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Abstract
This paper presents a scalable method to ef-

ficiently search for the most likely state trajectory
leading to an event given only a simulator of a system.
Our approach uses a reinforcement learning formu-
lation and solves it using Monte Carlo Tree Search
(MCTS). The approach places very few requirements
on the underlying system, requiring only that the sim-
ulator provide some basic controls, the ability to eval-
uate certain conditions, and a mechanism to control
the stochasticity in the system. Access to the system
state is not required, allowing the method to support
systems with hidden state. The method is applied
to stress test a prototype aircraft collision avoidance
system to identify trajectories that are likely to lead
to near mid-air collisions. We present results for both
single and multi-threat encounters and discuss their
relevance. Compared with direct Monte Carlo search,
this MCTS method performs significantly better both
in finding events and in maximizing their likelihood.

Introduction
Airborne collision avoidance systems are man-

dated worldwide on large transport and cargo aircraft
to help prevent mid-air collision. Since it entered
operation in 1993, the Traffic Alert and Collision
Avoidance System (TCAS) has played a crucial role
in greatly reducing the risk of mid-air collision [1].
With air traffic projected to double in the next 30
years [3], the Federal Aviation Administration (FAA)
has decided to develop a new aircraft collision avoid-
ance system capable of addressing the growing needs
of the national airspace. The next-generation Airborne
Collision Avoidance System (ACAS X) is currently
being developed and tested by the FAA and promises
a number of potential improvements including further

reduction in collision risk while simultaneously re-
ducing the number of unnecessary alerts [4]. ACAS X
uses a partially observable Markov decision process
to model the problem and dynamic programming to
efficiently compute its solution [4].

Prior to certification, an aircraft collision avoid-
ance system must undergo extensive verification and
validation. A variety of different metrics are used to
evaluate the safety, suitability, and acceptability of the
system [19]. One of the primary safety metrics is the
likelihood of near mid-air collision (NMAC), defined
as being when two aircraft come less than 100 feet
vertically and 500 feet horizontally from one another.
It is well accepted that the likelihood of NMAC
cannot be driven to zero due to surveillance noise,
pilot response delay, and the need for an acceptable
alert rate. However, it is still important to understand
the situations where NMACs can arise, even if they
are extremely rare.

There have been a variety of both “white box”
and “black box” methods applied to the analysis of
NMAC events. White box methods assume that the in-
ner details of the system are available to be inspected
and leveraged in the analysis. For example, Von Essen
and Giannakopoulou [16] used probabilistic model-
checking to analyze a simplified version of ACAS X,
and Jeannin, Ghorbal, Kouskoulas, et al. [18] used an
automated theorem prover. Unfortunately, white box
methods generally have to rely on approximate rep-
resentations of the system because of their difficulty
scaling to the many internal variables governing the
state of the system.

In contrast with white box methods, black box
methods do not use information about the internal
details of the system. Consequently, they can scale to
more complicated systems like TCAS and ACAS X
that have many variables. All that is required in a



black box approach is the ability to simulate the
system. Prior analysis of TCAS involved sweeping
through a low-dimensional parametric model of head-
on encounters and simulating the collision avoidance
system [20]. Although this kind of stress testing can
find NMACs, it is limited to the low-dimensional
parameterization of the encounter space and it can
be difficult to assess the likelihood of the various
NMACs. An alternative approach is to run simulations
drawn from a statistical representation of the airspace
[17]. Unfortunately, directly sampling from such a
model is very computationally inefficient due to the
rarity of NMACs.

This paper presents a black box method for
adaptive stress testing that aims to find the most
likely scenarios that lead to NMAC. The approach is
related to reinforcement learning, an area of machine
learning concerned with making decisions in an un-
known environment so as to maximize a numerical
reward [6]. Our problem differs from a traditional
reinforcement learning problem in that we operate
on non-Markovian systems and optimize over state
transitions rather than an explicit set of actions.

The proposed methodology is quite general and
is applicable to the adaptive stress testing of a variety
of different systems. This paper first presents the gen-
eral methodology and then applies it to the analysis
of the official binaries encoding the decision logic of
an ACAS X prototype.

Problem Description
We describe the general problem of finding the

most likely state trajectory that leads to a critical event
E where only a generative black box simulator S
is available. We assume the system underlying the
simulator to be discrete-time Markovian with stochas-
tic transitions. However, the state of the system is
hidden, making the process non-Markovian from the
search algorithm’s perspective. We use st to denote
the hidden internal state of the simulator S at time
t.

We specify the inputs to the problem by a pair
(S ,E), where S is a generative black box simulator
and E is a subset of the state space where the event
of interest occurs. The black box simulator exposes
the system of interest as a discrete-time Markov
chain with seeded stochastic transitions. Specifically,
the simulator steps through time drawing a random

next state at each time step and updating its internal
state, where the nominal randomness for the sampling
is pseudorandomly generated from a provided seed.
The seed can be the pseudorandom seed or state of
the pseudorandom number generator. The simulator
exposes three functions for simulation control:
• INITIALIZE(S ) resets the simulator S to its

initial state s0.
• STEP(S ,at) updates the hidden state of the

simulator S by pseudorandomly sampling a next
state st+1 given the current state st according to
the system transition probability P(st+1 | st) and
the seed at . The function returns the probability
of the transition taken and a boolean that indi-
cates whether st is in E. Both INITIALIZE and
STEP transform S in place.

• ISTERMINAL(S ) returns true if the current state
of the simulator is terminal, and false otherwise.
We define the terminal time T to be the first time
at which ISTERMINAL returns true.
The problem is defined as follows: Given

(S ,E), find the trajectory that contains the occur-
rence of E and maximizes the likelihood of the
trajectory ∏

T
t=0 P(st+1 | st).

Proposed Method
The overall strategy of our proposed solution is

to recast the given problem into a decision-making
problem and apply a variation of a tree-based re-
inforcement learning algorithm called Monte Carlo
Tree Search (MCTS). A system diagram is shown in
Figure 1. At the center of the method is the system
under test modeled as a black box simulator. It takes
as input basic simulator controls (i.e., INITIALIZE,
STEP, and ISTERMINAL) and a seed, and outputs the
likelihood of the current transition and a boolean
indicating whether the current state is an event. The
outputs are transformed into the reward using the
reward function and passed to the MCTS algorithm.
Finally, to complete the loop, MCTS uses the reward
to choose the seed and control inputs of the simulator.
We describe each component of the system in detail.

Reformulation as a Decision Process
We take the stochastic process defined by S and

insert decision points between each time step where
each decision is to choose the seed at . Recall that
at controls the stochastic transition of the system by
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Figure 1. System diagram of stress testing method

specifying a pseudorandomly-generated sample of the
next state in STEP. As a result, rather than allowing
the system to evolve naturally (and stochastically), the
sequence of decisions uniquely determines the state
evolution of the system.

Reward Function
We design a reward function for the decision

process that is equivalent to the objective in the
original problem, which is to find trajectories that
contain events and maximize the likelihood of the tra-
jectory ∏

T
t=0 P(st+1 | st). Since reinforcement learning

maximizes the expected sum of rewards (as opposed
to product), we choose the following reward function:

R(st ,st+1) =


0 if st ∈ E,

−∞ if st /∈ E, t ≥ T

logP(st+1 | st) if st /∈ E, t < T .
(1)

Throughout this discussion, we assume, without
loss of generality, that terminal states are absorbing.
An absorbing state is one that transitions to itself with
probability 1. After initially collecting the reward for
being in that state, subsequent transitions give rewards
of 0. Recall that the terminal time T is the first time
at which the state becomes terminal. As a result, we
can use the shorthand notation t ≥ T to indicate a
terminal state, and t < T to indicate a non-terminal
one. Furthermore, we assume that states in E are
terminal, so that st ∈ E implies t ≥ T .

The first two conditions implement the event
occurrence constraint. If the trajectory terminates and

E occurs, the first condition awards a maximum
reward of 0. However, if the trajectory terminates
and E does not occur, then the second condition
infinitely penalizes the learner. The third condition
in the reward function maximizes the trajectory like-
lihood by giving a negative reward logP(st+1 | st) for
each non-terminal transition. By choosing a reward
of logP(st+1 | st), we maximize ∑

T
t=0 logP(st+1 | st)

in the reinforcement learning problem, which is in
fact equivalent to maximizing ∏

T
t=0 P(st+1 | st) in the

original problem.
We observe that each term in the reward function

is non-positive. As a result, the total reward of any
trajectory, ∑

T
t=0 R(st ,st+1), will be non-positive as

well. In fact, if E occurs, then the total reward is the
log likelihood of the trajectory. Otherwise, the total
reward is −∞.

Monte Carlo Tree Search
One of the most successful sampling-based on-

line approaches to reinforcement learning in recent
years is Monte Carlo Tree Search (MCTS). The
approach has become widely known because of recent
successes in the game of computer Go [10]. MCTS
incrementally builds a search tree using sampling and
forward simulation to inform the search and focus on
the most promising areas. Here, we describe a varia-
tion of MCTS that uses double progressive widening,
a technique that controls the branching factor of
the search tree [11]. This variation is specifically
necessary when the action space is continuous or so
large that all actions cannot possibly be explored. The
latter applies in our case since the actions are in the
space of pseudorandom seeds, which is too large to
exhaustively explore. For a detailed review of MCTS,
see [10].

The algorithm involves running many simula-
tions from the current state while updating an estimate
of the state-action value function. The state-action
value function Q(s,a) represents the expected sum
of rewards resulting from choosing action a in state
s. The following is an overview of the three stages of
each simulation:
• Search. In the search stage, the algorithm starts

at the root of the tree and recursively selects a
child to follow. At each visited state node, the
first progressive widening criterion determines
whether to choose amongst existing actions, or



to generate a new one. The criterion limits the
number of actions at a state s to be no more
than polynomial in the total number of visits to
that state. Specifically, a new action is generated
according to a user-defined function GETAC-
TION if ‖A(s)‖ < kN(s)α , where k and α are
parameters, ‖A(s)‖ is the number of existing
actions at state s, and N(s) is the total number
of visits to state s. Otherwise, the existing action
that maximizes

Q(s,a)+ c

√
logN(s)
N(s,a)

(2)

is chosen, where c is a parameter that controls the
amount of exploration in the search, and N(s,a)
is the total number of visits to action a in state s.
The second term in eq. 2 is an exploration bonus
that encourages selecting actions that have not
been tried as frequently.
At each visited action node, the second pro-
gressive widening criterion determines whether
to follow an existing next state node, or to
draw a new next state from the simulator. The
second criterion has the same form as the first
and limits the number of next states to be no
more than polynomial in the number of visits
to that state-action pair. We draw a new next
state if ‖V (s,a)‖< k′N(s,a)α ′ , where k′ and α ′

are parameters, ‖V (s,a)‖ is the number of next
states visited from the state-action pair (s,a), and
N(s,a) is the total number of visits to (s,a).
Otherwise, we randomly select a next state with
probability proportional to N(s,a,s′), the number
of times s′ was encountered choosing action a in
state s. The search stage continues in this manner
until the system transitions to a state that is not
in the tree.

• Expansion. Once we have reached a state that
is not in the tree, we create a new node for the
state and add it. The set of actions taken from
this state, A(s), is initialized to empty.

• Rollout. Starting from the state created in the ex-
pansion stage, we perform a rollout that repeat-
edly samples state transitions until the desired
depth (or termination) is reached. State transi-
tions are drawn from the simulator with actions
chosen according to a rollout (or default) policy

π0. The total reward of the sampled trajectory is
returned and used to update the value for Q(s,a)
used by the search phase.
Simulations are run until some stopping criterion

is met, often simply a fixed number of iterations. We
then execute the action that maximizes Q(s,a). Once
that action has been executed, we can rerun the MCTS
to select the next action. The process is repeated until
all actions are executed.

We now describe the specific choices of param-
eters and modifications we have made to tailor it for
our purposes. Since we have a deterministic transition
given the state and seed, there is no need to consider
multiple samples of the next state s′. As a result, we
disable the second progressive widening by setting
k′ = 1 and α ′ = 0. The choice of these parameters
makes ‖V (s,a)‖< k′N(s,a)α ′ true only once where a
sample s′ is drawn, then false thereafter independent
of the value of N(s,a). Since there is no reason to
distinguish among pseudorandom seeds, we choose
a ∼ π0 and GETACTION to sample uniformly from
all available seed values. The choice of a uniform
π0 generates unbiased samples of the next state from
our simulator. We initialize all state-action values to
Q0(s,a) = 0.

MCTS is designed for stochastic Markovian sys-
tems, and thus does not generally support systems that
are non-Markovian. The problem is that the algorithm
needs the ability to set the system state back to any
visited state of the tree, and there is no general way
to do that in the stochastic setting without an explicit
state representation. Fortunately, since each transition
from st to st+1 is deterministic given action at , we
can return to any visited state st by remembering the
sequence of actions a0:t−1 = a0, ...,at−1 taken since
s0. To revisit st , we first call INITIALIZE to return
to s0, then repeatedly call STEP with the sequence of
actions a0:t−1. When an explicit representation of st is
used, we implicitly make the substitution st = a0:t−1
reusing (and abusing) the notation for st . This key
modification to the algorithm enables our method to
support Markovian systems with hidden state. The
process is outlined in Algorithms 1 and 2.

Figure 2 shows a search tree for one decision
in a single threat encounter. One thousand iterations
are shown. The figure shows how MCTS explores
broadly, but also focuses deeply on a number of
potentially high-reward areas.



Algorithm 1 Tailored Monte Carlo tree search with
double progressive widening

1: function MONTECARLOTREESEARCH(S ,s,d)
2: loop
3: GOTOSTATE(S ,s)
4: SIMULATE(S ,s,d)
5: return argmaxa Q(s,a)
6: function SIMULATE(S ,s,d)
7: if d = 0 then
8: return 0
9: if s 6∈T then

10: T ←T ∪{s}
11: (N(s),A(s))← (0, /0)
12: return ROLLOUT(S ,s,d)
13: N(s)← N(s)+1
14: if ‖N(s,a)‖< kN(s)α then
15: a← GETACTION()
16: (N(s,a),V (s,a))← (0, /0)
17: Q(s,a)← Q0(s,a)
18: A(s)← A(s)∪{a}
19: a← argmaxa Q(s,a)+ c

√
logN(s)
N(s,a)

20: if ‖V (s,a)‖< k′N(s,a)α ′ then
21: (P,E)← STEP(S ,a)
22: r← GETREWARD(P,E)
23: s′← [s,a]
24: if s′ 6∈V (s,a) then
25: V (s,a)←V (s,a)∪{s′}
26: R(s,a,s′)← r
27: N(s,a,s′)← 0
28: else
29: N(s,a,s′)← N(s,a,s′)+1
30: else
31: n← ∑s′ N(s,a,s′)
32: s′← SAMPLE(V (s,a),N(s,a, ·)/n)
33: r← R(s,a,s′)
34: N(s,a,s′)← N(s,a,s′)+1
35: q← r+ γSIMULATE(S ,s′,d−1)
36: N(s,a)← N(s,a)+1
37: Q(s,a)← Q(s,a)+ q−Q(s,a)

N(s,a)
38: return q
39: function ROLLOUT(S ,s,d)
40: if d = 0 then
41: return 0
42: a∼ π0
43: (P,E)← STEP(S ,a)
44: r← GETREWARD(P,E)
45: s′← [s,a]
46: return r+ γROLLOUT(S ,s′,d−1)

Algorithm 2 MCTS auxiliary function
1: function GOTOSTATE(S ,s)
2: a0:t−1← s
3: INITIALIZE(S )
4: for each a in a0:t−1 do
5: STEP(S ,a)

Figure 2. Visualization of the MCTS search tree
for one decision point (1000 iterations shown)

Aircraft Collision Avoidance
ACAS X is targeted to replace TCAS as the stan-

dard collision avoidance system for transport aircraft
worldwide. Before widespread acceptance, the safety
of the system must be demonstrated. Monte Carlo
evaluations of the system in realistic encounters play
an essential role in system assessments. Safety eval-
uations are performed using validated noise models
and incorporate altimetry bias effects. One important
safety metric is the risk ratio, defined as the proba-
bility of an NMAC with a collision avoidance system
divided by the probability of an NMAC without one.
Figure 3 shows the estimated risk ratios of NMAC for
TCAS and ACAS X based on 1.5 million encounters
generated by the Lincoln Laboratory Correlated Air-
craft Encounter Model (LLCEM) [12] [13] with both
aircraft equipped with a collision avoidance system.

As shown in Figure 3, ACAS X provides a sub-
stantial safety benefit relative to TCAS while simul-
taneously reducing the alert rate. Although there are
many other operational considerations that are impor-
tant to system acceptance, this paper focuses on better
understanding the remaining NMAC risk associated
with ACAS X. While 1.5 million encounters provide
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Figure 3. ACAS X and TCAS metrics.

insights into their relative safety, characterizing en-
counters that are still risk-bearing is important to
system development. Using conventional methods to
produce a meaningful set of NMAC examples would
require an extremely large number of simulations.
This work shows how the search can be performed
much more effectively using a reinforcement learn-
ing approach. Insight gained from this research will
inform the development process.

We stress test a prototype of ACAS X following
the method described earlier by constructing a simu-
lation environment, recasting it as a decision process,
and solving it using MCTS. Insights gained from this
work will inform design decisions for future iterations
of the collision avoidance system. An overall diagram
of our approach is shown in Figure 4.

Encounter Simulation
At the core of the analysis is a simulation

that models the various components of a mid-air
encounter. We implement the components using the
SISLES.jl framework [14]. Our simulation includes
an encounter model, sensor model, collision avoid-
ance system, pilot model, and an aircraft dynamics
model. We describe each component in detail.

Encounter Model: Encounter models are used to
initialize encounters in such a way to be both realistic
and likely to lead to NMACs. Initial states of aircraft,
including positions, velocities, and headings are set
in this manner. Pairwise (two-aircraft) encounters use
the Lincoln Laboratory Correlated Aircraft Encounter
Model (LLCEM), and multi-threat (three-aircraft) en-
counters use the Star Encounter Model.

LLCEM is comprised of two parts. The first is
a Bayesian network that models the geometry of two
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Figure 4. System diagram for stress testing pair-
wise ACAS X encounters

aircraft at point of closest approach, and the second
is a dynamic Bayesian network that models how pilot
commands transition over time. Both of these models
are learned from a large body of radar data over
the entire national airspace [12]. To obtain a set of
encounter initial conditions from the two models, we
follow the simulation and transformation procedure
in the paper.

The Star Encounter Model initializes aircraft on
a circle heading towards the origin and at equal angles
apart. Initial airspeed, altitude, and vertical rate are
sampled from a uniform distribution. The horizontal
distance from the origin is set such that without
intervention, the aircraft crosses the origin at a preset
time. For our experiments, we set the crossing time
to 40 seconds.

Sensor Model: The sensor model captures how
the collision avoidance system perceives the world.
We assume active, beacon-based sensor capability
with no noise. The main sensor inputs from own
aircraft are O0 = {ż,z,ψ,h}, where
• ż is vertical rate
• z is barometric altitude
• ψ is the heading
• h is height above ground

For each intruding aircraft i, the main sensor
inputs are Oi = {rs,χ,z}, where



• rs is slant range (relative distance to intruder)
• χ is bearing (relative angle to intruder)
• z is altitude

ACAS X System: ACAS X is the system under
test. We use an official binary of a prototype obtained
from the FAA. The binary exposes the functions
INITIALIZE and STEP, but is otherwise a black box.
It is known that ACAS X maintains internal state,
but the state is not exposed. Although there are many
output variables of the ACAS X system, the pilot is
mostly concerned with the issued resolution advisory
(RA), which instructs the pilots to climb or descend
at a particular rate.

ACAS X has a coordination mechanism to en-
sure that issued RAs do not conflict with each other,
such as to recommend two aircraft to maneuver in
the same vertical direction. The messages are com-
municated to all nearby aircraft through coordination
codes.

Pilot Model: There are two aspects to modeling
the pilot. First is the intended commands, which is
what the pilot would have done if there were no
conflicts. Second is the pilot response model, which
is how the pilot responds to an RA.

For the intended commands, we use the proba-
bilistic model given by the dynamic Bayesian network
in LLCEM. Samples are drawn according to the tran-
sition probabilities given. For the response model, we
use the deterministic pilot response model described
in [15]. The model assumes that pilots respond to
initial RAs with a 5-second delay then accelerate
towards the recommended target rate ḣtarget . Pilots
respond to subsequent RAs (i.e., strengthenings and
reversals) in the same manner except with a 3-second
delay. During the delay period, the pilot continues to
execute actions associated with the previous RA. That
is, the pilot continues to fly the intended trajectory
during initial RA delays, and continues responding
to the previous RA during subsequent RA delays.
Multiple RAs issued successively are queued so that
both their order and timing are maintained. In the case
where a subsequent RA is issued within 2 seconds or
less of an initial RA, the timing of the subsequent RA
is used and the initial RA is skipped. The output of
the pilot model is a command given by {a,hd ,ψd},
where
• a is commanded airspeed acceleration
• hd is commanded vertical rate

• ψd is commanded turn rate
Aircraft Dynamics Model: The aircraft dynamics

model determines how the state of the aircraft propa-
gates given the pilot commands. The aircraft state is
given by x = {v,N,E,z,ψ,θ ,φ}, where
• v is airspeed
• N is position north
• E is position east
• z is altitude
• ψ is heading angle
• θ is pitch angle
• φ is roll angle

We use forward Euler integration at 1 Hz to
propagate the aircraft state.

Reward Function Modification
When using the reward function in eq. 1 to

search, all trajectories not meeting the event constraint
return a reward of −∞ and so the algorithm cannot
distinguish amongst them. As a result, the algorithm
is largely just using Monte Carlo to search for event
trajectories. In reality, some of these non-event tra-
jectories are much closer to an event occurrence than
others. If the closeness can be quantified, we can
greatly speed up the algorithm by modifying the
reward function to incorporate this information. In
particular, instead of returning −∞ when the event
does not occur, we return a large negative reward
correlated with how “close” the trajectory came to
reaching an event. This modification has the effect of
making the reward function more gradual and guiding
the search to focus on areas near events.

In the case of mid-air encounters and NMACs,
an obvious closeness metric is the miss distance Dmiss,
defined as the Euclidean distance between aircraft at
their closest point. The miss distance is a good metric
because it is monotonically decreasing as trajectories
get closer to the event E and is minimum at E. We
use this modified reward function for all our ACAS X
experiments.

Single Threat Encounters
We performed studies on two-aircraft encounters

with initial conditions sampled from the LLCEM. The
algorithm searches the space of trajectories starting
from the encounter’s initial conditions and returns the
trajectory with the highest reward found. Although we
have crafted the reward function to find NMACs, the



algorithm may or may not have been successful at
finding one. A returned trajectory where an NMAC
does not occur could mean either that the number of
samples used is insufficient, or that one cannot be
reached from the initial conditions. With the configu-
ration shown in Table I, NMACs were found in 18%
of analyzed encounters. We manually clustered the
resulting trajectories and present our findings.

Table I. Single Threat Study Configuration

Simulation

Number of aircraft 2
Encounter Model LLCEM
Sensors Active, Beacon-Based, Noiseless
Collision Avoidance System ACAS X 0.8.5
Pilot Response Model ICAO 5s–3s

MCTS

depth 50
iterations 2000
exploration constant 100.0
k 0.5
α 0.85
k′ 1.0
α ′ 0.0

Crossing Time: A number of NMACs resulted
from well-timed vertical maneuvers. In particular,
aircraft crossing in altitude during the delay period
of an initial RA tends to be problematic. Figure 5
shows one such encounter that eventually ends in
an NMAC at 36 seconds. The probability density of
this trajectory evaluated using LLCEM is 5.3 ·10−18.
This quantity, which we will refer to as the likelihood
metric, can be used as a relative measure of how likely
is a trajectory to occur. In this encounter, the aircraft
cross in altitude during pilot 1’s delay period. This
results in aircraft 1 starting the climb from below
aircraft 2. Unfortunately after this has occurred, there
is not enough time to recover using a reversal due to
subsequent pilot response delays.

High Turn Rates: Turns, especially those at
higher rates, tend to complicate the conflict resolution
process by quickly shortening the time to closest ap-
proach. ACAS X does not have full state information
about its intruder and must estimate it by tracking rel-
ative distance, relative angle, and the intruder altitude.
Figure 6 shows an example of an encounter that has
similar crossing behavior as Figure 5 but exacerbated
by the high turn rate of aircraft 2 (approximately
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Figure 5. NMAC trajectory where altitude crossing
occurs during pilot’s initial response delay.

1.5 times the standard turn rate). In this scenario,
the aircraft become almost head-on at time of closest
approach and a reversal is not attempted. An NMAC
with a likelihood metric of 6.5 · 10−17 occurs at 48
seconds.

Initially Moving Against RA: We found that a
number of NMACs were caused by the pilot initially
moving against the issued RA before proceeding to
fully comply with it. Recall that the pilot is following
the intended trajectory during the first 5 seconds
of an initial RA, and this intended trajectory may
disagree with the RA. In most cases, the disagree-
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Figure 6. NMAC trajectory where high turn rate
plays a leading factor.

ment must be severe to cause an NMAC, where the
pilot aggressively accelerates against the RA. Perhaps
unsurprisingly, this makes it extremely difficult for
the collision avoidance system to resolve the conflict
despite full compliance later on.

Sudden Aggressive Accelerations: Sudden ma-
neuvers can lead to NMACs when they are suffi-
ciently aggressive and occurring at just the right time.
In particular, we observed some encounters where
two aircraft are approaching one another separated
in altitude and flying level, then one aircraft suddenly
accelerates vertically towards the other aircraft as they

are about to pass. Under these circumstances, given
the pilot response delays and dynamic limits of the
aircraft, the collision avoidance system often does not
have enough time to resolve the conflict.

Fortunately, the chances of such maneuvers are
exaggerated in our modeling since ACAS X issues
traffic alerts (TAs) to alert pilots to nearby traffic.
These warnings typically occur well in advance of
issued RAs to help pilots from entering into situations
where RAs are needed. The pilot response model used
in this work does not capture the effect of the TAs.

Combination of Factors: In our experiments, it
is very rare for an NMAC to occur due to a single
cause. Typically a combination of factors contribute
to the eventual NMAC as shown in the example
encounter in Figure 5. Although crossing time played
a crucial role, there are a number of other factors
that are important. The horizontal behavior where
they are turning into each other is significant as it
reduces the time to closest approach. The two vertical
maneuvers of aircraft 1 before receiving an RA are
also important. Similar observations can be made on
nearly all NMAC encounters found.

Multi-Threat Encounters

We performed studies on three-aircraft encoun-
ters with initial conditions sampled from the Star
Encounter Model. With the configuration shown in
Table II, NMACs were found in 25% of analyzed
encounters.

Table II. Multi-Threat Study Configuration

Simulation

Number of aircraft 3
Encounter Model Star Model
Sensors Active, Beacon-Based, Noiseless
Collision Avoidance System ACAS X 0.8.5
Pilot Response Model ICAO 5s–3s

MCTS

depth 50
iterations 1000
exploration constant 100.0
k 0.5
α 0.85
k′ 1.0
α ′ 0.0



Pairwise Coordination in Multi-Threat: Our al-
gorithm discovered a number of NMAC encounters
where all aircraft are issued a “multi-threat” RA and
asked to follow an identical climb rate. Unfortunately,
compliance with the RA results in the aircraft even-
tually closing horizontally without gaining vertical
separation. We show an example of such an encounter
in Figure 7 where an NMAC with likelihood metric
of 5.8 ·10−7 occurs at 38 seconds.

In discussing these results with the ACAS X
development team, we learned that this behavior is
a known issue that can arise from performing multi-
aircraft coordination using a pairwise coordination
mechanism. The pairwise coordination messages in
essence determine which aircraft will climb and
which will descend in an encounter. Since coordina-
tion messaging occurs pairwise, under rare circum-
stances it is possible for each aircraft to receive con-
flicting coordination messages from the other aircraft
in the scenario. In normal encounters, the aircraft that
receives conflicting coordination messages from two
aircraft remains level and lets the other aircraft climb
or descend around it. Although uncommon, this is an
important case that is being addressed by both TCAS
and ACAS X development teams.

Maneuverable Space: In general, multi-threat
encounters are more difficult to resolve than pair-
wise encounters because there is typically less open
space for the aircraft to maneuver. Figure 8 shows
an example of an NMAC trajectory where aircraft
1 (the aircraft in the middle altitude between 10
and 36 seconds) needs to simultaneously avoid an
aircraft below and a vertically closing aircraft from
above. An NMAC with a likelihood metric of 1.0 ·
10−16 occurs at 39 seconds. Aircraft 2’s downward
maneuver greatly reduces aircraft 1’s maneuverable
airspace. To prevent aircraft 2 from maneuvering
downwards would likely require preemptive action by
the collision avoidance system occurring much earlier
in the encounter. Admittedly, this is an extremely
challenging scenario that is somewhat unfair as a test
case. Nevertheless, insight can be gained by looking
closely at how the collision avoidance system handled
the problem. In this case, ACAS X on aircraft 1
decides to issue a crossing RA rather than to remain
sandwiched.
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Figure 7. NMAC trajectory where aircraft are in
a coordination deadlock.

Pairwise Phenomenon: As one would expect,
phenomena that appear in pairwise encounters also
appear in multi-threat encounters, albeit typically ex-
acerbated by the presence of the third aircraft. In our
multi-threat analysis, we noted similar phenomena
related to crossing time, initially moving against the
RA, and sudden aggressive accelerations discussed
previously. We did not observe the impact of high
turn rates in the multi-threat case due to our use of
the Star Encounter Model.
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Figure 8. NMAC trajectory where an aircraft must
avoid intruders from above and below.

Performance

We compared MCTS against a direct Monte
Carlo search algorithm, “MCBEST,” given a fixed
computational budget. To do this, we make a small
modification to the MCTS algorithm to enable precise
control of the computation time used. Instead of
terminating based on number of iterations as we had
previously done, we iterate until the allotted computa-
tion time is spent. For MCBEST, we repeatedly draw
Monte Carlo samples until the allotted computation
time is spent, then return the trajectory with the
highest total reward.
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Figure 9. A study of reward vs. computation time
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Figure 10. Number of NMACs found vs. compu-
tation time

Figure 9 compares the two algorithms by the
total reward of the resulting trajectory. Each data
point reflects 100 pairwise encounters and the mean
and standard error of the mean are shown. Figure 10
shows the number of NMACs found out of the 100
encounters searched. In both cases, MCTS clearly
performs better than the baseline Monte Carlo search.
The effectiveness of MCTS in finding NMACs is of
particular importance, and we see that MCTS greatly
outperforms direct Monte Carlo search in this regard.



Conclusion and Future Work
Air travel is one of the safest forms of transporta-

tion available today due to safety systems like TCAS.
ACAS X seeks to make air travel even safer by further
reducing collision risk while simultaneously reducing
the number of unnecessary alerts. To achieve this, the
design, development, and testing of ACAS X all use
state-of-the-art techniques.

In this paper, we have proposed a novel approach
to stress testing black box systems and demonstrated
its utility in stress testing ACAS X. Since the rein-
forcement learning method is very general, we hope
to apply it to a broad range of domains. To facilitate
this, we plan to release an open source Julia package
of our implementation in the near future.

There are several areas of further work. We
would like to leverage information in the problem that
is already available but currently not utilized to try to
speed up the search. Examples of such information
include the distribution of rewards collected from
rollouts as well as the state-action value estimates of
one action relative to another. Another extension is
to leverage the existing search tree to estimate other
useful information such as the overall probability of
an event. A further interest is in leveraging the search
tree to cluster trajectories so that a compact set of
representative NMAC examples can be produced.
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