Optical Extinction Measurements of Dust Density in GMRO Regolith Test Bin

J. Lane, R. Mueller, J. Mantovani, M. Nugent, A. Nick, J. Schuler, and I. Townsend Granular Mechanics and Regolith Operations Lab Kennedy Space Center, FL 32899

> Earth and Space 2016, Orlando, Florida April 11-15, 2016

Optical Density Using a Target

without dust

with dust

Average particle Size from Optical Density

$$\left\langle D\right\rangle = \frac{3\dot{m}L}{2v_p\rho_p\ln\left((l'_L - l_0)/(l_L - l_0)\right)}$$

- $\langle D \rangle$ = average scattering cross-section diameter
- L = distance laser travels through dust ≈ 0.5 in = 0.0127 m
- \dot{m} = mass transfer rate ≈ 0.0125 kg/s
- l_L = luminosity of target with laser without dust
- l'_L = luminosity of target with laser with dust
- l_0 = luminosity of target without laser (background light only)
- ρ_p = particle bulk density $\approx 3100 \text{ kg/m}^3$
- $v_p = e v_g$ = particle velocity m/s (v_g = gas velocity ≈ 17.7 m/s)

 $l \equiv 0.299 \text{ R} + 0.587 \text{ G} + 0.114 \text{ B}$, *luminosity* according to PhotoShop

Luminosity Measurements

	l_L	l'_L	l_0
white target	97.1	80.5	58.9
gray target	70.9	46.2	29.6

Average particle Size from Optical Density

Optical Density 2D Calibration

Test Transparency

$$n\sigma = \pi/8$$

հաստակաստակաստակաստակաստակաստակաստակ

D = 0.025 [in]

- O X xCalc v2.nb c = ((pLp - p0) / (pL - p0))x[pLp, p0, pL] = -Log[c]x[42.23, 2, 59.76] Exp[-x[41.9, 2, 59.02]] x[22.5, 2, 42.61] Exp[-x[22.5, 2, 42.61]] x[11.7, 2, 19.4] Exp[-x[11.7, 2, 19.4]] -p0 + pLp -p0 + pL $-\log\left[\frac{-p0 + pLp}{-p0 + pL}\right]$ 0.361684 7 0.699754 2 0.683589 7 0.504802 Ρ 0.584344 E 0.557471 ٦ Quit[] 1-Pi/8//N]] F 0.607301 a = 10 L = 1M = 10000000x = L / MExp[-a L] // N (1 - a x) ^ M // N 10 1 10000000 1 10 000 000 7 0.0000453999 7 0.0000453997]] Limit[$(1 - a L/m)^m, m \rightarrow Infinity$] e^{-aL} P 100% 🔺

 $c = \frac{p_L' - p_0}{p_L - p_0}$

White Target: c = 0.700Grey Target: c = 0.505Black Target: c = 0.557

 $1 - n\sigma = 1 - \pi/8 = 0.6073$

2D Test Image

Optical Density Using Side-Scatter

Luminosity Values as a Function of x

Average Particle Size from Optical Density

$$\overline{D} = \frac{6M}{\pi D_t^2 \xi v_g \rho_p B}$$

- \overline{D} = average scattering cross-section diameter of particles
- $B = \text{from luminosity fit} = 33.8 \text{ m}^{-1}$
- \dot{M} = mass transfer rate ≈ 0.0250 kg/s
- D_t = diameter of spray ≈ 0.75 in = 0.0191 m

$$\rho_p$$
 = particle bulk density $\approx 3100 \text{ kg/m}^3$

 $v_p = \xi v_g$ = particle velocity m/s (v_g = gas velocity ≈ 31.1 m/s)

Optical Density Using Side-Scatter with Camera at Arbitrary Angle

Luminosity Values as a Function of *x* 12-16-11 experiment

Average Particle Size from Optical Density

$$\overline{D} = \frac{6M}{\pi D_t^2 \xi v_g \rho_p B}$$

- \overline{D} = average scattering cross-section diameter of particles
- $B = \text{from luminosity fit} = 38.9 \text{ m}^{-1}$
- \dot{M} = mass transfer rate ≈ 0.0370 kg/s
- D_t = diameter of spray ≈ 1.0 in = 0.0254 m

$$\rho_p$$
 = particle bulk density $\approx 3100 \text{ kg/m}^3$

 $v_p = \xi v_g$ = particle velocity m/s (v_g = gas velocity ≈ 31.1 m/s)*

* gas flow = 4.7 CFM through a 3/8 inch pipe

Regolith Test Bin (RTB) Swampworks, Kennedy Space Center, FL

Intensity of Reflected Beam:

 $I(x) = I_0 e^{-\pi Q_e \alpha x/4}$ $\alpha = -\frac{4}{\pi Q_e x} \ln\left(\frac{I(x)}{I_0}\right)$

Extinction Coefficient:

$$Q_e$$
 = Extinction Efficiency (\approx 2)

- x = Total Optical Distance
 - = 2*L* (where *L* is bin width \approx 7.9 m)

$$\alpha = -\frac{4}{\pi Q_e x} \ln \left(\frac{I(x)}{I_0}\right) \, [\text{m}^{-1}]$$

$$\alpha = \int_0^\infty D^2 N(D) dD$$

D = Particle Diameter [m]N(D) = Particle Size Distribution [m⁻³ m⁻¹]

alpha(2L) [1/m]

time [s]

t = 32 [s]

Variable angle eight laser pointer plus camera (VA8LP+C).

Diffuse (Gray) Target

Diffuse (Black)

Diffuse (White) Target

Diffuse (White) Target Retro Target

Camera image, DSC_0037.jpg corresponding to above Figures c and d: ISO = 100, shutter speed = 1/320 s, and aperture = f/11.

Image processing results for *f*/11 test.

Image File	Max Intens ity	Satur ated Pixel Coun t	Saturated Pixel Count Fraction		Spot Diamete r [pixels]	Image Width [pixels]	Image Height [pixels]	spot x coord	spot y coord
DSC_0037.JPG	255.	87	0.201389	218.847	23.4529	3872	2592	2465	2058
DSC_0038.JPG	255.	76	0.180523	220.741	23.1524	3872	2592	2465	2059
DSC_0039.JPG	255.	63	0.186944	217.703	20.7143	3872	2592	2456	2056
DSC_0040.JPG	255.	42	0.133333	216.244	20.0267	3872	2592	2457	2058
DSC_0041.JPG	255.	16	0.0723982	197.824	16.7746	3872	2592	2470	2072
DSC_0042.JPG	255.	14	0.0651163	198.391	16.5453	3872	2592	2470	2074
DSC_0043.JPG	255.	12	0.0560748	200.598	16.5068	3872	2592	2451	2050
DSC_0044.JPG	255.	12	0.0555556	198.065	16.5837	3872	2592	2452	2049
DSC_0045.JPG	255.	1	0.00714286	180.729	13.3512	3872	2592	2443	2047
DSC_0046.JPG	254.	0	0.	176.553	14.3175	3872	2592	2445	2049
DSC_0047.JPG	197.	0	0.	136.62	9.50789	3872	2592	2491	2063
DSC_0048.JPG	188.	0	0.	128.167	10.3418	3872	2592	2493	2072
DSC_0049.JPG	130.	0	0.	86.6522	7.65304	3872	2592	2494	2074
DSC_0050.JPG	119.	0	0.	82.1475	8.81292	3872	2592	2494	2081
DSC_0051.JPG	16.	0	0.	11.8864	7.48482	3872	2592	2484	2098
DSC_0052.JPG	22.	0	0.	14.8148	5.86323	3872	2592	2485	2098

Pixel Value (Green Channel Maximum), p (8-bit)

Normalized Power, I(p)

Simulation of Particle Settling In Regolith Test Bin

These results are generated by using the particle trajectory simulation code (PTQv91), with some minor modifications. The plot shows predicted terminal velocity of simulant particles versus diameter. Note that 1 um particles take 10000 s (~ 3 h) to settle 1 m according to this simulation. That would mean that 1 um particles thrown up to the ceiling (4 m) could take 12 h to totally settle. On the other end of the spectrum, The 100 um particles fall one meter in 2 s (8 s from top of the bin).

LASER Side Scatter Model And Measurements

The following model is a 4-parameter model composed of three sample points along the laser beam, as viewed by an oblique angle from the camera. The contour graphs show the solution of the 4 parameters - the first is the initial intensity value [W/m^2], and the last three are optical extinction coefficients in [1/m]. These values agree well with the laser spot measurements.

emin =
$$0.0154047$$
 P = $\begin{pmatrix} 974000.\\ 0.01006\\ 0.02032\\ 0.0822 \end{pmatrix}$

Advantages of this technique as compared to the spot measurement are:

- 1) Provides discrete data along the beam path.
- 2) Does not require an initial calibration measurement of the no dust case.

Disadvantages:

- 1) More calculations and processing is required.
- 2) The results are very dependent on optical alignment (camera relative to laser).

$$Exp[zmink/2] P' = (I - x)P + P x$$

$$IA \leq ER$$

$$ITTER$$

$$ITTER$$

$$ITTER$$

$$I = (I - x)P + P x$$

$$ITTER$$

$$ITTER$$

$$I = (I - x)P + P x$$

$$ITTER$$

$$I = (I - x)P + P x$$

$$ITTER$$

$$I = (I - x)P + P x$$

$$ITTER$$

$$I = (I - e^{-x}, b/cos\theta) F_0/x_1^{2}$$

$$I'(x) = I_0 e^{\int a(x)Jdy} S(a)$$

$$\frac{M_{k}d}{2f} = -\tan \phi_{s}$$

$$\frac{M_{k}d}{2f} = -\tan \phi_{s}$$

$$\frac{M_{k}d}{2f} = -\tan \phi_{s}$$

$$\frac{M_{k}}{2f} = -\frac{\pi}{2}\phi$$

$$\frac{M$$
Questions