Oxygen Partial Pressure and Oxygen Concentration Flammability: Can They Be Correlated?

Susana Tapia Harper

Alfredo Juarez, Horacio Perez III, David B. Hirsch, & Harold D. Beeson

WHITE SANDS TEST FACILITY

The Partial Pressure Question

Assuming an Ideal gas mixture

21% volume
$$O_2$$
= 21 mole % O_2
 $(v_{O2}/V) = p_{O2}/P$
 $p_{O2} = (v_{O2}/V)^* P$

 If the available oxidizer is the driver for combustion then should flammability for.....

30% O_2 ,10.2 psi (3.1pp) = 100% O_2 ,3.1psi (3.1pp)

WHITE SANDS TEST FACILITY

Test Method and Environmental Conditions

- Flammability Data Examined
 - Primarily NASA-STD-6001 Test 1 Maximum Oxygen Concentration self-extinguishment thresholds
 - 6" Self Extinguishment Criteria
 - Vary Oxygen Concentration until a threshold is identified for Self Extinguishment to occur.
 - Threshold allows performance comparisons across environments of equivalent O2 PP
 - Material ignition susceptibility
 - Burn Rates

Max O₂ Concentration Self Extinguishment Thresholds & Equivalent Normoxic O₂ Concentrations (NASA 6001 Flamm)

Max O₂ Total Pressures Self Extinguishment Thresholds & Equivalent Partial Pressures (NASA 6001 Flamm)

WHITE SANDS TEST FACILITY

Total Pressure Dependencies

- For pressures above 41 kPa (6 psia)
 - All show a strong dependence on oxygen concentration with little relation to total pressures
- Below 41 kPa (6 psia)
 - MOCs and required oxygen partial pressures show increased dependence on total pressure.
- Power equation models fit trends precisely across
 - Pressure ranges spanning 2.8–119.3 kPa (0.4–17.3 psia)
 - Both MOC and partial pressure against total pressures.
- Required O₂ partial pressure necessary to sustain propagation decreases with decreased total pressures.
 - Increased flammability risk at lower total pressure conditions despite equivalent partial pressure
 - Conversely, oxygen concentration primary driver despite equivalent partial pressure

WHITE SANDS TEST FACILITY

Application of Findings

 Lower O₂% / higher P data <u>cannot</u> be conservatively applied to higher O₂% /lower P environments despite equivalent partial pressures.

21
$$O_2$$
%,14.7psi(3.1pp) \longrightarrow 30 O_2 %,10.2 psi(3.1pp)

 Higher O₂% /lower P data <u>can</u> be conservatively applied to evaluate the risk of lower O₂% higher P equivalent PP environments

30 O₂%,10.2 psi(3.1pp)

21 O₂%,14.7psi(3.1pp)

NASA

WHITE SANDS TEST FACILITY

Other Supporting Research

- Flame spread rate testing (Olson and Miller)
 - Performed along normoxic curve (18-100 O₂%)
 - Flame spread rate increased with higher O₂% despite O₂ pp remaining constant
- Burn Rates (Yang, Hamins, and Donneley)
 - Polymethyl methacrylate (PMMA) spheres
 - Burn rates increased significantly as O₂% was increased (19.9-30 O₂%)
 - little effect was observed with increased pressures from 50.0–150 kPa (7.25–21.75 psia).

NASA

WHITE SANDS TEST FACILITY

Increased Pressure Dependencies

- Certain materials exhibited higher dependencies on total pressure
 - Kel-F (CF₂CCIF)n, PTFE (C₂F₄)n, Zotek F30 (C₂H₂F₂)n,
 - highly halogenated
 - Armalon TG4060
 - fluorocarbon fiberglass composite, saturated chains of highly electronegative halogenated molecules (F, CI)
 - Nomex
 - aramid structure with dense electron clouds
- All highly stable with few susceptible reaction sites.
 - Oxygen Molecular Collision Rate Competition for Reaction Sites?

NASA

WHITE SANDS TEST FACILITY

Ignition Sequence

- Available Reaction Sites Ignition Sequence Pyrolysis
 - 1. Flammable gas mixing
 - 2. Ignition induction
- Proposed additional mechanism step in ignition sequence
- Limited Reaction Sites Ignition Sequence
 - 1. Oxygen molecular collision rate competition for reaction sites
 - 2. Pyrolysis
 - 3. Flammable gas mixing
 - 4. Ignition Induction
- Theory would be successful in describing observed experimental trends

WHITE SANDS TEST FACILITY

Future Work

- Additional testing in low pressure ranges
- Acquisition of burn rate data at the various equivalent partial pressure conditions.

WHITE SANDS TEST FACILITY

Conclusions

- Partial pressure of oxygen equivalency does not represent flammability equivalency
- Oxygen Concentration % is the primary driver for flammability despite equivalent partial pressure
- Higher O₂% /lower P data <u>can</u> be conservatively applied to evaluate the risk of lower O₂% higher P equivalent PP environments

21 O₂%,14.7psi(3.1pp)

30 O₂%,10.2 psi(3.1pp)

30 O₂%,10.2 psi(3.1pp)

21 O₂%,14.7psi(3.1pp)

NASA WHITE SANDS TEST FACILITY

Back-up Slides

Pressure effects
on Self
Extinguishment
Thresholds &
Normoxic & ISS
environment
conditions for
comparison

Material	psia (total pressure)													
	Determined at													
	99.8 % volume O ₂													
	0.4	0.5	0.6	0.9	7		10.2		12.35		14.7		17.3	
	MOP	MOP			MOC									MOP
PTFE	(psia)	(psia)	(psia)	(psia)	(vol%) 53	(psia) 3.7	(VO1%)	(psia)	46	(psia) 5.7	(vol%) 42		(VOI%)	(psia)
KelF-81												6.2		
Silicone					76 28	5.3 2.0			56 23	6.9 2.8	53	7.8 3.1		
											21			
Zytel 42					25	1.8			23	2.8	23	3.4		
Viton-A					29	2.0			21	2.6	21	3.1		
Buna-S					18	1.3			17	2.1	16	2.4		
Neoprene					18	1.3			17	2.1	16	2.4		
Buna-N					18	1.3			16	2.0	15	2.2		
EPDM Rubber					18	1.3			16	2.0	16	2.4		
Polyethylene (PE)					18	1.3			18	2.2	17	2.5		
Delrin					13	0.9			12	1.5	11	1.6		
Zotek F30					47	3.3					37.5	5.5	36	6.2
Valox DR48					31	2.2					28.1	4.1	28	4.8
Nylon/ Phenolic					18	1.3					17	2.5	17	2.9
Armalon TG4060					50	3.5					35	5.1	33	5.7
Sygef							34	3.5			34	5.0	32	5.5
Udel P1700														
Polysulfone				0.9			29	3.0			24	3.5	22	3.8
Ultem 1000				0.9			24	2.4			21	3.1	21	3.6
Melamine/ Glass							36	3.7			34	5.0	33	5.7
Melinex 515	0.4						20	2.0			18.5	2.7		
Kydex 100			0.6				32	3.3			32	4.7	28	4.8
Nomex 90-40		0.5					37	3.8			31.5	4.6	30	5.2
Normoxic														
environment														
partial pressure														
equivalents														
(CEV/STS)					44	3.1	30	3.1	25	3.1	21	3.1	18	3.1
ISS environment														
partial pressure														
equivalents					50	3.5		3.5	28	3.5	24.1	3.5	20	3.5
MOC = Maximum oxyget MOP = Maximum oxyg	n concen en partia	tration v l pressu	vhich c re whe	onsiste n extin	ntly rest guishme	ults in 1 ent occu	naterial ırs (bas	l self-e: ed on N	xtinguis AOC wi	hment th the e	xception	of 99.8	% testi	ng)

Pressure Effects on NASA STD-6001 Test 1 Maximum O₂ Concentration Flammability Thresholds

