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ABSTRACT  

The GOES-R magnetometer subsystem accuracy requirement is 1.7 nanoteslas (nT).  During quiet times (100 nT), 

accuracy is defined as absolute mean plus 3 sigma. During storms (300 nT), accuracy is defined as absolute mean plus 2 

sigma. Error comes both from outside the magnetometers, e.g. spacecraft fields and misalignments, as well as inside, e.g. 

zero offset and scale factor errors. Because zero offset and scale factor drift over time, it will be necessary to perform 

annual calibration maneuvers. To predict performance before launch, we have used Monte Carlo simulations and 

covariance analysis. Both behave as expected, and their accuracy predictions agree within 30%. With the proposed 

calibration regimen, both suggest that the GOES-R magnetometer subsystem will meet its accuracy requirements. 
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1. INTRODUCTION  

Like an optical instrument, a magnetometer has noise and calibrations that add error to its measurements. There are zero 

offsets, i.e. biases, misalignments of the whole instrument plus internal ones, i.e. non-orthogonalities, and scale factor, i.e. 

gain, errors. The two GOES-R magnetometers are vector magnetometers which measure all three components of the 

magnetic field. 

 

1.1 Magnetic Environment 

To reduce the effect of stray fields, i.e. time-varying magnetic fields from the spacecraft, the magnetometers are mounted 

on a long boom 6.5 and 8.5 meters (m) from the boom base as shown in Figure 1. Having two magnetometers provides 

redundancy, allows averaging for noise reduction and enables us to solve for stray fields. This last capability called 

gradiometry is useful if stray fields are much larger than the noise, but this probably will not be the case for GOES-R. 

 

 
     Figure 1. Spacecraft, Boom and Magnetometers 
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Even out on the boom, the magnetometers may see stray fields due to the solar array, arcjet thrusters and reaction wheels. 

All three are expected to be on the order of 0.1 nanoteslas (nT) at the inboard (IB) magnetometer and about half that at the 

outboard (OB) magnetometer. We may pre-process magnetometer observations to correct for some of these so that what 

remains is close to being white noise with 0.1 nT standard deviation. 

 

At geostationary altitude, the magnetometers see fields about five hundred times smaller than those at the Earth’s surface, 

i.e. 100 nT rather than 50 T.  Figure 2 shows fields for a quiet and a storm day. Fields routinely vary by 10% on quiet 

days but during storms can vary by 200% or more. For this reason, our magnetometer measurement range goes from -512 

to +512 nT.  Resolution is 0.016 nT, and root mean square noise is under 0.1 nT. 

 

 
 

     Figure 2. Quiet and Storm Day Fields 

 

1.2 Error Sources 

From ground calibration, zero offsets are well-known at launch but may drift over time due to aging of electronics 

components, e.g. resistors. Although not well-documented, the commonly accepted “rule of thumb” is that zero offsets 

drift by 0.2 nT/√yr. They do so as a random walk with variance growing linearly with time and standard deviation growing 

as the square root of time. 

 

Misalignments come from launch shock, thermal deformation and manufacturing. Launch shock refers to the mechanical 

vibrations during launch and can cause 1o misalignments. After deployment, the boom is heated and cooled by the Sun 

which causes the inboard magnetometer to rotate up to 0.15o and the outboard magnetometer to rotate up to 0.10o with 

respect to it. There are also constant sensor axis internal misalignments on the order of 1o but which are known to 0.1o. 

 

Like zero offsets, scale factor errors are known at launch but may drift over time. Although scale factor drift is also due to 

changing resistor values, we know of no “rule of thumb” corresponding to that for zero offset. Worst case analyses predict 

0.4% maximum drift over the 15-year mission lifetime which translates to a drift rate of 0.1%/√yr.   

 

1.3 Algorithms and Requirements 

For these expected noise and stray fields, using the gradiometer algorithm would worsen the noise more than it would 

reduce the stray fields.1 The algorithm we will probably use to estimate the ambient field 𝐵⃗ 𝐴 is simple averaging of the 

inboard 𝐵⃗ 𝐼𝐵 and outboard 𝐵⃗ 𝑂𝐵 readings 

 

𝐵⃗ 𝐴 = (𝐵⃗ 𝐼𝐵 + 𝐵⃗ 𝑂𝐵) 2⁄                                                                             (1) 

 

The GOES-R magnetometer subsystem is required to provide ambient field measurements with absolute mean plus 2 or 3 

standard deviations (𝜎) error less than 1.7 nT per axis. Although it is not specified, we have assumed that this statistic is 

computed over a day. For “quiet” days, it is 3𝜎, and for storms it is 2𝜎.   

 

Quiet   |𝜇| + 3𝜎 ≤ 1.7 𝑛𝑇                                                                        (2) 

Storm  |𝜇| + 2𝜎 ≤ 1.7 𝑛𝑇                                                                        (3) 
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2. ANALYSIS 

It’s hard to know if the magnetometer subsystem will meet its requirements or not. Whether it is before or after launch, 

we can only guess at the sources of error. On the ground we can in principle measure things but they are not really “flight-

like”. On-orbit, they are flight-like but we can’t get to them to measure them. For now, all we can do is use our models 

and ground measurements to make predictions. On orbit, we’ll need ways to infer performance from the real data. 

 

There are two methods for predicting performance that immediately come to mind. One is Monte Carlo simulation, and 

the other is covariance analysis. Simulation is the more flexible of the two but takes a lot of computation time and does 

not provide much insight into what is happening. How to combine the results of the many trials can also be a contentious 

question. 

 

Covariance analysis is like the spreadsheet error budgets we use for most everything except that by starting with a 

mathematical model, it does not leave out any interactions. A partial covariance estimate that accounts for observation 

noise comes from analytically solving any least squares problem such as the averaging algorithm, but to get more realistic 

answers it is essential to include consider parameters, i.e. those not solved for and known with limited accuracy.2 

 

Rather than choose between simulation and covariance, we have implemented both in the hope that their agreement lends 

further credence to the results. 

 

2.1 Calibration Maneuvers 

Over the mission, zero offset standard deviation is expected to grow to 0.77 nT.  Scale factor error in a quiet field may 

reach 0.38 nT. These are large compared to the 1.7 nT specification. On a quiet day, the scale factor error simply adds to 

the mean error. On a storm day, however, scale factor error is three times larger due to stronger fields and due to field 

variability adds to error standard deviation which gets doubled in the performance metric. 

 

For these reasons, it was considered necessary to plan for annual calibration maneuvers. Although one might like to 

perform 180o slews about each axis, reaction wheel torque and communications constraints limit how far we may deviate 

from nadir pointing. As illustrated in Figure 3, the current maneuver goes 30o off-nadir and takes 22 minutes. The 

spacecraft rotates about multiple body axes which enables us to solve for both zero offsets and misalignments. 

 

 
     Figure 3. Calibration Maneuver 

 

The calibration algorithm assumes the ambient field to be constant, and any field change introduces error.  An empirical 

criterion for rejecting a maneuver span is to look at the root sum square of the ambient field components change in 

orbital coordinates 𝛿𝐵 
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𝛿𝐵 = √∆𝐵𝑥
2 + ∆𝐵𝑦

2 + ∆𝐵𝑧
2                                                                      (4) 

 

It was found from simulations that if 𝛿𝐵 exceeded 0.3 nT, calibration error was significantly worse than when it did not.3 

 

2.2 Observation Model 

The observation model predicts the inboard and outboard magnetometer readings as functions of field and calibration 

parameters. The parameters we include are: 

 

1. ambient magnetic field 𝐵⃗ 𝐴 in orbital coordinates  

2. spacecraft magnetic field 𝐵⃗ 𝑆 in spacecraft body coordinates  

3. zero offsets for two magnetometers 𝑏⃗ 𝐼𝐵, 𝑏⃗ 𝑂𝐵 in magnetometer coordinates  

4. inboard magnetometer misalignment 𝑚⃗⃗ 𝐼𝐵 in inboard magnetometer coordinates  

5. inboard-to-outboard magnetometer relative misalignment 𝑚⃗⃗ 𝑟𝑒𝑙  in inboard magnetometer coordinates  

6. scale factor errors for two magnetometers 𝑘⃗ 𝐼𝐵, 𝑘⃗ 𝑂𝐵  

7. non-orthogonality (internal misalignments) for two magnetometers 𝑛⃗ 𝐼𝐵 , 𝑛⃗ 𝑂𝐵 in magnetometer coordinates  

 

Because the magnetometers are both on the boom, the outboard misalignment is the sum of the inboard misalignment 

plus an inboard-to-outboard relative misalignment. Outboard alignment depends on inboard alignment, so the two are 

not independent. To avoid this complication, we use as misalignment parameters the spacecraft-to-inboard and inboard-

to-outboard relative misalignments. This keeps all the parameters independent.  

 

Altogether there are 30 possible solve-for and consider parameters which we bundle in a vector 𝑋   

 

𝑋 𝑇 = (𝐵⃗ 𝐴
𝑇

𝐵⃗ 𝑆
𝑇

𝑏⃗ 𝐼𝐵
𝑇

𝑏⃗ 𝑂𝐵
𝑇

𝑚⃗⃗ 𝐼𝐵
𝑇

𝑚⃗⃗ 𝑟𝑒𝑙
𝑇

𝑘⃗ 𝐼𝐵
𝑇

𝑘⃗ 𝑂𝐵
𝑇

𝑛⃗ 𝐼𝐵
𝑇

𝑛⃗ 𝑂𝐵𝑇)                             (5) 

 

Assuming for simplicity that the magnetometers are nominally aligned with spacecraft body coordinates, the observation 

model is 

(𝑩⃗⃗ 𝑰𝑩

𝑩⃗⃗ 𝑶𝑩
) = (

(𝑰𝟑 + 𝑲𝑰𝑩)𝑴𝑰𝑩(𝑨𝒃𝒐𝑩⃗⃗ 
𝑨 + 𝑩⃗⃗ 𝑺)

(𝑰𝟑 + 𝑲𝑶𝑩)𝑴𝑶𝑩(𝑨𝒃𝒐𝑩⃗⃗ 
𝑨 + 𝜶𝑩⃗⃗ 𝑺)

) + (𝒃⃗⃗ 𝑰𝑩

𝒃⃗⃗ 𝑶𝑩
) + (𝝂⃗⃗ 𝑰𝑩

𝝂⃗⃗ 𝑶𝑩
) = 𝒉⃗⃗                                    (6) 

The other quantities in the model are described below: 

 

 Attitude matrix 𝐴𝑏𝑜 transforms the ambient field from orbital to body, i.e. nominal magnetometer, coordinates. 

 

 Scale factor matrix 𝐾 is diagonal and is computed from the three scale factor errors for each magnetometer 

 

𝐾 = (

𝑘𝑢 0 0
0 𝑘𝑣 0
0 0 𝑘𝑤

) = 𝑘̀                                                                       (7) 

The scale factor vector 𝑘⃗  is 

𝑘⃗ 𝑇 = (𝑘𝑢 𝑘𝑣 𝑘𝑤)                                                                           (8) 

 

 Misalignment matrix 𝑀 transforms the ambient field from body to magnetometer coordinates and is made up of 

the three misaligned sensor axes 𝑢̂, 𝑣̂ and 𝑤̂  

 

𝛭 = (𝑢̂ 𝑣̂ 𝑤̂)𝑇                                                                              (9) 

 

Misalignment angles 𝜙𝑖, 𝜃𝑖 and 𝜓𝑖  represent the x, y and z components of the sensor axis rotation vectors. For 

small angles, 𝑀 may be approximated as 
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𝑀 = (𝑢̂ 𝑣̂ 𝑤̂)𝑇 ≈ (

1 𝜓𝑢 −𝜃𝑢

−𝜓𝑣 1 𝜙𝑣

𝜃𝑤 −𝜙𝑤 1
) = 𝐼 − 𝑚̃ + 𝑛̅                                             (10) 

 

o Antisymmetric matrix 𝑚̃ is 

 

𝑚̃ = (

0 − (𝜓𝑢 + 𝜓𝑣) 2⁄ (𝜃𝑤 + 𝜃𝑢) 2⁄

(𝜓𝑢 + 𝜓𝑣) 2⁄ 0 − (𝜙𝑣 + 𝜙𝑤) 2⁄

−(𝜃𝑤 + 𝜃𝑢) 2⁄ (𝜙𝑣 + 𝜙𝑤) 2⁄ 0

)                                         (11) 

 

where the bulk misalignment vector 𝑚⃗⃗  is the average of the axis misalignments 

 

𝑚⃗⃗ 𝑇 = (𝜙𝑣 + 𝜙𝑤 𝜃𝑤 + 𝜃𝑢 𝜓𝑢 + 𝜓𝑣) 2⁄                                                         (12) 

 

o Symmetric matrix 𝑛̌ is 

 

𝑛̌ = (

0 (𝜓𝑢 − 𝜓𝑣) 2⁄ (𝜃𝑤 − 𝜃𝑢) 2⁄

(𝜓𝑢 − 𝜓𝑣) 2⁄ 0 (𝜙𝑣 − 𝜙𝑤) 2⁄

(𝜃𝑤 − 𝜃𝑢) 2⁄ (𝜙𝑣 − 𝜙𝑤) 2⁄ 0

)                                             (13) 

 

where the non-orthogonality vector 𝑛⃗  is half the differences of the corresponding misalignments 

 

𝑛⃗ 𝑇 = (𝜙𝑣 − 𝜙𝑤 𝜃𝑤 − 𝜃𝑢 𝜓𝑢 − 𝜓𝑣) 2⁄                                                        (14) 

 

The partition of the 𝜓 misalignments into bulk misalignment and non-orthogonality is illustrated in 

Figure 4. 

 

 
 

     Figure 4. Bulk Misalignment / Non-Orthogonality Partition Example 

 

 The scalar 𝛼 comes from the gradiometer stray field model and is equal to the cube of the outboard-to-

spacecraft distance 𝑟𝑂𝐵 over the inboard-to-spacecraft distance 𝑟𝐼𝐵 ratio 

 

𝛼 = (𝑟𝑂𝐵 𝑟𝐼𝐵⁄ )3                                                                           (15) 

 

It relates the stray field at the outboard magnetometer to that at the inboard magnetometer, i.e. 𝐵⃗ 𝑆.  This model 

assumes that the magnetometers are far from the spacecraft. 

 

 Noise 𝜈  is simulated as a zero mean Gaussian random variable with specified standard deviation. Diurnal 

misalignments are modeled as zero mean uniformly-distributed random variables limited by the boom 

deformation requirements. 
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2.3 Simulation 

In principle, simulation is easy. One assumes parameter values, plugs them into the observation model, computes the least 

squares solution and then sees how large the error is. How one connects and combines them, however, makes a difference. 

We ran multiple 15-year missions, averaged them to get performance as a function of time over those 15 years and reported 

the value of the End-of-Life (EOL) performance metric. 

 

If the magnetometer observations were linear functions of the solve-for parameters 𝑥 , the minimum variance weighted 

least squares solution would be 

 

𝑥 = (𝐻𝑥
𝑇𝑊𝐻𝑥)

−1𝐻𝑥
𝑇𝑊𝑦                                                                         (16) 

 

where 𝐻𝑥 is the observation derivative 

𝐻𝑥 =
𝜕ℎ⃗⃗ 

𝜕𝑥 
                                                                                    (17) 

 

𝑦  is the observation vector, and 𝑊 is the minimum variance (𝜎𝑦
2) weighting matrix  

 

𝑊 =
1

𝜎𝑦
2 𝐼                                                                                 (18) 

 

In normal operations when we solve only for the ambient field, this is the solution. During calibration, we also solve for 

zero offsets and misalignments. Because the observations depend nonlinearly on the misalignments, it is necessary to 

iterate on the solution 

𝑥 ← 𝑥 + (𝐻𝑥
𝑇𝑊𝐻𝑥)

−1𝐻𝑥
𝑇𝑊𝑧                                                                    (19) 

 

When iteration is necessary, 𝑦  is replaced by the residual or innovation 𝑧  which is the difference between the observation 

vector 𝑦  and the model prediction ℎ⃗  as computed from the current parameter estimate 𝑥  

 

𝑧 = 𝑦 − ℎ⃗ (𝑥 )                                                                              (20) 

 

How many iterations are necessary depends on the accuracy desired. As part of the process, one gets an estimate of the 

solution covariance 𝑃𝑥 that thanks to 𝑊 reflects the contribution of the observation noise 

 

𝑃𝑥 = (𝐻𝑥
𝑇𝑊𝐻𝑥)

−1                                                                         (21) 

 

For normal operations, i.e. averaging, 𝑥  only includes the ambient field 

 

𝑥 = 𝐵⃗ 𝐴                                                                                    (22) 

 

For calibration, 𝑥  includes the ambient field, zero offsets and bulk misalignments 

 

𝑥 𝑇 = (𝐵⃗ 𝐴
𝑇

𝑏⃗ 𝐼𝐵
𝑇

𝑏⃗ 𝑂𝐵
𝑇

𝑚⃗⃗ 𝐼𝐵
𝑇

𝑚⃗⃗ 𝑟𝑒𝑙
𝑇)                                                        (23) 

 

We calibrate immediately after launch, evaluate daily performance at monthly intervals and optionally calibrate once a 

year thereafter. If we are doing quiet days, we compute the absolute mean plus 3 sigma error for each day, average them 

over the missions and report the EOL value. For storms, we compute the absolute mean plus 2 sigma error.   

 

In computing each day’s error metric, we took 100 samples with: 

 

1. random noise and misalignments 

2. simulated zero offsets and scale factors  

3. current zero offset and misalignment estimates 
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This assumes that performance is worst at EOL which is expected because scale factor has then had the most time to drift.  

What we deliberately did not do was to take the metric of EOL metrics or worst case of EOL metrics. This would be overly 

conservative and would likely turn a 3 sigma number into something like a 5 sigma number. 

 

Depending on the ambient fields used, performance can be different. For calibration, we used quiet day data from GOES-

12. For quiet day performance, we used a nominal 100 nT field largely directed in the southern direction. For storm day 

performance, however, we simulated random fields up to 300 nT magnitude pointing in all directions. We felt that this 

was a conservative but realistic choice of fields. 

 

2.4 Consider Covariance 

The least squares solution provides an estimate of the covariance matrix 𝑃𝑥 that includes the effect of Gaussian observation 

noise but assumes that all other parameters not being solved-for are perfectly known. If those parameters 𝑐  are not perfectly 

known, we can add a “consider” covariance 𝑃𝑐 that accounts for those uncertainties. The total covariance 𝑃 is the sum of 

these two contributions 

 

𝑃 = 𝑃𝑥 + 𝑃𝑐                                                                                   (24) 

 

Consider covariance 𝑃𝑐 is just a transformation of the consider parameter covariance 𝑃𝑐0 to the solve-for parameters. A 

derivation follows: 

 

 If the consider parameters themselves have covariance 𝑃𝑐0, their contribution to the total covariance is of the form 

 

𝑃𝑐 = 𝑇𝑃𝑐0𝑇
𝑇                                                                                 (25) 

 

where 𝑇 transforms consider parameter uncertainty 𝜎𝑐  to solve-for parameter uncertainty 𝜎𝑥  

 

𝜎𝑥 =
𝜕𝑥 

𝜕𝑐 
𝜎𝑐 = 𝑇𝜎𝑐                                                                             (26) 

 

 If 𝐻𝑐  is the observation derivative with respect to the consider parameters  

 

𝐻𝑐 =
𝜕ℎ⃗⃗ 

𝜕𝑐 
                                                                                     (27) 

 

the observation uncertainty 𝜎ℎ⃗⃗  due to consider parameter uncertainty is 

 

𝜎ℎ⃗⃗ =
𝜕ℎ⃗⃗ 

𝜕𝑐 
𝜎𝑐                                                                                   (28) 

 

 The linear least squares solution is itself a transformation of observations to solve-for parameters 

 

(𝐻𝑥
𝑇𝑊𝐻𝑥)

−1𝐻𝑥
𝑇𝑊 = 𝑃𝑥𝐻𝑥

𝑇𝑊 =
𝜕𝑥 

𝜕𝑦⃗ 
                                                                (29) 

 

 Because ℎ⃗  models 𝑦 , 
𝜕𝑥 

𝜕ℎ
 is the same as 

𝜕𝑥 

𝜕𝑦⃗ 
, and 𝑇 becomes 

 

𝑇 =
𝜕𝑥 

𝜕𝑐 
=

𝜕𝑥 

𝜕ℎ

𝜕ℎ⃗⃗ 

𝜕𝑐 
=

𝜕𝑥 

𝜕𝑦⃗ 

𝜕ℎ⃗⃗ 

𝜕𝑐 
= 𝑃𝑥𝐻𝑥

𝑇𝑊𝐻𝑐                                                              (30) 

 

With the covariance approach, one doesn’t actually solve for ambient field. There is no solution and so one cannot compute 

an error. All we have is the standard deviation which comes from the covariance matrix. Assuming that the averaging 

estimator is unbiased so that its mean error is zero, we simply multiply the standard deviation by 2 or 3 depending on 

whether it is a quiet or storm day as use that as the performance metric. 
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2.5 Observation Derivatives 

We need observation partial derivatives with respect to the field and calibration parameters both to solve the least squares 

problem in the simulation and to compute the consider covariance. Because both can be solved as linear, we only need 

first-order approximations of the partials. Derivations are sketched out below: 

 

 Given the observation model above, the derivatives of the inboard magnetometer readings with respect to the 

ambient and stray fields and with respect to the zero offsets are simply the identity matrix 

 
𝜕𝐵⃗ 

𝜕𝐵⃗ 𝐴
=

𝜕𝐵⃗ 

𝜕𝐵⃗ 𝑠
=

𝜕𝐵⃗ 

𝜕𝑏⃗ 
= 𝐼3                                                                        (31) 

 

Those for the outboard magnetometer are the same except that the stray field derivative is 𝛼𝐼3. 

 

 The derivative with respect to scale factor errors is the diagonal matrix 𝐵̀ 

 

𝜕𝐵⃗ 

𝜕𝑘⃗ 
=

𝜕

𝜕𝑘⃗ 
(

𝑘𝑢𝐵𝑢

𝑘𝑣𝐵𝑣

𝑘𝑤𝐵𝑤

) = (

𝐵𝑢 0 0
0 𝐵𝑣 0
0 0 𝐵𝑤

) = 𝐵̀                                                      (32) 

 

 The derivative with respect to bulk misalignment is the anti-symmetric matrix 𝐵̃ 

 

𝜕𝐵⃗ 

𝜕𝑚⃗⃗⃗ 
=

𝜕

𝜕𝑚⃗⃗⃗ 
(−𝑚̃𝐵⃗ ) =

𝜕

𝜕𝑚⃗⃗⃗ 
(

−𝑚2𝐵𝑤 + 𝑚3𝐵𝑣

𝑚1𝐵𝑤 − 𝑚3𝐵𝑢

−𝑚1𝐵𝑣 + 𝑚2𝐵𝑢

) = (

0 −𝐵𝑤 𝐵𝑣

𝐵𝑤 0 −𝐵𝑢

−𝐵𝑣 𝐵𝑢 0
) = 𝐵̃                            (33) 

 

 The derivative with respect to the non-orthogonality is the symmetric matrix 𝐵̌ 

 

𝜕𝐵⃗ 

𝜕𝑛⃗ 
=

𝜕

𝜕𝑛⃗ 
(𝑛̌𝐵⃗ ) =

𝜕

𝜕𝑛⃗ 
(

𝑛3𝐵𝑣 + 𝑛2𝐵𝑤

𝑛3𝐵𝑢 + 𝑛1𝐵𝑤

𝑛2𝐵𝑢 + 𝑛1𝐵𝑣

) = (

0 𝐵𝑤 𝐵𝑣

𝐵𝑤 0 𝐵𝑢

𝐵𝑣 𝐵𝑢 0
) = 𝐵̌                                       (34) 

 

The derivative matrix 𝐻 is then  

 

𝐻 =
𝜕ℎ⃗⃗ 

𝜕𝑋⃗ 
= (

𝐴𝑏𝑜 𝐼3 𝐼3 03 𝐵̃𝐼𝐵 03 𝐵̀𝐼𝐵 03 𝐵̌𝐼𝐵 03

𝐴𝑏𝑜 𝛼𝐼3 03 𝐼3 𝐵̃𝑂𝐵 𝐵̃𝑂𝐵 03 𝐵̀𝑂𝐵 03 𝐵̌𝑂𝐵
)                           (35) 

3. RESULTS 

As discussed above, there are different performance requirements for quiet and storm days. Quiet day results are tabulated 

in Table 1 and are shown in Figure 5. With annual calibration, the EOL error is well below the 1.7 nT limit. Maximum 

error on any axis is 0.81 nT. Agreement between the simulation and covariance results is better than 27% with the simulated 

errors always the larger of the two. Without annual calibration, the maximum per axis error reaches 1.95 nT. 

 

     Table 1. Quiet Day EOL Errors 
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The quiet day results are better than might be expected in light of the scale factor drift and meet the original 1.0 nT 

requirement that was relaxed to 1.7 nT. One reason for this is the fact that we evaluate quiet day performance in fields 

similar to those used for calibration. It may be that because the zero offset and scale factor errors are not distinguishable 

under such conditions, and the zero offset error compensates for the scale factor error. 

 

 
     Figure 5. Quiet Day Performance 

 

Storm day results are tabulated in Table 2 and are shown in Figure 6. With annual calibration, they still remain under the 

1.7 nT limit, but the maximum per-axis error now reaches 1.34 nT. The poorer performance is likely due to applying 

quiet day calibrations to storm fields. Again, worst case simulation covariance agreement is 27% with the simulation 

results still the more pessimistic of the two. Without annual calibration, the maximum per-axis error reaches 1.85 nT.  

 

     Table 2. Storm Day EOL Errors 

 

 
 

While running more mission simulations might help the quiet day covariance-simulation agreement, the poorer storm 

day agreement does not seem to be due to lack of data. The simulation averages parallel the covariance and are relatively 

smooth. Interestingly, annual quiet day calibration does not help storm day performance much if at all. For both quiet 

and storm days, the largest errors are in 𝐵𝑥 where the 𝑝𝑐𝑡 discrepancy is 27% 

 

𝑝𝑐𝑡 = 100% ×
𝑠𝑖𝑚−𝑐𝑜𝑣

𝑠𝑖𝑚
≤ 27%                                                                 (36) 

 
     Figure 6. Storm Day Performance 
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By taking the conventional approach to calibration in which one assumes that the ambient field remains constant over the 

maneuver, we limit ourselves to calibrating on quiet days. This makes scale factor errors look like zero offsets which 

corrupts zero offset estimates. Although this may help quiet day accuracy by compensating for the scale factor errors, 

those zero offset errors reduce the accuracy on storm days. 

If one could calibrate on storm days, it might possible to decouple the zero offset and scale factor errors. The problem is 

that one could not assume a constant field over the calibration period. There is, however, a zero offset calibration scheme 

that does not require maneuvers or constant fields.4 Initial indications suggest that it may not provide the necessary 

accuracy, but it should be further investigated in light of its potential benefits. 

4. CONCLUSIONS 

In this paper, we have tried to predict GOES-R magnetometer subsystem performance on quiet and storm days using 

covariance analysis and simulations. The per-axis accuracy requirement is 1.7 nT for both cases although the accuracy is 

defined as absolute mean plus 3 sigma error for quiet days and absolute mean plus 2 sigma error for storm days. The results 

from the two methods agree to 30% with the simulation results consistently the more pessimistic of the two. With annual 

calibration, both predict quiet day accuracy better than 1.0 nT and storm day accuracy better than 1.5 nT. Without annual 

calibration, both predict quiet and storm day accuracy worse than 1.7 nT. Thus, it seems that annual calibration is both 

sufficient and necessary for the GOES-R magnetometer subsystem to meet its accuracy requirements. 
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