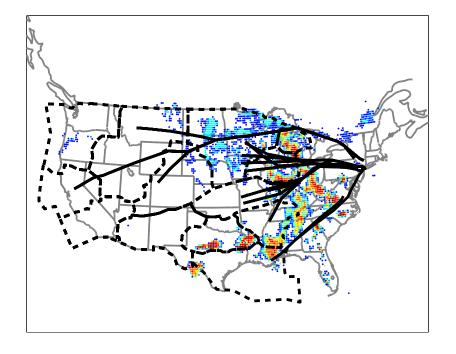

Initial Analysis of and Predictive Model Development for Weather Reroute Advisory Use


Heather Arneson

Aviation Systems Division NASA Ames Research Center Moffett Field, CA 94035

Approaches

Previous work and ongoing

- Focused on identifying similar weather days
- Analyzing reroutes used on similar days
- Difficult to generate meaningful clusters of days

Approaches

Previous work and ongoing

- Focused on identifying similar weather days
- Analyzing reroutes used on similar days
- Difficult to generate meaningful clusters of days

This work

 Build models to predict the use of reroutes based on weather data

Develop a framework and process to analyze the use of reroutes and develop models to predict reroute use.

Develop a framework and process to analyze the use of reroutes and develop models to predict reroute use.

Develop a framework and process to analyze the use of reroutes and develop models to predict reroute use.

- Large amount of weather data available
 - ⇒ difficult to extract relevant features

Develop a framework and process to analyze the use of reroutes and develop models to predict reroute use.

- Large amount of weather data available
 - ⇒ difficult to extract relevant features
- Flexibility in route selection and descriptions
 - ⇒ spatially similar routes with different descriptions

Develop a framework and process to analyze the use of reroutes and develop models to predict reroute use.

- Large amount of weather data available
 - ⇒ difficult to extract relevant features
- Flexibility in route selection and descriptions
 - ⇒ spatially similar routes with different descriptions
- Routes used infrequently
 - ⇒ difficult to find similarities

Outline

- Advisory details
- Methodology
 - Identification of routes used by flights
 - Identification of similar routes
 - Weather feature extraction
 - Development of predictive models
- Prediction results
- Concluding remarks

Outline

Advisory details

- Methodology
 - · Identification of routes used by flights
 - Identification of similar routes
 - Weather feature extraction
 - Development of predictive models
- Prediction results
- Concluding remarks

Defining advisories

Advisories consist of ...

- Name
- Valid time range
- Text description of several routes
 - From an origin Center or airport
 - To a destination airport

Defining advisories

Advisories consist of ...

- Name
- Valid time range
- Text description of several routes
 - From an origin Center or airport
 - To a destination airport

June to August 2011

- 1,669 reroute advisories issued
- 735 unique advisory names
- 34,247 routes
- 2,770 origin-destination pairs

ATCSCC Advisory

ATCSCC ADVZY 062 DCC 06/21/2011 ROUTE RQD /FL

RAW TEXT: ATCSCC ADVZY 062 DCC 06/21/11 ROUTE RQD /FL

NAME: TX_ZME_2_EWR_LGA CONSTRAINED AREA: ZME

REASON: WEATHER

INCLUDE TRAFFIC: ZFW/ZHU/ZME DEPARTURES TO EWR/LGA FACILITIES INCLUDED: /ZDC/ZFW/ZHU/ZID/ZME/ZNY/ZOB/ZTL

FLIGHT STATUS: ALL_FLIGHTS
VALID: ETD 211800 TO 220100
PROBABILITY OF EXTENSION: LOW
REMARKS: THIS REPLACES ADVZY033.
ASSOCIATED RESTRICTIONS:

MODIFICATIONS:

ROUTES:

ORIG DEST
---ZHU LGA

ZHU EWR J191 PXT KORRY3<

ZHU EWR >HRV J37 SPA J14 CREWE J51
FAK PHLB02<

ZME ZFW(-BNA) LGA >MEM J29 DJB CXR J146 ETG

MIP3<
ZME ZFW(-BNA) EWR >MEM J29 DORET J584 FQM

FQM1<

ROUTE

>HRV J37 MGM AHN J208 HPW

TMI ID: RRDCC062 211728-220100 11/06/21 17:28 DCCOPS./nfs/lxstn18

ATCSCC Advisory

ATCSCC ADVZY 062 DCC 06/21/2011 ROUTE RQD /FL

RAW TEXT: ATCSCC ADVZY 062 DCC 06/21/11 ROUTE RQD /FL

NAME: TX_ZME_2_EWR_LGA CONSTRAINED AREA: ZME

REASON: WEATHER

INCLUDE TRAFFIC: ZFW/ZHU/ZME DEPARTURES TO EWR/LGA
FACILITIES INCLUDED: /ZDC/ZFW/ZHU/ZID/ZME/ZNY/ZOB/ZTL

FLIGHT STATUS: ALL_FLIGHTS
VALID: ETD 211800 TO 220100
PROBABILITY OF EXTENSION: LOW
REMARKS: THIS REPLACES ADVZY033.
ASSOCIATED RESTRICTIONS:

MODIFICATIONS:

ROUTES:

ORIG DEST ROUTE

ZHU LGA >HRV J37 MGM AHN J208 HPW J191 PXT KORRY3</br>
ZHU EWR >HRV J37 SPA J14 CREWE J51

FAK PHLBO2<

ZME ZFW(-BNA) LGA >MEM J29 DJB CXR J146 ETG

MIP3<

ZME ZFW(-BNA) EWR >MEM J29 DORET J584 FQM

FQM1<

TMI ID: RRDCC062 211728-220100

11/06/21 17:28 DCCOPS./nfs/lxstn18

ATCSCC Advisory

ATCSCC ADVZY 062 DCC 06/21/2011 ROUTE RQD /FL

RAW TEXT: ATCSCC ADVZY 062 DCC 06/21/11 ROUTE RQD /FL

NAME: TX_ZME_2_EWR_LGA CONSTRAINED AREA: ZME

REASON: WEATHER

INCLUDE TRAFFIC: ZFW/ZHU/ZME DEPARTURES TO EWR/LGA FACILITIES INCLUDED: /ZDC/ZFW/ZHU/ZID/ZME/ZNY/ZOB/ZTL

FLIGHT STATUS: ALL_FLIGHTS
VALID: ETD 211800 TO 220100
PROBABILITY OF EXTENSION: LOW
REMARKS: THIS REPLACES ADVZY033.

ASSOCIATED RESTRICTIONS: MODIFICATIONS:

ROUTES:

ORIG ----ZHU

ZME ZFW(-BNA)

ZME ZFW(-BNA)

ZHU

LGA EWR LGA

DEST

EWR

J191 PXT KORRY3<
>HRV J37 SPA J14 CREWE J51
FAK PHLBO2<
>MEM J29 DJB CXR J146 ETG

>MEM J29 DJB CXR J146 ETG MIP3<

>HRV J37 MGM AHN J208 HPW

>MEM J29 DORET J584 FQM

FQM1<

ROUTE

TMI ID: RRDCC062 211728-220100

11/06/21 17:28 DCCOPS./nfs/lxstn18

ATCSCC Advisory

ATCSCC ADVZY 062 DCC 06/21/2011 ROUTE RQD /FL

RAW TEXT: ATCSCC ADVZY 062 DCC 06/21/11 ROUTE RQD /FL

NAME: TX_ZME_2_EWR_LGA CONSTRAINED AREA: ZME

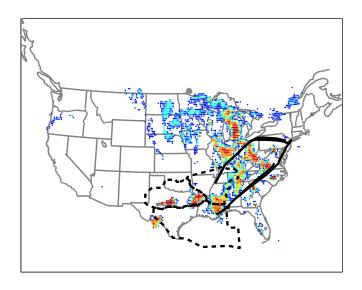
REASON: WEATHER

INCLUDE TRAFFIC: ZFW/ZHU/ZME DEPARTURES TO EWR/LGA
FACILITIES INCLUDED: /ZDC/ZFW/ZHU/ZID/ZME/ZNY/ZOB/ZTL

FLIGHT STATUS: ALL FLIGHTS
VALID: ETD 211800 TO 220100
PROBABILITY OF EXTENSION: LOW
REMARKS: THIS REPLACES ADVZY033.
ASSOCIATED RESTRICTIONS:

MODIFICATIONS: ROUTES:

ORIG DEST
---ZHU LGA
ZHU EWR
ZME ZFW(-BNA) LGA
ZME ZFW(-BNA) EWR


ROUTE

>HRV J37 MGM AHN J208 HPW J191 PXT KORRY3< >HRV J37 SPA J14 CREWE J51 FAK PHLB02< >MEM J29 DJB CXR J146 ETG MIP3<

>MEM J29 DORET J584 FQM

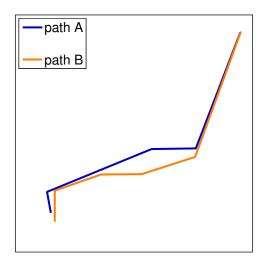
FQM1<

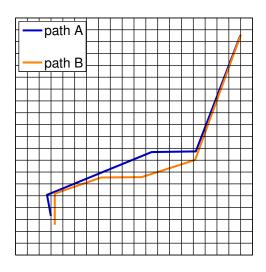
TMI ID: RRDCC062 211728-220100 11/06/21 17:28 DCCOPS./nfs/lxstn18

Outline

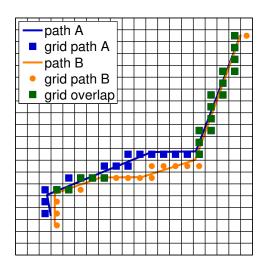
- Advisory details
- Methodology
 - · Identification of routes used by flights
 - Identification of similar routes
 - Weather feature extraction
 - Development of predictive models
- Prediction results
- Concluding remarks

- Identification of routes used by flights
- · Identification of similar routes
- Weather feature extraction
- Development of predictive models

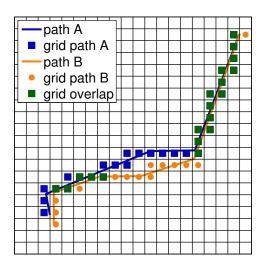

- Identification of routes used by flights requires distance metric to compare routes and flight tracks
- Identification of similar routes
- Weather feature extraction
- Development of predictive models


- Identification of routes used by flights requires distance metric to compare routes and flight tracks
- Identification of similar routes requires distance metric to compare routes
- Weather feature extraction
- Development of predictive models


- Identification of routes used by flights requires distance metric to compare routes and flight tracks
- Identification of similar routes requires distance metric to compare routes
- Weather feature extraction requires domain knowledge
- Development of predictive models


Outline

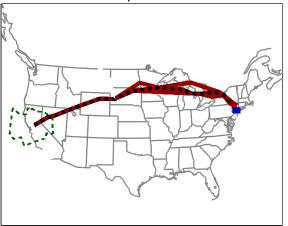
- Advisory details
- Methodology
 - · Identification of routes used by flights
 - Identification of similar routes
 - Weather feature extraction
 - Development of predictive models
- Prediction results
- Concluding remarks



$$\label{eq:distance} \text{distance}(\text{path A}, \text{path B}) = 1 - \frac{\text{length}(\text{grid overlap})}{\min(\text{length}(\text{path A}), \text{length}(\text{path B}))}$$

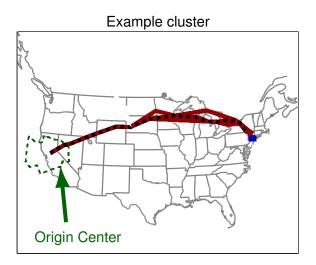
Route usage

- June through August 2011
- Routes and flights inbound to New York Center (ZNY)
- Define use:
 flight track and reroute overlap for at least 85% of shorter path
- Of 4,476 issued routes, 905 were used by at least one flight

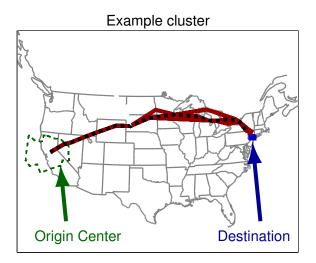

Outline

- Advisory details
- Methodology
 - Identification of routes used by flights
 - Identification of similar routes
 - Weather feature extraction
 - Development of predictive models
- Prediction results
- Concluding remarks

Cluster routes


905 used routes grouped into 253 clusters

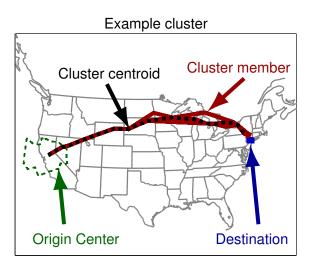
Example cluster


Cluster routes

905 used routes grouped into 253 clusters

Cluster routes

905 used routes grouped into 253 clusters


Cluster routes

905 used routes grouped into 253 clusters

Example cluster Cluster member Destination **Origin Center**

Cluster routes

905 used routes grouped into 253 clusters

Outline

- Advisory details
- Methodology
 - · Identification of routes used by flights
 - Identification of similar routes
 - Weather feature extraction
 - Development of predictive models
- Prediction results
- Concluding remarks

Echo tops

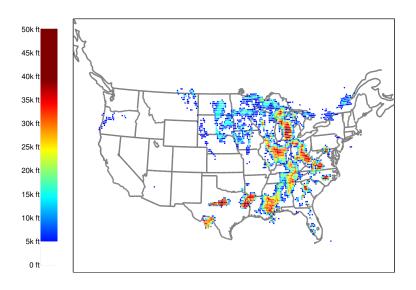
- Estimates of tops of clouds based on radar measurements
- Values are discrete altitude levels 0 ft to 50,000 ft at 5,000 ft intervals

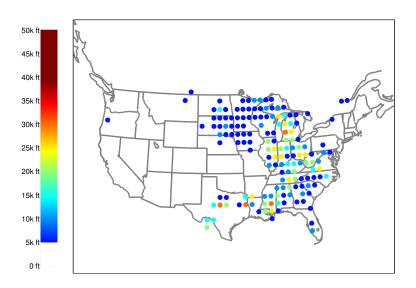
Echo tops

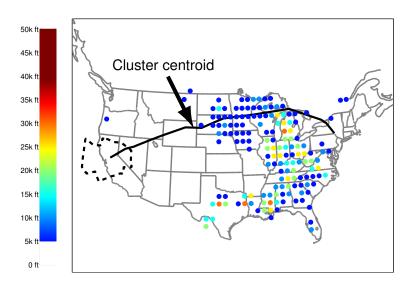
- Estimates of tops of clouds based on radar measurements
- Values are discrete altitude levels 0 ft to 50,000 ft at 5,000 ft intervals
- 108,955 data points cover the continental US

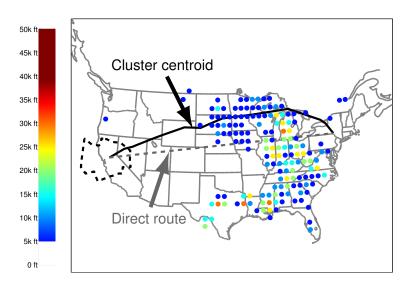
Echo tops

- Estimates of tops of clouds based on radar measurements
- Values are discrete altitude levels 0 ft to 50,000 ft at 5,000 ft intervals
- 108,955 data points cover the continental US
- 2,614,920 echo top values per hour


Echo tops


- Estimates of tops of clouds based on radar measurements
- Values are discrete altitude levels
 0 ft to 50,000 ft at 5,000 ft intervals
- 108,955 data points cover the continental US
- 2,614,920 echo top values per hour


Grid


- Spatial resolution of 75 nmi by 58 nmi (1.25° lat by 1.25° lon)
- 1,000 grid elements cover the continental US
- Temporal resolution of one hour
- 1,000 averaged echo top values per hour


High resolution weather data

Outline

- Advisory details
- Methodology
 - · Identification of routes used by flights
 - Identification of similar routes
 - Weather feature extraction
 - Development of predictive models
- Prediction results
- Concluding remarks

Data summary

Reduced data

- June to August 2011
 - ⇒ 2,208 one-hour time windows
- 905 ZNY-bound routes used
 - ⇒ 253 reroute clusters
 - ⇒ 20 most frequently used clusters (used 50 to 240 times)
- 2,614,920 echo top data points per hour
 - ⇒ 1,000 echo top points per hour
 - ⇒ 34 created features per hour per cluster

Data summary

Reduced data

- June to August 2011
 - ⇒ 2,208 one-hour time windows
- 905 ZNY-bound routes used
 - ⇒ 253 reroute clusters
 - ⇒ 20 most frequently used clusters (used 50 to 240 times)
- 2,614,920 echo top data points per hour
 - ⇒ 1,000 echo top points per hour
 - 34 created features per hour per cluster

Data for model development for one cluster

- 2,208 observations
- 34 created features
- class label
 - + reroute cluster used
 - reroute cluster not used

Model performance metrics

Classification error

$$\varepsilon = \frac{\text{\# incorrectly predicted observations}}{\text{total \# observations}}$$

Model performance metrics

Classification error

$$\varepsilon = \frac{\text{\# incorrectly predicted observations}}{\text{total \# observations}}$$

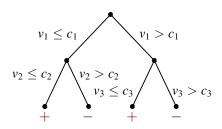
True positive rate

$$\frac{\text{TPR} = \frac{\text{\# of correctly predicted positive observations}}{\text{total \# of positive observations}}$$

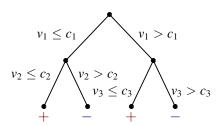
Model performance metrics

Classification error

$$\varepsilon = \frac{\text{\# incorrectly predicted observations}}{\text{total \# observations}}$$


True positive rate

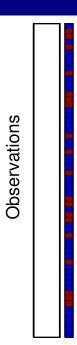
$$\frac{\text{TPR} = \frac{\text{\# of correctly predicted positive observations}}{\text{total \# of positive observations}}$$


True negative rate

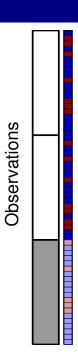
$$\label{eq:total_total} \text{TNR} = \frac{\text{\# of correctly predicted negative observations}}{\text{total \# of negative observations}}$$

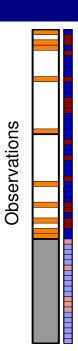
Decision tree

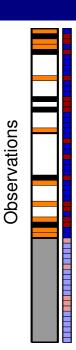
Decision tree

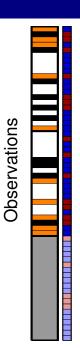

- Shallow trees cannot capture more complex connections
- Deep trees tend to overfit

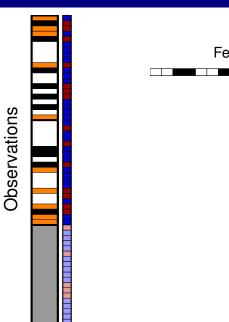
Random forest

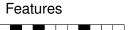

- Consists of many weak learners (shallow decision trees)
- Each decision tree is built with:
 - Randomly selected subset of observations
 - Randomly selected subset of features
- Ensemble prediction: weighted vote of each weak learner

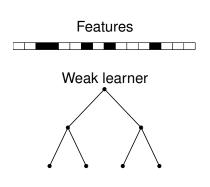

Random forest

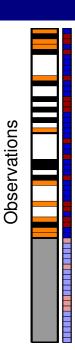

- Consists of many weak learners (shallow decision trees)
- Each decision tree is built with:
 - Randomly selected subset of observations
 - Randomly selected subset of features
- Ensemble prediction: weighted vote of each weak learner
- ⇒ Advantage: reduce sensitivity to noise ⇒ reduce overfitting

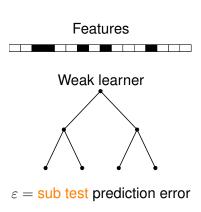


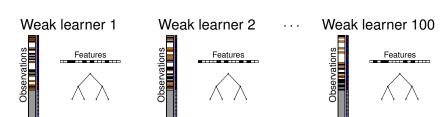


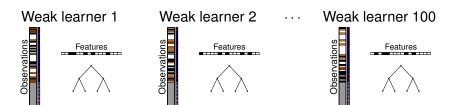




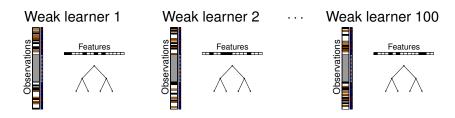

Features

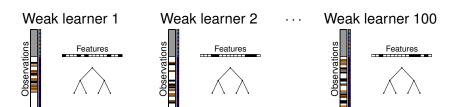





Weak learner

 $\varepsilon = \text{sub test prediction error}$

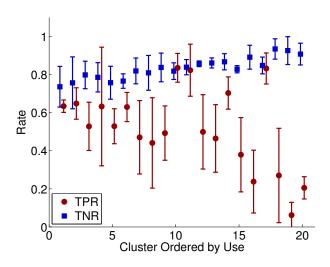

$$\alpha = \left\{ \begin{array}{l} \nearrow \text{ as } \varepsilon \searrow, \varepsilon < 0.5 \\ 0, \text{ otherwise} \end{array} \right.$$


Ensemble prediction:

Weighted vote from each weak learner

Ensemble prediction:

Weighted vote from each weak learner

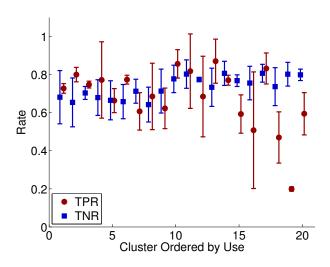

Ensemble prediction:

Weighted vote from each weak learner

Outline

- Advisory details
- Methodology
 - Identification of routes used by flights
 - Identification of similar routes
 - Weather feature extraction
 - Development of predictive models
- Prediction results
- Concluding remarks

Prediction results



Synthetic Minority Oversampling Technique (SMOTE)

Within the training set:

- Select a positive observation
- Select one of its nearest neighbors
- Create a new observation:
 Convex combination of these two observations

Prediction results with SMOTE

Outline

- Advisory details
- Methodology
 - Identification of routes used by flights
 - Identification of similar routes
 - Weather feature extraction
 - Development of predictive models
- Prediction results
- Concluding remarks

Conclusions and future work

Conclusions

- Developed a framework to
 - analyze the historical use of reroutes
 - · develop models to predict reroute use
- With improvements, this approach could provide insight into advisory use

Conclusions and future work

Conclusions

- Developed a framework to
 - · analyze the historical use of reroutes
 - · develop models to predict reroute use
- With improvements, this approach could provide insight into advisory use

Future work

- Include weather conditions at fixes and along jet routes
- Use Convective Weather Avoidance Model (CWAM)
- Use Collaborative Convective Forecast Product (CCFP)

Questions?

Heather Arneson heather.arneson@nasa.gov