Oxygen Partial Pressure and Oxygen Concentration Flammability: Can They Be Correlated?

Susana Tapia Harper
Alfredo Juarez, Horacio Perez III, David B. Hirsch, & Harold D. Beeson
The Partial Pressure Question

• Assuming an Ideal gas mixture
 21% volume O₂ = 21 mole % O₂
 \((v_{O₂}/V) = p_{O₂}/P\)
 \(p_{O₂} = (v_{O₂}/V) \times P\)

• If the available oxidizer is the driver for combustion then should flammability for…..

 30% O₂, 10.2 psi (3.1pp) = 100% O₂, 3.1psi (3.1pp)
Test Method and Environmental Conditions

- Flammability Data Examined
 - Primarily NASA-STD-6001 Test 1 Maximum Oxygen Concentration self-extinguishment thresholds
 - 6” Self Extinguishment Criteria
 - Vary Oxygen Concentration until a threshold is identified for Self Extinguishment to occur.
 - Threshold allows performance comparisons across environments of equivalent O2 PP
 - Material ignition susceptibility
 - Burn Rates
Max O₂ Concentration Self Extinguishment Thresholds & Equivalent Normoxic O₂ Concentrations (NASA 6001 Flamm)
Max O₂ Total Pressures Self Extinguishment Thresholds & Equivalent Partial Pressures (NASA 6001 Flamm)

![Graph showing Max O₂ Total Pressures and Partial Pressures for various materials.](image)

- **PTFE**
- **Kelf-81**
- **Silicone**
- **Zytel 42**
- **Viton-A**
- **Buna-S**
- **Buna-N**
- **EPDM Rubber**
- **Polyethylene (PE)**
- **Delrin**
- **Zoteck F30**
- **Velox DR48**
- **Nylon/Phenolic**
- **Aramid TG4060**
- **Sygef**
- **Udel P1700 Polysulfone**
- **Ultem 1000**
- **Melamine/Glass**
- **Melinex 515**
- **Kydex 100**
- **Nomex 90-40**
- **Normoxic PP equivalents (CEV/ST5)**
- **ISS PP equivalents**

Equations and Regression Coefficients:

- \(y = 6.0351x - 4.1075 \) \(R^2 = 0.99317 \)
- \(y = 1.382x^{1.5944} \) \(R^2 = 0.99678 \)
- \(y = 6.1301x - 2.1095 \) \(R^2 = 0.99943 \)
- \(y = 1.42x^{1.3114} \) \(R^2 = 0.99978 \)
- \(y = 1.1153x^{2.0465} \) \(R^2 = 0.99999 \)
Total Pressure Dependencies

• For pressures above 41 kPa (6 psia)
 – All show a strong dependence on oxygen concentration with little relation to total pressures

• Below 41 kPa (6 psia)
 – MOCs and required oxygen partial pressures show increased dependence on total pressure.

• Power equation models fit trends precisely across
 – Pressure ranges spanning 2.8–119.3 kPa (0.4–17.3 psia)
 – Both MOC and partial pressure against total pressures.

• Required O_2 partial pressure necessary to sustain propagation decreases with decreased total pressures.
 – Increased flammability risk at lower total pressure conditions despite equivalent partial pressure
 – Conversely, oxygen concentration primary driver despite equivalent partial pressure
Application of Findings

- Lower O$_2$% / higher P data **cannot** be conservatively applied to higher O$_2$% / lower P environments despite equivalent partial pressures.

\[
\text{21 O}_2\% , 14.7\text{psi}(3.1\text{pp}) \quad \cancel{\rightarrow} \quad \text{30 O}_2\% , 10.2\text{ psi}(3.1\text{pp})
\]

- Higher O$_2$% / lower P data **can** be conservatively applied to evaluate the risk of lower O$_2$% higher P equivalent PP environments.

\[
\text{30 O}_2\% , 10.2\text{psi}(3.1\text{pp}) \quad \check{\rightarrow} \quad \text{21 O}_2\% , 14.7\text{psi}(3.1\text{pp})
\]
Other Supporting Research

• Flame spread rate testing (Olson and Miller)
 – Performed along normoxic curve (18-100 O₂%)
 – Flame spread rate increased with higher O₂% despite O₂ pp remaining constant

• Burn Rates (Yang, Hamins, and Donneley)
 – Polymethyl methacrylate (PMMA) spheres
 – Burn rates increased significantly as O₂% was increased (19.9-30 O₂%)
 – little effect was observed with increased pressures from 50.0–150 kPa (7.25–21.75 psia).
Increased Pressure Dependencies

• Certain materials exhibited higher dependencies on total pressure
 – Kel-F (CF$_2$CCIF)$_n$, PTFE (C$_2$F$_4$)$_n$, Zotek F30 (C$_2$H$_2$F$_2$)$_n$,
 • highly halogenated
 – Armalon TG4060
 • fluorocarbon fiberglass composite, saturated chains of highly electronegative
 halogenated molecules (F, Cl)
 – Nomex
 – aramid structure with dense electron clouds

• All highly stable with few susceptible reaction sites.
 – Oxygen Molecular Collision Rate Competition for Reaction Sites?
Ignition Sequence

- Available Reaction Sites Ignition Sequence Pyrolysis
 1. Flammable gas mixing
 2. Ignition induction

- Proposed additional mechanism step in ignition sequence

- Limited Reaction Sites Ignition Sequence
 1. Oxygen molecular collision rate competition for reaction sites
 2. Pyrolysis
 3. Flammable gas mixing
 4. Ignition Induction

- Theory would be successful in describing observed experimental trends
Future Work

• Additional testing in low pressure ranges
• Acquisition of burn rate data at the various equivalent partial pressure conditions.
Conclusions

• Partial pressure of oxygen equivalency does not represent flammability equivalency
• Oxygen Concentration % is the primary driver for flammability despite equivalent partial pressure
• Higher O₂% /lower P data can be conservatively applied to evaluate the risk of lower O₂% higher P equivalent PP environments

21 O₂%, 14.7 psi (3.1 pp) → 30 O₂%, 10.2 psi (3.1 pp)

30 O₂%, 10.2 psi (3.1 pp) → 21 O₂%, 14.7 psi (3.1 pp)
Back-up Slides
Pressure effects on Self Extinguishment Thresholds & Normoxic & ISS environment conditions for comparison

<table>
<thead>
<tr>
<th>Material</th>
<th>MOP (psia)</th>
<th>MOC vol% (psia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTFE</td>
<td>53</td>
<td>3.7</td>
<td>46</td>
<td>5.7</td>
<td>42</td>
<td>6.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kelf-81</td>
<td>76</td>
<td>5.3</td>
<td>56</td>
<td>6.9</td>
<td>53</td>
<td>7.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicone</td>
<td>28</td>
<td>2.0</td>
<td>23</td>
<td>2.8</td>
<td>21</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zytel 42</td>
<td>25</td>
<td>1.8</td>
<td>23</td>
<td>2.8</td>
<td>23</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viton-A</td>
<td>29</td>
<td>2.0</td>
<td>21</td>
<td>2.6</td>
<td>21</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buna-S</td>
<td>18</td>
<td>1.3</td>
<td>17</td>
<td>2.1</td>
<td>16</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neoprene</td>
<td>18</td>
<td>1.3</td>
<td>17</td>
<td>2.1</td>
<td>16</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buna-N</td>
<td>18</td>
<td>1.3</td>
<td>16</td>
<td>2.0</td>
<td>15</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPDM Rubber</td>
<td>18</td>
<td>1.3</td>
<td>16</td>
<td>2.0</td>
<td>16</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyethylene (PE)</td>
<td>18</td>
<td>1.3</td>
<td>18</td>
<td>2.2</td>
<td>17</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delrin</td>
<td>13</td>
<td>0.9</td>
<td>12</td>
<td>1.5</td>
<td>11</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zotek F30</td>
<td>47</td>
<td>3.3</td>
<td>37.5</td>
<td>5.5</td>
<td>36</td>
<td>6.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valox DR48</td>
<td>31</td>
<td>2.2</td>
<td>28.1</td>
<td>4.1</td>
<td>28</td>
<td>4.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nylon/ Phenolic</td>
<td>18</td>
<td>1.3</td>
<td>18</td>
<td>2.2</td>
<td>17</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armalon TG4060</td>
<td>50</td>
<td>3.5</td>
<td>35</td>
<td>5.1</td>
<td>33</td>
<td>5.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sygef</td>
<td></td>
<td></td>
<td>34</td>
<td>3.5</td>
<td>34</td>
<td>5.0</td>
<td>32</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udel P1700</td>
<td></td>
</tr>
<tr>
<td>Polysulfone</td>
<td></td>
<td></td>
<td>0.9</td>
<td>29</td>
<td>3.0</td>
<td>24</td>
<td>3.5</td>
<td>22</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultem 1000</td>
<td></td>
<td></td>
<td>0.9</td>
<td>24</td>
<td>2.4</td>
<td>21</td>
<td>3.1</td>
<td>21</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melamine/ Glass</td>
<td></td>
<td></td>
<td>36</td>
<td>3.7</td>
<td>34</td>
<td>5.0</td>
<td>33</td>
<td>5.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melinex 515</td>
<td>0.4</td>
<td></td>
<td>20</td>
<td>2.0</td>
<td>18.5</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kydex 100</td>
<td></td>
<td>0.6</td>
<td>32</td>
<td>3.3</td>
<td>32</td>
<td>4.7</td>
<td>28</td>
<td>4.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nomex 90-40</td>
<td>0.5</td>
<td></td>
<td>37</td>
<td>3.8</td>
<td>31.5</td>
<td>4.6</td>
<td>30</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normoxic environment partial pressure equivalents (CEV/STS)</td>
<td>44</td>
<td>3.1</td>
<td>30</td>
<td>3.1</td>
<td>25</td>
<td>3.1</td>
<td>21</td>
<td>3.1</td>
<td>18</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISS environment partial pressure equivalents</td>
<td>50</td>
<td>3.5</td>
<td>34</td>
<td>3.5</td>
<td>28</td>
<td>3.5</td>
<td>24.1</td>
<td>3.5</td>
<td>20</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MOC = Maximum oxygen concentration which consistently results in material self-extinguishment
MOP = Maximum oxygen partial pressure when extinguishment occurs (based on MOC with the exception of 99.8% testing)
Pressure Effects on NASA STD-6001 Test 1 Maximum O$_2$ Concentration Flammability Thresholds

![Graph showing maximum oxygen concentration (MOC) vs. total pressure for various materials.](image-url)