitive performance using Novel Object and Object in Place paradigms.  High-dose experiments 622 

with primary rat hippocampal neurons exposed to 30+ Gy of 140 kVp X-rays and immediately 623 

fixed indicated that structural modifications can be quite rapid (< 30 minutes).  Reductions of 624 
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filopodial spines were the most salient feature, accompanied by F-actin and drebrin puncta 625 

reductions and increases in PSD-95 (Shirai et al. 2013). 626 

 627 

 628 

Figure 2. The figure above, reproduced from Parihar et al. (2015a) illustrates dendritic spine 629 

reduction after low doses of 16O and 48Ti ions. 630 

 631 

Axonal processes are also damaged by radiation.  In chick embryo dorsal root ganglion 632 

explants (peripheral neurons), up to 70% growth cone collapse was elicited 48 hrs post-irradiation 633 

by 10-Gy exposures to 200 kVp X-rays (Al-Jahdari et al. 2008).  Collapse first became significant 634 

after 12 hrs with 5 Gy exposures.  In chick embryo retinal explants (CNS neurons), Vazquez and 635 

Kirk (2000) demonstrated that neuritogenesis was inhibited in a dose-dependent manner after 636 

exposure to 1000 MeV/n 56Fe ions. 637 

In mouse hippocampal neuronal HT22 cells irradiated with 0.5 - 4 Gy of 137Cs γ-rays, 638 

proteomic analysis at 4 and 24 hrs post-irradiation indicated that signaling pathways related to 639 

synaptic actin-remodeling were significantly affected at 1.0 and 4.0 Gy but not at 0.5 Gy (Kempf 640 

et al. 2014a).  The decreased expression of miR-132 and Rac1 was associated with an increase in 641 

hippocampal cofilin and phospho-cofilin, which control synaptic actin filament formation in spines 642 

and synapses.  Similar findings were observed in vivo at 24 hrs after 1 Gy 137Cs γ-ray irradiation 643 

of 10-day-old NMRI mice.  Pathways associated with Rho family GTPases (key regulators of spine 644 

and synapse morphology) were all perturbed by irradiation and, overall, the pathways shared 645 

several proteins, such as Rac1, PAK, LIMK, and cofilin, which all are constituents of the Rac1-646 

Cofilin pathway.  The results suggest that a Rho/Rac1/Cofilin-based mechanism may underlie 647 

spine and dendrite remodeling observed post-irradiation.  Notably, cofilin organizes surface 648 

receptor complexes in the "immunological synapse".  Its activity may polymerize or depolymerize 649 
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actin depending on the availability of G-actin, and cofilin activity is under direct redox control, 650 

which implicates it in oxidative disturbances of actin dynamics (Samstag et al. 2013).  This may 651 

render it acutely sensitive to radiation or to persistent oxidative stress. 652 

Subtle widespread remodeling of brain structures after low-dose irradiation may also occur.  653 

Thus, MRI imaging of 60Co γ-ray and 56Fe-irradiated rat and mouse brains shows dynamic changes 654 

in apparent diffusion constants and T1/T2 relaxation times in multiple regions, suggesting 655 

microscopic tissue structure changes.  Complementary MR spectroscopy showed alterations in 656 

levels of several neuronal damage markers (Huang et al. 2010, 2009; Kumar et al. 2013; Obenaus 657 

et al. 2008).  In a study by de Guzman et al. (2015), 16 - 36-day-old C57Bl/6 mice were irradiated 658 

head only with 3 - 7 Gy of 137Cs γ-rays.  Brains were imaged by high-resolution MRI, and regional 659 

volume decrements were mapped as biomarkers of radiosensitivity.  Results showed that age, dose, 660 

and region-dependent anatomical alterations in brain development occurred and were consistent 661 

with human pediatric patient neurocognitive outcomes.  Notably, the hippocampus and olfactory 662 

bulb were the most sensitive at all ages.  Newly initiated studies by C. Lemere and colleagues at 663 

Brigham and Women’s Hospital in Boston are applying PET imaging to understanding late 664 

neurodegeneration following charged particles.  Such approaches might be used to monitor 665 

astronauts pre- and post-flight. 666 

g. Electrophysiology 667 

Early studies through the 1960s using X-rays and gamma rays showed that the conduction 668 

velocities and total conduction block of compound action potentials in peripheral nerves of frogs 669 

and rats were very resistant to radiation, while implanted electrodes in rabbits and rats detected 670 

altered frequencies and amplitudes of spontaneous spike trains in many brain regions after < 5 Gy 671 

(Ordy et al. 1968).  Later, in vitro experiments suggested that spontaneous discharges of 672 

hippocampal neurons could be induced by x- and γ-rays at as little as 8 cGy (Peimer et al. 1986, 673 

Mickley et al. 1989).  Pellmar demonstrated that synaptic efficacy (dendritic response) and 674 

population spikes (somatic response) were modified acutely in guinea pig brain slices after photon 675 

doses above 30 Gy (Pellmar et al. 1990, 1993).  Finally, Clatworthy et al. (1999) demonstrated 676 

that 5 - 15 Gy of 137Cs γ-rays induced changes in excitability of Aplysia sensory neurons after 48 677 

hrs.  Together, these observations suggested that intrinsic nerve properties were resistant but that 678 

synapses might be sensitive targets.  Recent electrophysiological experiments with low doses of 679 

charged particles have now explored neuronal functional responses over periods from weeks to 680 

1.5 years post-irradiation and revealed that both intrinsic properties and synaptic parameters 681 

change.  The principal model being used is the rodent acute brain slice (usually containing the 682 

hippocampal field).  In this preparation, freshly isolated 300 - 400-micron-thick slices of tissue 683 

from irradiated animals are kept in oxygenated, glucose-supplemented, artificial cerebrospinal 684 

fluid, and pairs of stimulating and recording electrodes (or microelectrode arrays) record from 685 

ensembles of several hundred neurons, (field recordings) or, alternatively, single neurons are 686 

targeted with microelectrodes (patch clamp recordings). 687 

In the intact neuronal networks of mouse hippocampal slices, stimulation of fields of axons 688 

from CA3-area neurons (Schaeffer collaterals) results in transmission of signals to CA1 field 689 

pyramidal cells in which recordings from either dendritic regions or cell soma regions are 690 

conducted.  In such extracellular field recordings, synaptic transmission is found to be altered by 691 
1H, 28Si, and 56Fe exposure with a complex dose and ion species pattern.  Input-output curves 692 

(excitability), pre-pulse facilitation (presynaptic glutamate release), and paired pulse inhibition 693 

(recurrent inhibitory transmission) measurements have assessed synaptic coupling of axons to 694 
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dendrites and short-term synapse strengthening following stimulation.  In both the CA1 and DG 695 

fields, synaptic excitability is modified by accelerated ion exposure at doses as low as 0.1 Gy in a 696 

brain region and ion-specific way.  Long-term potentiation (LTP), a tissue-level model of memory 697 

formation, was used to assess stimulation-induced synaptic strengthening and also exhibited 698 

hippocampus field-, dose-, and ion-specific modulation consistent with dysregulation of the 699 

balance between excitatory and inhibitory activity post-irradiation (Vlkolinský et al. 2008, 2007).  700 

Figure 3 illustrates reduction of LTP after 56Fe-particle irradiation. 701 

 702 

 703 
 704 

Figure 3. Reproduced from Figure 3 of Vlkolinsky et al. (2007). Effect of 56Fe-particle radiation 705 

on synaptic plasticity. Panel A: In slices from control mice, high-frequency stimulation induced 706 

prominent LTP of the dendritic fEPSP slope. The early phase of the fEPSP enhancement is post-707 

tetanic potentiation (PTP); the later phase is LTP. Compared to nonirradiated controls, the dose of 708 

2 Gy had a significant inhibitory effect on the magnitude of LTP (one-way ANOVA, P < 0.05). 709 

Panel B: While LTP in the 2-Gy group was significantly reduced, significant changes were not 710 

observed in the 1- and 4-Gy groups. 711 

 712 

Experiments with 25 and 100 cGy of 600 MeV/n 28Si ions in C57Bl/6J mice demonstrated 713 

an interaction between cognitive testing (contextual freezing) and radiation (Raber et al. 2014).  714 
28Si radiation enhanced LTP at 25 and 100 cGy in the dorsal hippocampus.  Behavioral training 715 

also enhanced LTP and further potentiated the radiation response at 25 cGy but not 100 cGy, which 716 

matched the inverted U-shaped dose response for the behavior.  Rudobeck et al. (2014) examined 717 

the effects of 25 and 100 cGy of 28Si radiation on the ventral hippocampus of C57Bl/6J mice 718 

(previous work was performed on the dorsal hippocampus).  Extracellular recordings of excitatory 719 

postsynaptic potentials (EPSPs) and population spikes showed prominent decrements in 720 

population spike amplitudes and reduced maximal neuronal output without changes in dendritic 721 

field EPSPs. Such reduced EPSP-spike coupling is a novel finding suggesting impaired 722 

information transfer.   723 

Reduced presynaptic glutamate release and decreased abundance of glutamate receptors in 724 

purified rat synaptosomes after 56Fe exposure supports both the pre-pulse facilitation and LTP 725 

observations and implicates post-synaptic remodeling (Machida et al. 2010).  Thus, both intrinsic 726 

properties as well as the dynamic remodeling and strengthening of synapses are sensitive to 727 

charged particles in a brain region-, cell type-, and radiation species-specific pattern, which 728 

predicts inappropriate signal processing and behavior. 729 
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In a different model, motivated by cosmic ray-induced light flash observations in astronauts, 730 

Sannita et al. (2007) showed that pulses of 12C ions were able to generate prompt electroretinogram 731 

and visual cortex signals in irradiated mice, suggesting direct depolarization of neurons from 732 

particle traversals. 733 

Patch clamp studies were conducted on single neurons in acute C57Bl/6J mouse hippocampal 734 

slices following irradiation with protons at 0.1 to 1 Gy.  The data revealed that at 90 days post-735 

irradiation, 1-Gy exposures significantly hyperpolarized cell resting membrane potentials (VRMP) 736 

by ~4 mV, decreased input resistance (Rin) by ~22 MΩ (megaOhm), upregulated persistent 737 

sodium current (INaP), and increased the rate of miniature excitatory post-synaptic currents 738 

(mEPSC), indicating a general reduction in pyramidal neuron excitability in the CA1 (Sokolova, 739 

et al. 2015).  These small alterations in passive membrane properties had a dramatic impact 740 

on network function in a computational model of the CA1 microcircuit, leading to a 50% 741 

decrease in rhythmic theta oscillation power at the 4-Hz peak frequency (see below under 742 

modeling).   743 
In the DG, characterized by enhanced inhibitory tone compared to CA1, patch clamp studies 744 

focused on inhibitory neurotransmission in DG granule cells in mice 90 days after exposure to 150 745 

MeV 1H, 600 MeV/n 28Si, and 600 MeV/n 56Fe  ions at 0.1 to 1 Gy (Marty et al. 2014).  Proton 746 

exposure (10, 50, 100 cGy) increased synaptic excitability with a dose-dependent decrease in 747 

amplitude and charge transfer of miniature inhibitory post-synaptic currents (mIPSCs), but no 748 

changes were detected in the expression of GABAA receptor subunits a2, b3, or c2.  Field 749 

recordings using a microelectrode array also indicated a dose-dependent increase in granule cell 750 

excitability.  Exposure to Si ions (25 and 100 cGy) had no significant effects on synaptic 751 

excitability, mEPSCs, or mIPSCs.  Fe ion exposure (25 and 100 cGy) had no effect on synaptic 752 

excitability and mIPSCs but significantly increased mEPSC frequency at 1 Gy, without changes 753 

in mEPSC kinetics, suggesting a presynaptic mechanism.  Together, these findings illustrate the 754 

ion and tissue field specificity of the radiation responses and suggest that preferential radiation-755 

induced impairment of inhibitory activity leads to increased overall excitability in the DG. 756 

h. Molecular Marker Changes 757 

Altered gene expression in brain tissue has been shown to be dose-, dose rate-, and radiation 758 

species-dependent.  In mice, 1H exposures altered neurotrophin and receptor-signaling pathway-759 

related gene expression changes in the hippocampus (Chang et al. 2010).  Brains from mice 760 

exposed to protons also showed dysregulation of miRNAs (Khan et al. 2013), highlighting a role 761 

for epigenetic regulation.  With gamma rays, Lowe et al. (2009, 2012) found that low doses 762 

primarily altered expression of genes regulating ion channels, synaptic plasticity, and vascular 763 

damage, while high-dose responses affected oxidative stress and amyloid processing genes.  They 764 

also have shown alterations in choroid plexus and cerebrospinal fluid components such as 765 

transthyretin which serves a chaperone function in amyloid protein removal and suggest the use of 766 

calcium regulator troponin T1 (Tnnt1) as a useful biomarker for radiation exposure.  Unbiased 767 

proteomic analysis of γ-ray-irradiated mouse brains showed changes in 6% of 997 peptides (Lim 768 

et al. 2011), and proteomic data from 56Fe-irradiated rats have been analyzed in serum and brain 769 

(Britten 2010, 2014) and proteomic signatures associated with high and low performance scores 770 

have been identified.  These data and others are being scrutinized for applicability to biomarkers 771 

that might be obtained from astronauts to monitor potential pathologies (Straume et al. 2008).  772 

Brain acetylcholine metabolism changes have been detected after ≤ 0.24 Gy of β irradiation 773 

(Egana 1962), while in rat brains, tyrosine hydroxylase levels (dopamine pathway) are unaffected 774 
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by 56Fe irradiation (Rice et al. 2009) and neural cell adhesion molecule (NCAM; a synaptic 775 

plasticity regulator) is down-regulated (Casadesus et al. 2005).  Casadesus et al. (2005) also 776 

demonstrated changes in the microenvironment associated with HZE-induced neurodegeneration 777 

as shown in Figure 4.  It was noted that the observed changes are similar to those found in aged 778 

animals, suggesting that irradiation responses may share pathways with those of aging. 779 

 780 

 781 

Figure 4.  Reproduced from Casadesus et al. (2005). (Panel A) Expression of polysialylated 782 

isoforms of the neural cell adhesion molecule (PSA-NCAM) in the hippocampus of rats irradiated 783 

(IR) with 2.5 Gy of 56Fe high-energy radiation and control (C) subjects as measured by % 784 

density/field area measured. (Panel B) PSA-NCAM staining in the dentate gyrus of representative 785 

irradiated (IR) and control rats.  786 

 787 

In a study by Kempf et al. (2014b), 10-day-old NMRI albino mice were whole-body 788 

irradiated with 2 - 100 cGy of 60Co γ-rays and analyzed 6 - 7 months post-irradiation with respect 789 

to the proteome, transcriptome, and several miRNAs in the cortex and hippocampus. Signaling 790 

pathways related to synaptic actin remodeling, such as the Rac1-Cofilin pathway, were altered 791 

after ≥ 50 cGy in the cortex and hippocampus, while MAP-2 and PSD-95 were elevated at 100 792 

cGy.  Synaptic plasticity genes Arc, c-Fos, and CREB were reduced at 1.0 Gy, coupled with 793 

increased levels of the associated microRNAs miR-132/miR-212 and miR-134.  NMDA, AMPA, 794 

and metabotropic glutamate receptor levels were also decreased after 1 Gy.  These changes at 6-7 795 

months were preceded at 2 months post-irradiation by impairments in open field behavior at doses 796 

≥ 50 cGy.  Below, figure 5 illustrates an excerpt from figure 2 of Kempf et al. (2014b) shows 797 

changes in signaling pathways related to synaptic structure and plasticity 6 - 7 months post-798 

irradiation. 799 

 800 
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Figure 5.  (Excerpt from Figure 2 in Kempf et al. 2014b). Analysis of signaling pathways from 801 

proteomic experiments.  Associated signaling pathways of all dose-dependent significantly 802 

deregulated proteins using the Ingenuity Pathway Analysis (IPA) software are shown in panel D.  803 

Higher color intensity represents higher significance (p-value), whereas all colored boxes have a 804 

p-value of ≤ 0.05; white boxes have a p-value of > 0.05 and are not significant. Hippocampal and 805 

cortical data result from four and five biological replicates, respectively. H: Hippocampus, C: 806 

Cortex. 807 

    Glutamate levels in the brain are controlled by astrocytes whose specific uptake mechanisms 808 

prevent excessive buildup in the intercellular space which can lead to excitotoxicity.  Sanchez et 809 

al. (2009, 2010) found that radiation alters the levels of several glutamate transporters in cultured 810 

astrocytes, neurons and mixed cultures of human hNT2 cells differentiated with retinoic acid. 811 

    The behaviorally-induced immediate early gene Arc was investigated by Rosi et al. (2008, 812 

2010) and Raber et al. (2013) for its expression in the dentate gyrus of mice.  Both messenger 813 

RNA and protein levels in neurons showed behaviorally-induced upregulation which was inhibited 814 

by exposure to X-rays and low doses of 56Fe ions.  815 

When adult rats were exposed to fractionated 40 Gy whole-brain 137Cs-γ irradiation, the 816 

protein Homer1a was temporarily (at 48 hrs) up-regulated in the hippocampus but down-regulated 817 

in the cortex.  Homer1a is a protein under the control of the radiation-inducible ERK signaling 818 

pathway and binds to postsynaptic, G-protein coupled, metabotropic glutamate family 1 receptors 819 

(mGluR1), which modulate NMDA receptors and are linked to cognition.  Two months later, the 820 

early changes correlated with decreases in hippocampal mGluR1 and increases in cortical 821 

mGluR1, suggesting that the ERK signaling pathway may function through Homer 1a to influence 822 

cognitive processes through glutamate receptors (Moore et al. 2014). 823 

Genotoxic changes are also seen in the brain.  Chang et al. (2007) found a persistently 824 

elevated lacZ transgene mutation frequency in the brains of mice irradiated with 1H and 56Fe, and 825 

there was a suggestion of clonal expansion, which may implicate the neurogenic cell population 826 

as preferential targets.  Zhang et al. (2015) measured mRNA levels of Rad9, Rad1, and Hus1 DNA 827 

repair genes in 129 strain mouse tissues 2 - 48 hrs after 10 Gy 60Co γ irradiation.  They found that 828 

Rad-1 was unresponsive but Rad-9 and Hus-1 were transiently 8- and 145-fold greater, 829 

respectively, at 2 hrs and 12- and 4-fold greater at 12 hrs, illustrating a highly dynamic DNA 9-1-830 

1 repair pathway response.  Finally, head-only irradiation of mice with x-rays led to out-of-field 831 

genotoxic effects and altered methylation in the spleen (Koturbash et al. 2008), while a combined 832 

cranial γ-ray and 12C ion protocol showed both adaptive and out-of-field responses in mice for 833 

reductions in reproductive pituitary hormones, testis weight, and sperm count (Zhang et al. 2006). 834 

i. Loss of Autophagy 835 

In a series of studies conducted over many years, Rabin and co-workers showed that even 836 

though exposure to HZE particles occurs at low fluence rates, the cumulative effects of long-term 837 

exposure result in molecular changes similar to those seen in aged animals. Recently, they assessed 838 

(Poulose et al. 2011) markers of autophagy, a dynamic process for intracellular degradation and 839 

recycling of toxic proteins and organelles (associated with neurodegenerative processes), stress, 840 

and inflammatory responses, in the brains of Sprague-Dawley rats irradiated at 2 months of age 841 

with 5, 50, and 100 cGy of 1000 MeV/n 16O particles.  Exposure to 16O particles significantly 842 

inhibited autophagy function in the hippocampus as measured by ubiquitin inclusion bodies (P62/ 843 

SQSTM1) and autophagosome markers (MAP1B-LC3, beclin1, and mTOR). The changes also 844 
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correlated with protein kinase Cα, nuclear factor kappa B (NF-κB), and GFAP, indicating glial 845 

cell activation 75 days after exposure, indicative of oxidative stress and inflammation.  846 

 847 

3. Behavioral Effects 848 

a. Overall Observations 849 

While many molecular, structural, and functional alterations in CNS activity can be 850 

quantified after low doses of radiation, the complexity of the brain, its redundancy, its distributed 851 

processing, and its capacity for adaptation may work together to compensate for damage to 852 

structures or disruption of processes.  Therefore, it is important to assess CNS responses at the 853 

system level by behavioral testing to determine whether function has been altered by the interplay 854 

of contributing responses.  Behavioral effects are difficult to quantify, and it is well established 855 

that behavioral outcomes are dependent on the animal species, strain, age, sex, and assessment 856 

method used (Buckner and Wheeler 2001).  For example, spatial learning and memory tests, such 857 

as the Barnes maze and Morris water maze, may be more or less reliable in mice versus rats (Raber 858 

et al. 2004; Shukitt-Hale et al. 2003, 2000).  The age at evaluation and irradiation affects the 859 

responses to charged particles (Rabin et al. 2012) and X-rays (Forbes et al. 2014).  Sex and 860 

genotype (e.g., ApoE allele and ATM) are important variables (Acevedo et al. 2008; Benice and 861 

Raber 2009; Haley et al. 2012; Higuchi et al. 2002; Villasana et al. 2006, 2010, 2011; Yamamoto 862 

et al. 2011; Yeiser et al. 2013; Johnson et al. 2014; Parihar et al. 2014).  Additionally, observations 863 

comparing head only-, body only-, or whole body-irradiated animals demonstrate a significant role 864 

for the periphery in determining behavioral responses (Rabin et al. 2014).  Finally, extrapolation 865 

of animal behaviors to humans is a challenging task due to the lack of human data, differences in 866 

functions of different brain regions, and vast differences in abilities, but some behavioral test 867 

analogs exist, such as the Novel Image Novel Location test (Raber 2015) and the Psychomotor 868 

Vigilance Test (Davis et al. 2014). Methods to estimate risk must take these considerations into 869 

account. Despite these cautions, published studies now provide convincing evidence that space 870 

radiation does affect the behavior of animals in a complex manner dependent on dose and radiation 871 

quality. 872 

Overall, whole-body or head-only irradiation reliably elicits quantifiable behavioral 873 

impairments in rodents at doses ≥ 50 cGy, which may appear acutely or develop over many 874 

months.  With the caveat that brain functions are not strictly localized to specific anatomical 875 

regions, most observations to date have interrogated hippocampus-dependent memory, cortex-876 

dependent executive function and cognition, and amygdala-dependent anxiety and fear.  Recent 877 

experiments have detected behavioral changes at doses < 50 cGy and, in some cases, below 5 cGy.  878 

Most tests have been performed on irradiated young adult inbred animals tested after 1 - 3 months.  879 

The most commonly employed tests include the Morris water maze and Barnes maze (Britten et 880 

al. 2012; Villasana et al. 2010), novel object recognition, object in place recognition, (Casadesus 881 

et al. 2004; Kumar et al. 2013; Shukitt-Hale et al. 2000; Tseng et al. 2013), and contextual fear 882 

conditioning (Raber 2013, 2011) for hippocampus-dependent memory (especially spatial memory) 883 

but with strong associations with the cortex as well.  Cognitive behaviors more closely associated 884 

with the frontal cortex include operant conditioning (Rabin et al. 2007; Rice et al. 2009), attentional 885 

set shifting (Britten et al. 2014; Lonart et al. 2012), and psychomotor vigilance tests (Heinz et al. 886 

2008; Davis et al. 2014).  Anxiety and fear are commonly assessed with open field tests and 887 

elevated plus or zero mazes (Kumar et al. 2013).  Many other tests have been employed as well, 888 

such as acoustic startle (Haerich et al. 2005). 889 
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Radiation types investigated to date are X-rays, gamma rays, electrons, and charged particles, 890 

including 1H+, 12C6+, 16O8+, 28Si14+, 48Ti20+, and 56Fe26+, with energies from 150 MeV/n to 5 GeV/n.  891 

Dose responses have been described as linear or non-linear (e.g., U-shaped), and responses elicited 892 

by different ions may be opposing, which presents problems for estimating the effects of multiple 893 

ion exposures and interpreting RBE values.  Clear patterns for the dependence on LET remain 894 

elusive.  Dose responses utilizing mixed fields, such as those planned for the GCR simulator at 895 

NSRL, will be important in evaluating behavioral responses relevant to space radiation exposures. 896 

Selected observations from a variety of experiments utilizing behavioral testing are presented 897 

below.  898 

 899 

b. Sensorimotor Tests 900 

Sensorimotor deficits and neurochemical changes were observed in rats exposed to low doses 901 

of 1 GeV/n 56Fe (Joseph et al. 1993, 1992).  Doses below 1 Gy were able to reduce performance 902 

on the wire suspension test.  Changes occurred as early as 3 days after radiation exposure and 903 

lasted up to 8 months. A negative result was reported by Pecaut et al. (2004), where no behavioral 904 

effects were seen in female C57BL/6 mice 2 to 8 weeks after exposure to 0 - 200 cGy of 1 GeV/n 905 
56Fe as measured by open-field, rotorod, or acoustic startle habituation.  906 

 907 

c. Conditioned Taste Aversion 908 

There is evidence that deficits in conditioned taste aversion (CTA) are induced by very low 909 

doses of heavy ions (Hunt et al. 1989; Rabin et al. 1989, 1991, 1994, 2000). The CTA test is a 910 

classical conditioning analysis that assesses avoidance behavior that occurs when ingestion of a 911 

normally acceptable food item is associated with illness (Riley and Tuck 1985).  CTA involves the 912 

amygdala and insular cortex, dopaminergic, cholinergic, and glutamatergic neurotransmitters, as 913 

well as the expression of MAP kinase and CREB signaling pathways.  It was established that the 914 

effects of radiation on CTA in Sprague-Dawley rats is somewhat LET-dependent and that 56Fe 915 

ions are the most effective of the various low- and high-LET radiation types that have been tested  916 

(Rabin et al. 1989, 1991).  Doses as low as 20 cGy of 56Fe ions can impair CTA.  Attempts to 917 

establish an RBE (detection threshold dose) vs. LET relationship by comparing 56Fe, 48Ti, and 28Si 918 

particles of different energies suggest that the RBE of different particles for behavioral dysfunction 919 

cannot be predicted from LET alone (Rabin et al. 2007). 920 

 921 

d. Operant Conditioning 922 

Operant conditioning tests measure the effect of motivation and responsiveness to 923 

environmental stimuli in modifying voluntary behaviors. Studies by Rabin et al. (1994, 2003, 924 

2005, 2011a, 2011b) examined the ability of rats to perform "an operant order" to obtain food 925 

reinforcement using an ascending fixed-ratio schedule (FR); i.e., rats were trained to press a lever 926 

an ever-increasing number of times to obtain a food pellet.  The behavior is associated with the 927 

striatum and dopaminergic system of the brain.  Detection limits for 56Fe, 48Ti, and 28Si particles 928 

of energies from 600 MeV/n to 1000 MeV varied from 25 to 200 cGy, with lower energy particles 929 

tending to be more effective.  When male rats were exposed to 25–200 cGy of 1 GeV/n 56Fe 930 

particles at 25 - 200 cGy at ages of 2 - 16 months and evaluated 2 - 4 months later, the results 931 

showed that older rats exhibited a performance decrement compared to younger rats (Rabin et al. 932 
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2012).  When 8-week-old rats were whole-body- or partial-body-irradiated with 1 - 25 cGy of 1 933 

GeV/n 16O ions and tested 8 weeks later, provocative and controversial differences were reported 934 

(Rabin et al. 2011b, 2014).  While head-only irradiation significantly impaired behavior at 1 cGy 935 

only, whole-body exposed animals were impaired at all doses, as seen below in Figure 6, and body-936 

only exposures exhibited intermediate effects.  This is the lowest effective dose reported to date 937 

for behavioral effects and draws attention to the interactions between the CNS and soma. 938 
 939 

 940 
Figure 6.  Effects of partial-/whole-body exposure to 16O particles on operant responding on an 941 

ascending fixed-ratio schedule. Mean ± standard error of the mean (SEM). Panel A: Head-only 942 

exposure; panel B: whole-body exposure. [Panels C & D not shown].  Excerpt of Figure 3 943 

reproduced from Rabin et al. (2014). 944 

 945 

e. Learning and Memory 946 

Spatial learning and memory behaviors have been the most widely used tests to probe the 947 

effects of charged particle exposure on behavior and have sometimes proven to be the most 948 

sensitive.  Mazes are often used to assess hippocampus-dependent spatial memory, as they require 949 

animals to learn to find an escape location (which may remain in one location or be moved) by 950 

referencing distant visual cues.  Water mazes and Barnes mazes both have an element of fear 951 

motivation from being in water or in a bright and sometimes noisy location.   952 

Studies with young Sprague-Dawley rats using the Morris water maze were among the first 953 

and examined effects of whole-body irradiation with 1.5 Gy of 1 GeV/n 56Fe ions 1 month post-954 

irradiation.  In this test, animals must locate and remember the position of a submerged platform.  955 

Irradiated rats demonstrated cognitive impairment analogous to decrements observed in aged 956 

Fischer rats, leading to the suggestion that increased oxidative stress may be responsible for the 957 

induction of both radiation- and age-related cognitive deficits (Shukitt-Hale et al. 2000).  Denisova 958 

et al. (2002) also exposed rats to 1.5 Gy of 1 GeV/n 56Fe ions and tested their spatial memory in 959 

an eight-arm radial maze. Radiation exposure impaired the rats’ cognition, leading to more errors 960 

than those made by control rats, and the animals were unable to adopt a spatial strategy to solve 961 

the maze.    These findings were reproduced by Raber and others as well at somewhat lower doses 962 

(Raber et al. 2004; Villasana et al. 2011).   963 

An alternative maze design is the Barnes maze, in which animals on a brightly-lit circular 964 

platform must learn the position of a single dark escape hole located at the periphery of the field 965 
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containing 40 or more false holes (Britten et al. 2012; Villasana et al. 2010).  Britten et al. (2012) 966 

used young male Wistar rats exposed head-only to 20 – 60 cGy of 1 GeV/n 56Fe ions or 8 – 13 Gy 967 

125 kVp X rays and tested 3 months later for spatial memory performance in the Barnes maze.  968 

Results showed that escape latency time in the Barnes maze was increased (impaired performance) 969 

after ≥ 20 cGy of high-LET iron particles but only after > 10 Gy but ≤ 13 Gy of low-LET X-rays 970 

(see Figures 7 and -8).  The authors suggest that an RBE of ~50 may apply to the threshold for 971 

observing impairments and is unlikely to involve significant cell killing. 972 

 973 

 974 
  Fig. 7 X-ray response.      Fig. 8 Fe ion response. 975 
 976 

Figure 7. [Left] Effect of X radiation on the relative escape latency. Figure shows the relative 977 

escape latency time (day 3/day 1 escape latency times), REL(D3/D1), of rats exposed to 0, 8, 10, 978 

and 13 Gy of X rays. Values are means ± SEM. *P < 0.05 compared to the unirradiated population, 979 

analyzed by two-tailed Mann-Whitney test.  Reproduced from Figure 1 of Britten et al. (2012). 980 

 981 

Figure 8. [Right] Effect of 1 GeV/u 56Fe-particle radiation on the relative escape latency. Figure 982 

shows the relative escape latency time (day 3/day 1 escape latency times), REL(D3/D1), of rats 983 

exposed to 0 (open bar), 20 (solid bar), 40 (cross-hatched bar), and 60 (diagonally hatched bar) 984 

cGy of 1 GeV/u 56Fe particles. Values are means ± SEM. *P < 0.05 compared to the unirradiated 985 

population, analyzed by the two-tailed Mann-Whitney test. Reproduced from Figure 2 of Britten 986 

et al. (2012). 987 

 988 

Another design that uses both fear motivation and elements of spatial memory is contextual 989 

fear conditioning, in which animals are trained to anticipate a foot shock in one spatial environment 990 

coupled to a sound cue.  They are then placed in either the same or a different spatial environment 991 

± the sound cue to test their association of the cue and environmental references.  Whole-body 992 

irradiation of C57Bl/6 mice with 50 or 100 cGy 600 MeV/n 56Fe irradiation resulted in impaired 993 

contextual but not cued fear freezing, which correlated (cued fear freezing) with expression of the 994 

behaviorally-induced immediate early gene, Arc, in the dentate gyrus (Raber et al. 2013).  Similar 995 

tests run with 600 MeV/n 28Si ions elicited an enhancement of contextual fear freezing at 25 cGy 996 

but not 100 cGy - evidence of an inverted U-shaped dose response (Raber et al. 2014).  When 6-997 

7-month-old B6D2F1 female and male mice were irradiated with 20 - 160 cGy of 1 GeV/n protons, 998 

263 MeV/n 28Si ions, or 1 GeV/n 48Ti ions and tested for contextual and cued freezing after 3 999 

months, no effects were observed for protons or 48Ti, but 28Si-irradiated mice were impaired in 1000 
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contextual freezing with 160 cGy of 28Si (Raber et al. 2015).  This contrasts with the enhancement 1001 

of freezing observed with 25 cGy Si in C57Bl/6 mice and illustrates contributions of strain and 1002 

particle type on cognitive outcome measures.  Sweet et al. (2014) irradiated C57Bl/6 mice with 0 1003 

- 200 cGy of 1 GeV protons and did not observe contextual fear changes out to 12 months.  1004 

 1005 

f.  Novel Object Recognition 1006 

In the novel object recognition (NOR) task, an animal is placed in an open field with 2 (or 1007 

more) objects whose position and features it learns.  The animal is removed and placed back in the 1008 

"arena" in which one object has been replaced with another (previously shown to elicit equal 1009 

interest as the first).  Rodents normally spend more time exploring the novel object, and the 1010 

proportion of time spent exploring the new object divided by the total object exploration time is 1011 

used as the discrimination index.  Haley et al. (2013) studied the effects of 56Fe particles on 1012 

hippocampal function in male and female C57Bl/6J mice irradiated with 10 – 50 cGy of 600 1013 

MeV/n 56Fe ions and tested those 2 weeks later.  Compared to sham irradiation, radiation impaired 1014 

novel object recognition and spatial memory retention in female and male C57Bl/6J wild-type 1015 

mice at an early time point at doses as low as 0.1 Gy. There were no effects of irradiation on 1016 

contextual fear conditioning or spatial memory retention in the water maze for the same animals.  1017 

Figure 9 illustrates the disruption of preferential attention to the novel object (both sexes pooled).  1018 

The results also illustrate how different behavioral tests may differ in sensitivity in the same 1019 

animals. 1020 

 1021 

 1022 

Figure 9.  Novel object recognition of sham-irradiated and irradiated male and female mice 1023 

analyzed (panel D) [as time] spent exploring the familiar and novel objects. n = 8 1024 

mice/sex/treatment. *P < 0.05 versus the familiar object.  Excerpt from Figure 1 of Haley et al. 1025 

(2013).  1026 

 1027 

Parihar et al. (2015) have extended the results of the NOR task and complementary novel 1028 

location or object in place (OiP) test to very small doses of 600 MeV/n 16O and 48Ti particles using 1029 

6-month-old male transgenic mice [strain Tg(Thy1-EGFP) expressing the Thy1-EGFP transgene].   1030 

These animals were significantly older than those examined by Haley et al. (2013) above.  The 1031 

data showed substantial impairment in NOR and OiP performance 6 weeks post-irradiation after 1032 

5 - 30-cGy exposures depending on ion type, as shown in Figure 10.   1033 

 1034 
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Figure 10. Behavioral deficits measured 6 weeks after charged particle exposure. (A) Performance 1035 

on a NOR task reveals significant decrements in recognition memory indicated by the reduced 1036 

discrimination of novelty. (B) Performance on an OiP task shows significant decrements in spatial 1037 

memory retention, again indicated by a markedly reduced preference to explore novelty. *P = 0.05, 1038 

**P = 0.01, ***P = 0.001, analysis of variance (ANOVA).  Reproduced from Figure 1 of Parihar 1039 

et al. (2015). 1040 

 1041 

Unlike the mouse studies, when 8-week-old Sprague-Dawley rats were exposed to whole-1042 

body or partial-body irradiation at 1 - 25 cGy low doses of 1 GeV/n 16O ions, no effects on novel 1043 

object or place recognition were observed at 3 weeks (Rabin et al. 2014) in animals that later 1044 

showed operant conditioning decrements, nor were anxiety measures altered in elevated plus maze 1045 

tests. 1046 

 1047 

g. Tests of Executive Function 1048 

The laboratory of Britten (Lonart et al. 2012) has considered the possibility that 1049 

neurocognitive tasks regulated by the prefrontal cortex could also be impaired after exposure to 1050 

low doses of HZE particles.  They used juvenile male Wistar rats receiving either sham treatment 1051 

or head-only irradiation with 20 cGy of 1 GeV/n 56Fe and tested those 3 months later for their 1052 

ability to perform attentional set shifting (ATSET).  This test employs changes in associations 1053 

between olfactory cues for food rewards that must be located by the natural behavior of digging in 1054 

clean sand.  Irradiated rats showed significant impairments in completion of the ATSET test 1055 

battery.  Specifically, 17% completed all stages compared to 78% of control rats. Most failures 1056 

(60%) occurred at the first "reversal stage", and half of the remaining animals failed at the 1057 

"extradimensional shift" phase of the complex test sequence. These observations suggest that 1058 

exposure to mission-relevant doses of 1 GeV/u 56Fe particles results in the loss of executive 1059 

function in several regions of the cortex: medial prefrontal cortex, cingulate cortex, and basal 1060 

forebrain.  1061 

Britten et al. (2014) next compared both juvenile (6 week old) and socially mature (6 – 11 1062 

months old) Wistar rats that were whole-body-irradiated with 10 – 30 cGy of 1 GeV/n 56Fe and 1063 

tested 3 months post-exposure. Importantly, animals segregated into high- and low-performing 1064 

groups prior to irradiation such that ~25% of juveniles and ~40% of older animals could not 1065 

maintain attention in the task and were removed from the study.  Results of irradiation were 1066 

analyzed for the high-performing groups and indicated that 15 and 20 cGy doses (but not 10 cGy) 1067 

impaired performance in several parameters of attentional set shifting (Figure 11).  Also of interest 1068 
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in these animals were observations on purified synaptosomes in which hyperosmotic sucrose-1069 

stimulated release of acetylcholine (but not GABA) was inhibited at 20 cGy.  This is a measure of 1070 

presynaptic neurotransmitter vesicle secretion form the "readily releasable pool". 1071 

 1072 

 1073 
Figure 11.  Effect of whole-body exposure to 1 GeV/nucleon 56Fe particles on the paradigm-1074 

specific performance of retired breeder rats: number of attempts required to reach the criterion 1075 

following sham-irradiation (open bar) and whole-body exposure to 15 cGy (hatched bar) or 20 1076 

cGy (solid bar) 1 GeV/nucleon 56Fe. Graphs show means ± SEM. HAB: habituation; SD: simple 1077 

discrimination; CD: compound discrimination; CDR: compound discrimination reversal; IDS: 1078 

intradimensional shifting; IDR: intra-dimensional shifting reversal; EDS: extra-dimensional 1079 

shifting; EDR: extra-dimensional shifting reversal.  Reproduced from Figure 5 of Britten et al. 1080 

(2014). 1081 

 1082 

Davis et al. (2014) exposed young Long-Evans rats to 25 - 200 cGy head-only 150 MeV 1083 

protons and tested them from 25 to 251 days post-irradiation using the rodent Psychomotor 1084 

Vigilance Test (rPVT), which was adapted from a human test battery.  The rPVT test uses light 1085 

cues, nose-poke responses, and food rewards to measure reaction times, performance accuracy, 1086 

persistence of attention, and impulsivity (premature responding) to randomized cues.  Consistent 1087 

differences were not initially observed when averaged across all animals in each treatment group.  1088 

However, when animals' early post-irradiation performance scores were subjected to hierarchical 1089 

clustering analysis, they fell into two distinct groups, radiation sensitive and insensitive.  There 1090 

was a progressive radiation impairment of performance in sensitive animals at all doses tested over 1091 

251 days (Figure 12), which reached stable values after 2 months.  Sensitive animals also showed 1092 

greater radiation-induced changes in dopamine transporter protein and dopamine D2 receptor 1093 

levels than insensitive animals.  Earlier experiments by these investigators showed impaired 1094 

reaction times in Long Evans rats after 5 Gy head-only 137Cs γ-ray exposure (Heinz et al. 2008).  1095 
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 1096 

Figure 12.  Examples of performance accuracy for animals showing pronounced deficits when 1097 

exposed to 150 MeV/n protons at 25 - 200 cGy. The percent correct scores are shown as a function 1098 

of days post-exposure, with each dot representing a separate session. Data points in the far left on 1099 

each graph indicate baseline performances prior to exposure. Shaded areas indicate the range of a 1100 

95% confidence interval around the pre-exposure baseline performances of all non-exposed 1101 

control animals. Closed circles: Animals identified by cluster analysis as being radiation-sensitive; 1102 

open circles: Average performances of all non-exposed control animals. Solid and dashed lines: 1103 

Visual fits of data trends to the data, based on centered third-order polynomial transforms.  1104 

Reproduced from an excerpt of Figure 1 from Davis et al. (2014). 1105 

 1106 

The results of these complementary sets of investigations highlight the importance of 1107 

individual differences in executive functioning, which is sensitive to charged particles at ≥ 15 - 25 1108 

cGy.  The authors also cite studies showing high/low performance groups for rats based on Barnes 1109 

maze performance and even in astronauts with high/low sensitivity to sleep deprivation, further 1110 

emphasizing the importance of inter-individual variation and cautioning against global averaging. 1111 

 1112 

h. Emesis 1113 

Within 24 hours following exposure to low-LET radiation, the immediate CNS effects are 1114 

anorexia and nausea (Fajardo et al. 2001).  These prodromal risks are dose-dependent and provide 1115 

indicators of the exposure dose.  Thus, ED50 estimates are 1.08 Gy for anorexia, 1.58 Gy for nausea, 1116 

and 2.40 Gy for emesis.  These doses are at the high end of those estimated for the largest SPEs 1117 

for an astronaut in a minimally shielded environment and prompted investigation of emesis in a 1118 

non-rodent animal model, as mice and rats do not vomit.  In a study by Sanzari et al. (2013), 12-1119 

16-week-old female Fitch ferrets were whole-body-irradiated with 0.25 to 2 Gy of 60Co γ-rays or 1120 

spread out Bragg peak protons from a 155 MeV beam (to simulate the SPE spectrum) at 0.5 Gy/min 1121 

or 0.5 Gy/hr and followed for up to 7 hours for retching- and vomiting-related endpoints. The high-1122 

dose-rate cohort exhibited ED50 (95% CI) values of 0.48 (0.16–0.81), 1.01 (0.91–1.12), and 0.89 1123 

(0.69–1.08) Gy for retching after protons and vomiting after gamma rays or protons, respectively.  1124 

Low dose rates were less effective.  Rabin et al. (1992) found similar values in adult male ferrets 1125 

for 600 MeV/n 56Fe particles, fission spectrum neutrons, and 18.5 MeV electrons and reported 1126 

ED50 values of 0.35, 0.40, and 1.38 Gy, respectively.  Thus, there is a dependence of ED50 on 1127 

radiation type, with higher LET species being more effective. 1128 

 1129 
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4. Neurodegenerative Changes 1130 

 1131 
Investigators funded by the Space Radiation Program Element have begun to study the 1132 

effects of space radiation on increasing or accelerating the time of appearance of pathologies and 1133 

neuronal markers of AD using transgenic mouse models. Vlkolinsky examined whether HZE 1134 

particle radiation accelerated age-related neuronal dysfunction using transgenic mice 1135 

overexpressing human amyloid precursor protein (APP). APP23 transgenic mice exhibit age-1136 

related behavioral abnormalities and deficits in synaptic transmission. Vlkolinsky (2010) exposed 1137 

7-week-old APP23 transgenic males to brain-only 56Fe-particle radiation (600 MeV/n; 1 - 4 Gy) 1138 

and recorded synaptic transmission in hippocampal slices at 2 - 24 months.  The results showed 1139 

that radiation accelerated the onset of age-related EPSP decrements recorded at the population 1140 

spike threshold from 14 months of age to 9 months and reduced synaptic efficacy. At 9 months, 1141 

radiation also reduced population spike amplitudes. 1142 

Using a different mouse transgenic model, the laboratory of O’Banion (Cherry et al. 2012) 1143 

examined the effects of 56Fe particle irradiation in the APPswe/PSEN1dE9 (APP/PS1) mouse 1144 

model of AD. APP/PS1 mice show Alzheimer’s pathologies at an old age, and the goal of the study 1145 

was to determine whether low doses of space radiation accelerated the age of appearance of AD 1146 

pathologies. At 6 months after exposure to 0.1 and 1.0 Gy 56Fe radiation, APP/PS1 mice show 1147 

decreased cognitive abilities measured by contextual fear conditioning and novel object 1148 

recognition tests.  Male mice also showed acceleration of Aβ plaque pathology (Figure 13). 1149 

Increases were not due to higher levels of amyloid precursor protein (APP) or increased cleavage 1150 

as measured by levels of the beta C-terminal fragment of APP.  1151 

 1152 

 1153 

Figure 13. [Excerpt of Figure 2 reproduced from Cherry et al. (2012) panels C & E]  1154 

Immunohistochemical staining for Congo red and 6E10 increases after 56Fe particle irradiation. 1155 

(A, C) Representative images of half male brains stained for 6E10 (C) 6 months after 0 cGy or 100 1156 

cGy 56Fe particle radiation. Scale bar is 1 mm.  In addition, the total number of individual 6E10 1157 

positive plaques (E) was determined. Each dot represents a single animal measured as the percent 1158 

area of the cortex and hippocampus combined. Data were analyzed with Student’s t-test for the 1159 

females and one-way ANOVA with a Bonferroni post-test for the males. Data are displayed as the 1160 

mean ± SD, n = 8–14 animals per dose. *P < 0.05, **P < 0.01.  1161 

 1162 

Unlike the findings with charged particles in transgenic animals, Wang et al. (2013) found 1163 

no acceleration of amyloid-β or tau protein pathology for up to two years in 10 cGy X-irradiated 1164 
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wild-type C57BL/6J Jms mice, nor was Morris water maze performance impaired.  While two of 1165 

the 84 AD-related genes (Apbb1 and Lrp1) were down-regulated acutely (4 hr) in the 1166 

hippocampus, only Il1-α was down-regulated after 1 yr.  In a follow-up study using 5 and 10 cGy 1167 

of 290 MeV/n 12C ions (Wang et al. 2014), there again was no evidence of accelerated amyloid-β 1168 

or tau protein pathology; however, a different suite of 6 genes showed acute expression level 1169 

changes, and Il1-α was again down-regulated after 1 yr.  Thus, in mouse models predisposed to 1170 

pathogenic changes, there may be an acceleration of neurodegenerative pathology by charged 1171 

particles.  However, this may not extend to wild-type animals. 1172 

 1173 

D. Non-Human Primate Research 1174 
Essentially all animal research with charged particles has been conducted using convenient 1175 

rodent models, which can only approximate the human condition.  To better understand the 1176 

implications of the rodent-based research, it will eventually be necessary to conduct well-1177 

informed, targeted experiments with higher species and, in particular, non-human primates. 1178 

 1179 

1. Rationale 1180 
Cucinotta et al. (2014) offered a thoughtful rationale for the use of non-human primates in 1181 

the evaluation of CNS radiation risks.  The authors pointed out that: 1182 

 1183 
Non-human primates (NHP) and humans are quite similar in their genetic, physiological, 1184 
pharmacokinetic, and neurobiological characteristics while there are a large number of important 1185 
differences between rodents and humans (Weatherall 2006; Dorus et al. 2004; Heekren et al. 2008). 1186 
Non-human primates are used widely for specific areas of research including HIV/AIDS and in-1187 
fectious diseases, and neuroscience research (reviewed by the Weatherall Report 2006). Research 1188 
on drug addiction, Parkinson’s disease, Alzheimer’s disease and stroke includes the use of NHP is 1189 
being pursued in the U.S. and many other countries. Because of cross-species differences between 1190 
humans and rodents, the determination of clinical significance for CNS health risks remains an 1191 
important problem, especially if based on studies in rodents alone. This important issue is 1192 
compounded for CNS cognitive risks which are known to originate in the frontal cortex, which is 1193 
highly under developed in rodents compared to humans although rodents do provide some 1194 
indication of cognitive risks related in the frontal cortex (Davis et al. 2014; Lonart et al. 2012). 1195 
... 1196 
In broad-terms, mice and rats are used to investigate biological mechanisms and possible dose 1197 
levels of concern, however are limited in representing human risks due to biological differences as 1198 
summarized in Table2 [not shown].  However, NHP research requires much higher costs, and extra-1199 
levels of review and expanded ethical considerations before being considered. It is important that 1200 
such studies be preceded with extensive research in cell and rodent models in order to first indicate 1201 
if potential CNS risks are possible. Considerations of the feasibility of deep space missions and 1202 
time-lines for missions planning relative to research maturity are also needed. 1203 

 1204 

With these considerations in mind, after a solid body of knowledge of behavioral 1205 

consequences of radiation is established for rodent models, focused NHP-based studies should be 1206 

considered to establish the existence of and dose responses for corresponding adverse behavioral 1207 

outcomes in a species with structural and functional characteristics much closer to those of 1208 

humans.  Such studies would ideally incorporate doses and compositions of radiation fields 1209 

comparable to those in space, delivered at the lowest practical dose rates or fractionated over time 1210 

scales corresponding to significant mission segments. 1211 
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Some guidance on what may be expected in non-human primates is provided by earlier 1212 

studies, but none of these studies employed charged particles comparable to those found in space, 1213 

which can now be simulated at particle accelerator facilities such as the NASA Space Radiation 1214 

Laboratory at Brookhaven National Laboratory. 1215 

 1216 

2. Previous Behavioral Studies with Irradiated Non-Human Primates 1217 
In the years immediately following the development of the atomic bomb, numerous 1218 

experimental programs were initiated to understand the health effects of radiation exposure, with 1219 

particular interest in establishing dose responses for morbidity (acute radiation syndrome) and 1220 

mortality (LD50).  Similarly, at the beginning of human space exploration, additional work focused 1221 

on morbidity and mortality that might arise from space radiation exposure was conducted.  Gamma 1222 

rays, x-rays, neutrons, and protons were used in these studies with doses ranging beyond 10 Gy.  1223 

For perspective, the LD50/60 for the rhesus monkey was determined to be about 7.5 Gy (Hankey et 1224 

al. 2015).  Thus, an 11-yr program at the Armed Forces Radiobiology Research Institute (AFRRI) 1225 

along with a 24-year program shared between the Air Force School of Aerospace Medicine 1226 

(AFSAM) and NASA conducted many studies using non-human primates.  Some tests also 1227 

involved exposures at the Nevada Test Site for nuclear weapons.  These studies began around 1228 

1954, with high levels of activity extending through the 1960s, and ended around 1990. They 1229 

primarily used rhesus macaques but also used cynomolgus macaques and chimpanzees. 1230 

Studies in the very high dose range have limited value in assessing behavioral impairments 1231 

due to the complications of acute radiation sickness and small sample sizes, but some test series 1232 

included subjects exposed to doses < 2-3 Gy, and these results may be useful for identifying trends 1233 

in dose dependence and to help define the current state of knowledge.  Published results were 1234 

sometimes classified for many years or appeared in agency technical reports not usually identified 1235 

during modern computer-based literature searches.  Some provocative reports are presented below 1236 

and suggest that behavioral decrements can be measured in non-human primates at doses on the 1237 

order of 1 Gy, are progressive and persistent for many years, involve cognitive and motor 1238 

performance, and exhibit dose responses, but questions of thresholds or RBEs remain highly 1239 

uncertain.  The results should be interpreted with caution. 1240 

The joint NASA/AFSAM bioeffects program was reviewed by Dalrymple et al. (1991) and 1241 

other authors in a focused issue of Radiation Research (Vol 126, 1991).  These studies employed 1242 

whole-body irradiations of rhesus monkeys with several energies of protons ranging from 55 - 1243 

2300 MeV to simulate SPE spectra.  While cataract incidence (Lett et al. 1991) and cancer 1244 

incidence (Wood 1991) were well-documented along with general pathology, effects on the brain 1245 

did not include behavior, and the only salient finding was an elevated incidence of astrocytoma 1246 

and glioblastoma primarily due to 55 MeV protons.  1247 

Davis et al. (1962) reported results from male rhesus monkeys administered 60 Gy of 250 1248 

kVp X-rays during partial head exposure in two 30-Gy monthly fractions to either the anterior 1249 

frontal lobes, inferior parietal lobe, or both.  Animals were pre-trained for 6 months on the 1250 

Wisconsin General Test Apparatus (WGTA), requiring object food reward pairings, bent wire 1251 

problems, patterned string tests, and the “elevator detour problem”, and then continuously for 60 1252 

days covering the second radiation exposure and a further 30 days post-irradiation.  General 1253 

disturbances in all tests and overall hyperactivity were noted early in all test subjects, but only the 1254 

"elevator detour problem" requiring fine motor tasks clearly differentiated the irradiated groups. 1255 
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Nine 5 - 17-year-old chimpanzees (3 females and 6 males) received whole-body doses of 1256 

3.75 or 4 Gy 60Co-γ over 12 hours (~ 0.5 cGy/min) and were tested post-irradiation on a set of 25 1257 

different tasks involving rapid movement, repetitive responses, detection of minor differences in 1258 

stimulus cues, and spatial memory (Riopelle 1962).  Early deterioration of performance (3 weeks) 1259 

was associated with acute radiation syndrome, but three of the 14 tests that could discriminate 1260 

irradiated versus unirradiated groups indicated loss of performance (4-choice oddity, visual acuity, 1261 

and size discrimination), which was persistent for 3-5 years.  For example, in the 4-choice oddity 1262 

test, animals had to select which of a set of 4 wooden plaques covered with a complex wallpaper 1263 

pattern was unique, which would result in a food reward.  Shown below in figure 14 are data from 1264 

3-5 years post-irradiation. 1265 

Figure 14. Performance of normal and irradiated chimpanzees on a task in which they had to select 1266 

the unique stimulus from three identical stimuli.  [Reproduced from Figure 3 of Riopelle, 1962]  1267 

 1268 

Brown et al. (1962) and Melville et al. (1966) reported on a group of male rhesus monkeys 1269 

that in 1964 were subjected to a series of 16-hr exposures to fast neutrons and gamma rays from a 1270 

Polonium-Beryllium source repeated in 20 (4-day interval) to 40 (12-day interval) fractions to 1271 

achieve cumulative doses ranging from 76.5 to 609 cGy [using 1 rep (Roentgen equivalent 1272 

physical) = 0.93 cGy conversion].  These animals were followed for more than 7 years post-1273 

irradiation.  The principal early effect noted was a transient decrease in peripheral blood cell counts 1274 

noted in the higher dose group. The principal late effects involved a reduction in visual acuity and 1275 

a series of persistent behavioral changes along with testicular damage.  Testing on an object-quality 1276 

discrimination learning set, bent-wire detour problems, a finger dexterity test, and linear position 1277 

preferences during the first 6 months resulted in no measureable changes.  However, at 9 - 10 1278 

months post-irradiation, relative responses to cage-related stimuli (“prepotent” stimuli) 1279 

significantly outweighed distracting uncontrolled auditory stimuli occurring outside the test room 1280 

(Figure 15), suggesting decreased distractibility in the irradiated animals, which was confirmed 4 1281 

months later.   1282 
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 1283 
Figure 15. Reproduced from Melville et al. (1966). Decreases in responses to extra-cage stimuli 1284 

indicating decreased distractibility.  Dose groups were 0, 77-154 cGy (Low), and 312-613 cGy 1285 

(High). 1286 

 1287 

Food preferences of the monkeys underwent permanent changes 14 to 16 months after 1288 

exposure, and by two years, a series of Wisconsin General Test Apparatus-based tests such as 1289 

oddity reversal continued to show changes in the high-dose group consistent with reduced 1290 

distractibility, leading, in turn, to enhanced test performance.  At 3 years post-irradiation, a loss of 1291 

visual acuity was detected in the high-dose group.  At 78 months post-irradiation, reversal learning 1292 

in a two-object discrimination problem showed enhanced performance (less distractibility) at the 1293 

p=0.005 level of significance.  Seven years after exposure, animals were tested for stability of 1294 

behavior under conditions of social distraction when a female monkey at the estimated time of 1295 

ovulation was presented as a distracting stimulus, and stability of behavior was disrupted except 1296 

in the high-dose group. 1297 

Brown et al. (1962) and McDowell et al. (1959) reported on sixty-four rhesus monkeys (39 1298 

male and 25 female) of age 22 - 28 months in 8 groups that were subjected to irradiation during a 1299 

nuclear weapons test at the Nevada Test Site and received from 1.91 to 4.5 Gy of mixed gamma-1300 

rays (~62%) + neutrons (~38%) [based on 1 rep = 0.93 cGy].  They were evaluated 11 months 1301 

later using the WGTA test battery that used associations of food rewards with wooden block 1302 

objects, spatial delayed response problems, patterned string tests, five-dot discrimination, and a 1303 

version of object in place discrimination.  Animals were subdivided into three dose groups, and 1304 

the findings suggested that as doses increased, responses to a variety of tasks were degraded, with 1305 

females generally showing better performance than males.  Other examples of weapons test 1306 

investigations, such as those by Pickering et al. (1958) with estimated doses from 2.2 to 11.8 Gy, 1307 

also measured acute radiation sickness and LD50 but revealed the prompt onset of and sustained 1308 

increase in nondirected visual activity (predominance of visual activity without apparent fixation), 1309 

nondirected locomotor activity (e.g., bouncing, pacing, or swinging), object-directed activity (to 1310 

cage parts or experimenter), and self-directed activity (responses to the subject's own bodies).  1311 

These higher dose observations are less useful due to the associated severe morbidity. 1312 



Space Radiation CNS Risks  

 

38 

 

There is still interest in the high-dose exposure regime in the context of radiological terrorism 1313 

and countermeasure development.  Thus, Hankey et al. (2015) conducted tests of a leukocyte 1314 

growth factor drug (pegfilgrastim, Neulasta™) to mitigate acute radiation syndrome in 3 - 7-yr-1315 

old male rhesus macaques who were exposed to 7.50 Gy total-body irradiation (the LD50/60) using 1316 

6 MV photons.  While there was mitigation of hematologic parameters, the only behavioral 1317 

observations were an improvement in activity and posture that were impaired by the radiation 1318 

exposure at 60 days post-irradiation. 1319 

From a different perspective, there is concern regarding behavioral impairment associated 1320 

with radiotherapy for head and neck tumors.  Robbins et al. (2011) have led this area, and in a 1321 

recent pilot study, three 6–9-year-old male rhesus macaques were whole-brain-irradiated with 40 1322 

Gy of 6 MV photons over 4 weeks in 8 fractions and tested for cognitive function using a delayed-1323 

match-to-sample (DMS) task 5 days/week for 4 months prior to irradiation and for 11 months after 1324 

irradiation.  A visual screen presented 2 to 6 clip art images in randomized positions and at 1325 

randomized times, and the animals were required to identify previously presented images for a 1326 

juice reward.  Progressive post-irradiation cognitive impairment was observed beginning at one 1327 

month using the 6-image (high cognitive load) test but not until 7 months using the two-image 1328 

(low cognitive load) test.  Figure 16 illustrates the cognitive decline.  [18F] deoxyfluoroglucose 1329 

PET analysis comparing local brain metabolism 9 months post-irradiation vs. prior to irradiation 1330 

indicated that mean cerebral glucose metabolism in the cuneate cortex and prefrontal cortex 1331 

regions had decreased, indicating less glucose metabolism in these DMS task-associated brain 1332 

regions. 1333 

 1334 

 1335 

Figure 16. Fractionated whole-brain irradiation leads to chronic, progressive cognitive 1336 

impairment. Each bar represents the mean percentage (±SEM) of correct trials, with two to six 1337 

images summed over all animals, trials, and daily sessions for each month. Arrows indicate the 1338 

start of irradiation. **P < 0.001; horizontal bars span months where asterisks apply. The inset 1339 

shows a regression analysis of the average monthly performance of the three NHPs at low (two 1340 

images) and high (six images) cognitive load.  Reproduced from Figure 2 of Robbins et al. (2011). 1341 

 1342 
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Finally, there have been a few lower dose studies with non-human primates indicating 1343 

behavioral effects at more space-like exposure levels.  In a pilot study by Harlow (1962), a whole-1344 

body dose of 1.5 Gy of 60Co-γ was administered to two mature rhesus monkeys as 5 daily fractions 1345 

of 30 cGy each at 0.67 cGy/min.  The results showed evidence of conditioned avoidance of a fruit 1346 

drink (Kool Aid™) when doses reached 45 cGy and above that became progressively stronger 1347 

over 5 weeks.  In another study by Taylor et al. (1967), evidence was presented that monkeys can 1348 

directly detect 9.4 cGy pulses of 300 kVp X-rays of duration 15 seconds (0.63 cGy/sec).  Animals 1349 

were trained in an operant responding test with variable ratio schedules involving lever pulling 1350 

and food pellet rewards and then tested in a suppression trial with head-only irradiation terminated 1351 

by an unavoidable foot shock.  A suppression ratio of (T1 - T2)/T1 was determined, where T1 is 1352 

the number of responses during 15 sec preceding the X-rays and T2 is the number of responses 1353 

during the exposure.  Suppression ratios as high as 0.8 were observed, but a mechanism for this 1354 

response was not identified. 1355 

Taken together, these observations with their many limitations suggest that non-human 1356 

primates are radiosensitive with respect to behavior and might show behavioral impairments after 1357 

low-dose, charged-particle exposures using cognitively challenging tests adapted to the unique 1358 

properties of the species. 1359 

 1360 

 1361 

E. Future Research Strategies- Recommendations of an Ad-Hoc Panel on CNS Research 1362 
 1363 

The Space Radiation Program Element convened an Ad-hoc panel in 2012 to consider and 1364 

make recommendations on CNS risks from ionizing radiation.  Chaired by Dr. Walter Koreshetz, 1365 

Deputy Director of the NIH Institute of Neurological Disorders, the panel’s findings on CNS space 1366 

research are summarized here: 1367 

 1368 

“The National Aeronautics and Space Administration (NASA)-funded studies of animals 1369 

exposed to high energy particles have demonstrated that some brain alterations can occur at total 1370 

exposures that fall within the range of a prolonged human mission to outer space. These 1371 

experiments raise the question of whether deep space radiation might cause changes in cognition 1372 

that could affect astronaut performance during a long mission, as well as whether radiation 1373 

exposure may increase the risk of accelerated onset of Alzheimer’s disease, Parkinson’s disease, 1374 

cerebrovascular disease, or other neurodegenerative diseases. ... Studies to date have examined a 1375 

wide spectrum of behavioral, pathologic, and physiologic changes in irradiated animals exposed 1376 

to a variety of heavy ions at different energies and fluences. The experiments have been conducted 1377 

for different purposes and by different groups and, thus, are not easily comparable. For these 1378 

reasons, it is difficult to know whether they are tracking a common effect, whether the effects seen 1379 

have been replicated, or whether they can be extrapolated to the human condition. Although these 1380 

studies do not clear concerns for either short term effects on cognition or long term delayed risk 1381 

of accelerated neurodegeneration, neither do the studies establish a definitive, clinically significant 1382 

brain effect of high energy radiation within the expected range of exposure.  1383 

The panel identified a number of limitations in the evidence presented on CNS space 1384 

radiation risk that need to be addressed to enable a more definitive determination of the CNS risk 1385 

related to radiation exposure. To address these limitations, the panel made the following 1386 

recommendations for future studies. 1) Identify quantifiable endpoints for the assessment of 1387 

cellular, molecular, physiological, and behavioral changes and standardize these endpoints among 1388 
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research groups. 2) Conduct more functional assays, to determine how radiation affects cell 1389 

physiologic activity. 3) In addition to long term time points, include acute time points that will 1390 

inform astronaut risk for cognitive dysfunction during space flight. 4) Create a limited and 1391 

standardized set of HZE exposures to allow comparison and replication of data among research 1392 

groups. 5) Promote tissue/sample sharing between CNS and carcinogenesis studies. 6) Continue 1393 

primarily using rodent models, including studies of Alzheimer’s disease (AD) and other 1394 

neurodegenerative risks, with a long term goal of moving to a non-human primate (NHP) to assess 1395 

cognitive risk to humans. Because of the current gaps in our understanding of the causes of 1396 

neurodegenerative disease, even with these changes, the panel felt that a true estimate of the risk 1397 

of accelerated neurodegenerative disease due to space radiation will be difficult to establish in the 1398 

near time. However, a predictive risk model that estimates those acute exposures which have a 1399 

reasonable likelihood of causing acute or subacute neurological impairment was considered 1400 

feasible.  1401 

In considering a long term research strategy to quantitatively assess CNS risk from space 1402 

radiation exposure, the panel recommended a 4-step process. 1) Definitively establish those 1403 

pathological processes and behavioral correlates triggered by single dose high energy radiation in 1404 

rodents. 2) Test the impact of chronic, fractionated exposures as compared to single dose high 1405 

energy radiation at discrete and limited energies, doses, and time points. 3) Determine whether 1406 

robust effects demonstrated in rodents are seen in the NHP. 4) Develop a set of experiments to test 1407 

whether CNS effects suggested by work at the NASA Space Radiation Laboratory (NSRL) are 1408 

indeed seen after exposure in deep space. This may include animal experiments but should 1409 

certainly include a well-thought out evaluation of astronauts during and immediately after return 1410 

from the first deep space missions.  1411 

Overall, the panel recommends that NASA adopt a more integrated research approach. The 1412 

CNS space radiation research to date has been highly correlative and discovery-driven. This 1413 

approach has helped lay a strong foundation of knowledge. In addition to further early stage 1414 

discovery research, there is now a need, and the knowledge base, to mount a more coordinated 1415 

research approach. For instance, NASA should consider developing a standardized set of radiation 1416 

procedures at NSRL (i.e., exposures with standard range of fluency, energies, particles, and 1417 

exposure timelines) that most closely represent the astronaut’s exposure in deep space and 1418 

establish those durations of deep space flight that would not be expected to pose short term safety 1419 

concerns to the astronaut. NASA could achieve this integrated research approach with more NASA 1420 

Specialized Centers of Research (NSCOR) on mission-critical topics. This strategy would ensure 1421 

that NASA’s human research program in CNS radiation risk makes tangible steps towards 1422 

quantifying the CNS risk by 2020.” 1423 

 1424 

V. Adverse Outcome Pathways and Computer Modeling for Estimation of CNS Risks 1425 
 1426 

A. Adverse Outcome Pathway Frameworks 1427 
Because human epidemiology and experimental data for CNS risks from space-like radiation 1428 

are both limited, mathematical models of mammalian CNSs and their components will be essential 1429 

tools for estimating the magnitudes and uncertainties of human risks.  These models will be 1430 

constrained by experimental data and organized according to mechanisms that play substantive 1431 

roles in the pathophysiological processes underlying brain dysfunction and degeneration in both 1432 

experimental models and humans.  In toxicology, an organizing principle for understanding how 1433 

undesirable consequences may develop from an environmental exposure is the adverse outcome 1434 
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pathway (AOP).  Ankley et al. (2010) used the definition: “An AOP is a conceptual construct that 1435 

portrays existing knowledge concerning the linkage between a direct molecular initiating event 1436 

and an adverse outcome at a biological level of organization relevant to risk assessment”.  This 1437 

approach can be applied to CNS risks. For example, Watanabe et al. (2011) provided the following 1438 

definition and strategy for use of AOPs in a neurotoxicity context. 1439 

 1440 

“An adverse outcome pathway (AOP) is a sequence of key events from a molecular-level 1441 

initiating event and an ensuing cascade of steps to an adverse outcome with population 1442 

level significance. To implement a predictive strategy for ecotoxicology, the multiscale 1443 

nature of an AOP requires computational models to link salient processes (e.g., in chemical 1444 

uptake, toxicokinetics, toxicodynamics, and population dynamics)”. 1445 

 1446 

They illustrate the application of this process from exposures to a toxin that acts on glutamate 1447 

gated ion channels to disrupt neuronal Ca++. This leads to excitotoxicity, cell death, seizures, and 1448 

impaired learning and memory.  Development of this AOP required an iterative process to define 1449 

a critically-reviewed, stressor-specific pathway, identification of key processes suitable for 1450 

experimental evaluation, and strategies for model development.  Radiation exposure can also be 1451 

viewed as an environmental toxin exposure for which in vitro and in vivo endpoints give insight 1452 

into the contributing key processes.  1453 

A similar framework has been helpful in organizing knowledge related to the development 1454 

of cancer, where the key events in the adverse outcome pathway were designated the “hallmarks” 1455 

of cancer (Hanahan and Weinberg 2011).  In this conceptual framework, “The hallmarks of cancer 1456 

comprise six biological capabilities acquired during the multistep development of human tumors. 1457 

Underlying these hallmarks are genome instability, which generates the genetic diversity that 1458 

expedites their acquisition, and inflammation, which fosters multiple hallmark functions.” 1459 

Establishing critically-reviewed adverse outcome pathways for radiation-induced 1460 

neuropathological processes should be a priority and would establish frameworks for developing 1461 

predictive models of human risk.  The evidence reported in section IV contains many examples of 1462 

events and evaluation methods that should be organized into such a framework with guidance from 1463 

existing systems biology knowledge of neurological diseases and incorporating existing models of 1464 

neuronal processes. 1465 

Systems biology approaches (developed by research funded outside of NASA) have been 1466 

applied to neurodegenerative diseases, including AD, and consider the biochemical and signaling 1467 

pathways of importance in CNS disease pathophysiology.   For example, Figure 17 shows a 1468 

schematic of some biochemical pathways important in the development of AD. The description of 1469 

the interaction of space radiation with these pathways would be an important approach in 1470 

developing AOPs supporting predictive models of space radiation risks.  1471 

 1472 

 1473 
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Figure 17.  Molecular pathways important in Alzheimer’s disease. From Kyoto Encyclopedia of 1474 

Genes and Genomes (http://www.genome.ad.jp/kegg/pathway/ hsa/hsa05010.html)    1475 

 1476 

Mizuno et al. (2012) have greatly extended and organized this type of information and 1477 

constructed one of the first comprehensive maps of intra-, inter-, and extracellular AD signaling 1478 

networks as a publicly available pathway map called “AlzPathway”.  This pathway map 1479 

incorporates 1347 molecules and 1070 reactions in neurons, astrocytes, and microglial cells and 1480 

relates them to their cellular localizations and functions in presynaptic and postsynaptic structures 1481 

and the brain blood barrier. The AlzPathway map is accessible at http:// alzpathway.org/. 1482 

 1483 

B. Models Applicable to Radiation-Induced CNS Responses 1484 
In order to have predictive value for risks, biological pathways and their outputs need to be 1485 

organized into mathematical models.  Approaches to modeling discrete disease processes such as 1486 

amyloid deposition have been developed, such as the in silico biochemical model of Edelstein-1487 

Keshet and Spiros (2002) for senile plaques related to AD. They described biochemical 1488 

interactions between TNF-α, IL-1β, and IL-6 and several important cell populations, including 1489 

astrocytes, microglia, and neurons, and were then able to estimate kinetics of cell death based on 1490 

plaque formation.  However, to understand the effects of radiation exposure on the brain's overall 1491 

information processing performance, models of neural networks linked to detailed electrical, 1492 

biochemical, and anatomical parameters are needed.  Computational neuroscience seeks to provide 1493 

this modeling capability, and great strides have been made in the last decade.  Brette et al. (2007) 1494 

have reviewed the most commonly used, freely-available, open source and well-documented 1495 

simulators and simulation environments presently available.  These are used for analyzing detailed 1496 

electrophysiological properties of spiking neural networks with realistic input parameters of 1497 

neuron membrane properties, synaptic structure, neuron morphology, and connectivity.  Perhaps 1498 

the two most widely used simulation environments are based on the GENESIS™ and NEURON™ 1499 

platforms, which can accept observational data from numerous databases, such as Neuromorph, 1500 

CoCoMac, BioModels Database, and SenseLab (see Organization for Computational 1501 

Neuroscience, http://www.cnsorg.org/model-database).   1502 



Space Radiation CNS Risks  

 

43 

 

Perhaps the most comprehensive full-scale model of the rodent hippocampus, with over 106 1503 

neurons having accurate connectivity, neuron morphology, and electrophysiological properties, is 1504 

that of Soltesz and collaborators (Schneider et al. 2012) developed in part with NASA funding.  1505 

This model is based on the NEURON simulation environment and runs in a parallel computing 1506 

setting.  This model was used to compare predicted hippocampal CA1 region network firing 1507 

statistics using input parameters from proton-irradiated versus control mice.  The results, as seen 1508 

in Figure 18, below, predicted that small radiation-induced differences in resting membrane 1509 

potential and input resistance would lead to large differences in periodic pyramidal cell firing 1510 

statistics (Sokolova et al. 2015).  This model can also be used to test effects of altered neuron 1511 

morphology or synaptic structure. 1512 

 1513 

Figure 18. Incorporation of radiation-induced alterations into a computational model of the CA1 1514 

microcircuit containing 100 excitatory cells and four types of interneurons using the NEURON 1515 

simulation environment. Panel A: Pyramidal cell firing statistics for the control condition after 1516 

initial stimulation of 20% of the cells. Each dot represents a single action potential. Panel B: 1517 

Pyramidal cell firing statistics after incorporation of radiation-induced changes in resting 1518 

membrane potential and input resistance. Panel C: Voltage traces for pyramidal cell no. 1 under 1519 

control (left side) and irradiated (right side) simulation conditions. Panel D: Relative theta 1520 

oscillation power at the 4.0-Hz peak theta frequency.  [Reproduced from Figure 6 of Sokolova et 1521 

al. 2015]. 1522 

 1523 

To address the interactions of charged particles with CNS tissue, Cucinotta et al. (2014) 1524 

combined data from neuron anatomy databases with models of charged particle track structure to 1525 

determine the statistics of energy deposition in cellular compartments.  This is particularly 1526 
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important, as evidence suggests that many important targets of radiation in the CNS may include 1527 

the complex cellular processes of neurons, rather than just the cell nucleus.  The example in Figure 1528 

19 shows the interaction of a high-energy iron ion with granule cells of the DG. 1529 

 1530 

Figure 19. Model predictions of energy depositions from 56Fe (200 MeV/u) particle tracks in 1531 

mouse granule neurons. (Panel A) Track structure of energy deposition in a layer of 5 neuron cells. 1532 

(Panel B) Energy deposition in the dendritic tree of a single neuron showing the spectrum of energy 1533 

deposited, e in 20 ×20 ×20-nm voxels with blue, e < 20 eV; yellow, 20 < e < 100 eV; and red, e > 1534 

100 eV. The diameters of dendritic branches are between ∼1.4 and 2 μm. The dendrites are 1535 

digitized as green connected cylindrical segments with topological neuron data as archived at 1536 

NeuroMorpho.org (Parekh and Ascoli 2013). The rendered volume in these figures is 80 ×70 ×43 1537 

μm3, with the neuron structures and particle tracks each represented by 20 ×20 ×20-nm3 voxels. 1538 

(For interpretation of the references to color in this figure legend, the reader is referred to the web 1539 

version of this article.)  Reproduced from Figure 4 of Cucinotta et al. (2014). 1540 

 1541 

In summary, comprehensive datasets and modeling techniques are now making it possible to 1542 

interpret perturbations in neuronal structure and function at the network level, which can link 1543 

experimental observations of isolated parameters to their impact on network performance.  This 1544 

will facilitate incorporation of experimental data from radiobiology investigations to frameworks 1545 

describing pathways of acute and degenerative functional impairments.  1546 

 1547 

 1548 

VI. Risk in Context of Exploration Mission Operational Scenarios 1549 
  1550 

A. Projections for Space Missions 1551 
 1552 

Reliable projections of CNS risks for space missions cannot be made from the available data. 1553 

Animal behavior studies indicate that HZE particles cause important detriments in rodent and 1554 

neuronal cell culture models at space-relevant doses. However, the significance of these results for 1555 

humans is not clear at this time. The use of non-human primates in experiments would hasten 1556 

understanding of the significance of effects observed to date. Importantly, there have been only a 1557 

relatively few HZE particle types tested, with no experiments performed above 1 GeV/u and very 1558 

few testing the effects of slowing down or stopping particles with energies below 200 MeV/n. The 1559 

latter experiments would involve very high LET particles, with the potential for results becoming 1560 
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even more dissimilar from those derived from low-LET radiation with higher particle up to 1000 1561 

MeV/n. Other uncertainties include age at exposure, radiation quality, dose rate effects, and issues 1562 

regarding genetic susceptibility to CNS risk from space radiation exposure. More research is 1563 

required to estimate the CNS risks. 1564 

The use of dose and RBE is not sufficient to predict risk for GCR CNS risk assessment 1565 

because there are no low-LET human data with which to scale effects.  Estimates of fluence rates 1566 

in tissues for different particle types are useful descriptive parameters of the physical environment 1567 

and possible damage to the CNS.  Table 1 below modified from Cucinotta et al. (2014) shows the 1568 

number of particle hits per year for different GCR particle charge groups in different regions of 1569 

the hippocampus under typical spacecraft shielding. Clearly, a large number of hits from HZE 1570 

particles will occur behind typical shielding amounts, and, as noted earlier, delta ray exposures 1571 

should not be ignored. Note that in these calculations, the reference location in the brain is the 1572 

hippocampus, which lies relatively deep within the brain.  Recent modeling also indicates that 1573 

under light levels of shielding (such as in a spacesuit), there may be a significant dose to the cortical 1574 

surface associated with very large SPEs. 1575 

 1576 

Table 1.  The number of GCR particle hits in the CA1, CA2/3, and dentate gyrus calculated using 1577 

the HZETRN/QMSFRG model for average solar minimum conditions.  1578 

 1579 

 
Hits per Day with 10 g/cm

2

 Shielding 
Hits per Year 

Fluence >Z*
2

/β
2

 
CA1 CA2/3 Dentate Gyrus Dentate Gyrus 

All GCR 
3.4 x10

5

 1.1x10
5

 6.2 x10
5

 2.3 x 10
8

 

>100 (Z>10) 321 106 595 
2.2x10

5

 

>250 (Z>14) 90 30 166 
6.1x10

4

 

>500 38 13 71 
2.6x10

4

 

>1000 (stopping 

ions) 

16 5 30 
1.1x10

4

 

 1580 

B. Potential for Biological Countermeasures 1581 
 1582 

The goal of space radiation research is to estimate and reduce uncertainties in risk projection 1583 

models and, if necessary, to develop countermeasures and technologies to monitor and treat 1584 

adverse outcomes to human health and performance relevant to space radiation for short-term and 1585 

career, including acute or late CNS effects from radiation exposure. The need for the development 1586 

of countermeasures to CNS risks is dependent on further understanding of CNS risks, especially 1587 

issues related to a possible dose threshold and, if such a threshold exists, which NASA missions 1588 

would likely exceed threshold doses. Based on animal experimental studies, antioxidants and anti-1589 
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inflammatories should be investigated as countermeasures for CNS risks from space radiation 1590 

(Rabin et al. 2005). Diets of blueberries and strawberries were shown to reduce CNS risks after 1591 

heavy ion exposure. Estimating the effects of diet and nutritional supplementation would be a 1592 

primary goal of CNS research on countermeasures.  However, the recent study from the Raber lab 1593 

(2013) showed no protective effect from antioxidants such as α-lipoic acid in reducing early 1594 

cognitive changes following doses of 0.1 to 1 Gy of Fe particles, but responses of signaling 1595 

pathways may discriminate the different treatments.  These results suggest that DNA damage may 1596 

play an important role in modifying CNS responses and that high-LET radiation, especially at low 1597 

to moderate doses, is less dependent on early oxidative stress responses to cause illicit detrimental 1598 

effects.   1599 

A diet rich in fruit and vegetables significantly reduced the risk of several diseases. Retinoids 1600 

and vitamins (A, C, and E) are probably the most well-known and studied natural radioprotectors, 1601 

but hormones (such as melatonin), glutathione, superoxide dismutase, phytochemicals from plant 1602 

extracts (including green tea and cruciferous vegetables), and metals (especially selenium, zinc, 1603 

and copper salts) are also under study as dietary supplements for individuals exposed to radiation, 1604 

including astronauts (Durante and Cucinotta 2008). Antioxidants should provide reduced or no 1605 

protection against the initial damage from densely ionizing radiation such as HZE nuclei, as the 1606 

direct effect is more important than free radical-mediated indirect radiation damage at high LET. 1607 

However, there is an expectation that some benefits should occur for persistent oxidative damage 1608 

related to inflammation and immune responses (Barcellos-Hoff et al. 2005). Some recent 1609 

experiments suggest, at least for acute high-dose irradiation, that efficient radioprotection by 1610 

dietary supplements can be achieved, even in cases of high-LET radiation exposure. There is 1611 

evidence that dietary antioxidants (especially strawberries) can protect the CNS from the 1612 

deleterious effects of high doses of HZE particles (Rabin et al. 2005). However, because the 1613 

mechanisms of biological effects are different at low dose-rates compared to the high dose-rates 1614 

characterizing acute irradiation, new studies on protracted exposures will be needed to understand 1615 

the potential benefits of biological countermeasures. 1616 

Concern about the potential detrimental effects of antioxidants was raised by a recent meta-1617 

data study of the effects of antioxidant supplements in the diet of normal subjects (Bjelakovic et 1618 

al. 2007). The authors did not find statistically significant evidence that antioxidant supplements 1619 

have beneficial effects on mortality. On the contrary, they concluded that β-carotene, vitamin A, 1620 

and vitamin E seem to increase the risk of death. Concerns are that the antioxidants may allow 1621 

rescue of cells that still sustain DNA mutations or altered genomic methylation patterns following 1622 

radiation damage to DNA, which can result in genomic instability. An approach to target damaged 1623 

cells for apoptosis may be advantageous for chronic exposures to GCR.  1624 

 1625 

C. Individual Risk Factors 1626 
Because human populations are not inbred like laboratory animals, there is considerable 1627 

diversity in genetic background as well as nutrition and lifestyle differences that may affect 1628 

sensitivity and reactions to radiation.  Individual factors of potential importance are genotype and 1629 

epigenetic profiles, prior radiation exposure, and previous head injury such as concussion. As 1630 

discussed in section IV, age, sex, and species differences clearly affect outcome measures for 1631 

radiation responses.  Additionally, genetic variation at specific loci, such as the apolipoprotein E 1632 

gene (ApoE), has been shown to modulate the effects of space radiation (Villasana et al. 2008).  1633 

This particular gene is important, as it controls the age of onset of AD and the risk for 1634 

atherosclerosis.  Raber et al. (2015) further showed that there are differences in cognitive 1635 
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impairment between C57Bl/6 inbred mice and hybrid B6D2F1 mice exposed to charged particle 1636 

radiation.  Performance on various behavioral tests has long been known to depend on rat strain, 1637 

and it is also known that anatomical differences exist between strains.  For example, Wistar rats 1638 

have reduced granule cell projections to hippocampus CA3 compared with other strains (Ramirez-1639 

Amaya et al. 2001). Of particular interest are the results from Britten et al. (2014) and Davis et al. 1640 

(2014) showing that cohorts of animals naturally stratify into high and low performers or groups 1641 

that are sensitive or insensitive to radiation exposure with respect to high-level cognitive 1642 

performance.  Some of the uncertainty in measurements based on population averages might be 1643 

reduced by considering the possibility of stratification in performance within test samples.  This 1644 

has implications for astronauts, who are a high-performing subset of humans. 1645 

 1646 

D. Synergistic Effects of Spaceflight 1647 
The combined effect of space radiation exposure with other spaceflight factors on acute and 1648 

late CNS adverse functional changes and neurodegenerative disease risks is unknown.  Other 1649 

spaceflight stressors contributing to behavior and cognitive risks include isolation, hostile/closed 1650 

environment, distance from Earth, and altered gravity. These hazards are of concern because they 1651 

contribute to psychological and physical stress or modified behavior (affect), sleep deficiency, 1652 

altered circadian rhythm, hypercapnea, chronic inflammation, and altered immune, endocrine, and 1653 

metabolic function. Related studies in the Behavioral Health and Performance Element of the 1654 

Human Research Program are underway to further develop the evidence base for the effects of 1655 

these spaceflight hazards on in-flight adverse cognitive or behavioral conditions through research 1656 

on the International Space Station and Earth-based analogs (NASA SP-2009-3405, 2009).   1657 

 1658 

VII. Gaps 1659 
 1660 

Acute and late radiation damage to the CNS may lead to changes in motor function and 1661 

behavior or neurological disorders. Radiation and synergistic effects of radiation with other space 1662 

flight factors may affect neural tissues, which in turn may lead to changes in function or behavior.  1663 

Data specific to the space flight environment must be compiled to quantify the magnitude of this 1664 

risk using animal models and 2-dimensional or 3-dimensional cell culture models of human or 1665 

other vertebrate cells.  If this is identified as a risk of high enough magnitude, appropriate 1666 

protection strategies should be employed.  Research should be directed toward answering the 1667 

following risk gap questions. 1668 

 1669 

CNS – 1: Are there significant adverse changes in CNS performance in the context and time scale 1670 

of space flight operations?  If so, how is significance defined, and which neuropsychological 1671 

domains are affected? Is there a significant probability that space radiation exposure would result 1672 

in adverse changes? What are the pathways and mechanisms of change? 1673 

CNS - 2: Does space radiation exposure elicit key events in adverse outcome pathways associated 1674 

with neurological diseases?  What are the key events or hallmarks, their time sequence and their 1675 

associated biomarkers (in-flight or post-flight)? 1676 

CNS - 3: How does individual susceptibility including hereditary pre-disposition (e.g. 1677 

Alzheimer’s, Parkinson’s, apoE allele) and prior CNS injury (e.g. concussion, chronic 1678 

inflammation or other) alter significant CNS risks? Does individual susceptibility modify possible 1679 

threshold doses for these risks in a significant way? 1680 
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CNS - 4: What are the most effective biomedical or dietary countermeasures to mitigate CNS 1681 

risks? By what mechanisms are the countermeasures likely to work? 1682 

CNS - 5: How can new knowledge and data from molecular, cellular, tissue and animal models of 1683 

acute CNS adverse changes or clinical human data, including altered motor and cognitive function 1684 

and behavioral changes be used to estimate acute CNS risks to astronauts from GCR and SPE? 1685 

CNS - 6: How can new knowledge and data from molecular, cellular, tissue and animal models of 1686 

late CNS adverse changes or clinical human data be used to estimate late CNS risks to astronauts 1687 

from GCR and SPE? 1688 

CNS - 7: What are the best shielding approaches to protect against CNS risks, and are shielding 1689 

approaches for CNS and cancer risks synergistic? 1690 

CNS - 8: Are there significant CNS risks from combined space radiation and other physiological 1691 

or space flight factors, e.g., psychological (isolation and confinement), altered gravity (μ-gravity), 1692 

stress, sleep deficiency, altered circadian rythms, hypercapnea, altered immune, endocrine and 1693 

metabolic function, or other? 1694 

 1695 

VIII. Conclusion 1696 
 1697 

At this time, reliable projections for CNS risks from space radiation exposure cannot be made 1698 

due to limited data on the effects of high LET radiation on the nervous system and the absence of 1699 

epidemiological data for humans.  The existing animal and cellular data show that space-like 1700 

radiation can produce molecular, structural, functional, and behavioral effects at doses comparable 1701 

to reference mission projections.  If human responses closely resemble those in animal models, the 1702 

possibility exists for impacts on mission operations and/or late degenerative changes.  However, 1703 

the significance of these results in terms of space flight operational performance or morbidity to 1704 

astronauts has not been elucidated. 1705 

It should be noted that the studies to date have been carried out with relatively small numbers 1706 

of young animals (usually <12 per treatment group); therefore, testing of dose responses and 1707 

detection of potential threshold effects at the lowest doses have been limited.  The roles of dose 1708 

protraction, effects of combinations of radiation species, and ages of test subjects have not been 1709 

studied adequately to date; however, work is in progress to provide a GCR simulation 1710 

environment, and research solicitations are emphasizing the importance of using animals of ages 1711 

comparable to those of the astronaut corp.  An approach to extrapolate existing observations to 1712 

possible cognitive changes, performance degradation, or late CNS effects in astronauts has not 1713 

been discovered.  Research on new approaches to risk assessment may benefit from concepts such 1714 

as adverse outcome pathways.  Computer simulations and systems biology approaches may be 1715 

helpful in providing the necessary data and knowledge to evaluate the similarity between animal 1716 

and human response mechanisms.  Findings based on rodent models may need to be validated in 1717 

higher species such as non-human primates.  A vigorous research program will be required to solve 1718 

these problems and must rely on new approaches to risk assessment and countermeasure validation 1719 

because the unique properties of the CNS and its modes of impairment are intrinsically different 1720 

than those associated with cancer risks. 1721 

 1722 

 1723 
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 2402 

XI. List of Acronyms 2403 
 2404 

AD  Alzheimer’s disease 2405 

ApoE  Apolipoprotein E lipid binding protein 2406 

AOP  Adverse Outcome Pathway 2407 

BBB  Blood-Brain Barrier  2408 

BEIR  Biological Effects of Ionizing Radiation, expert panel report 2409 

BFO  Blood-forming organs  2410 

CA1  Cornu Ammonis region of hippocampus 2411 

C57BL/6   C57 black 6 (inbred laboratory mouse strain) 2412 

cGy  centiGray (=1 rad) 2413 

CNS  Central Nervous System 2414 

CTA  Conditioned Taste Aversion  2415 

DG  Dentate Gyrus field of hippocampus 2416 

DNA  DeoxyriboNucleic Acid  2417 

ED50  Dose where 50% of the population exhibits the effect (LD50 is similar but  2418 

  with lethality as the effect) 2419 

EGFP  Enhanced Green Fluorescent Protein 2420 

EPSP  Excitatory Post Synaptic Potential 2421 

FR  Fixed-Ratio schedule  2422 

GCR  Galactic Cosmic Rays  2423 

GeV  Giga-electron Volt 2424 

Gy   Gray (=100 rad, 1 J/kg absorbed dose, D) 2425 

HZE  High Charge (atomic number, Z) and Energy  2426 

IL  Interleukin 2427 

IQ  Intelligence Quotient  2428 

IR  Ionizing Radiation  2429 

ISS  International Space Station  2430 

keV/μm  kilo-electron Volt per micrometer of track length (common unit for Linear 2431 

  Energy Transfer, LET) 2432 

LEO  Low-Earth Orbit  2433 

LET  Linear Energy Transfer 2434 
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LTP  Long-Term Potentiation 2435 

MeV  Mega-electron Volt 2436 

mGy  milliGray (=0.1 rad) 2437 

n  nucleon (sometimes u or amu is also used) 2438 

NCRP  National Council on Radiation Protection and Measurements  2439 

PELs  Permissible Exposure Limits  2440 

PSA-NCAM   PolySialic Acid-Neural Cell Adhesion Molecule 2441 

RBE  Relative Biological Effectiveness  2442 

ROS  Reactive Oxygen Species (free radicals such as •OH- and O2•
-) 2443 

SEM  Standard Error of the Mean 2444 

SGZ  SubGranular Zone (neurogenic region of hippocampus dentate gyrus field) 2445 

SPE  Solar Particle Event  2446 

Sv  Sievert (= 100 rem) = Dose Equivalent, H (Dose in Gy x quality factor, Q)  2447 

TNF-α  Tumor Necrosis Factor-α 2448 

Z  Atomic number  2449 

 2450 


