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Example
Aerojet developed two thrusters:
1. A high-performance, high speci�c impulse  
 Gridded Ion Thruster; the most ef�cient thruster 
 ever developed.
2. A 20% lower ef�cient, 50% reduced speci�c impulse Hall 
 Thruster.

The Hall thruster has received more mission capture because it 
can reduce transfer time. With the time value of money calculation, 
the Hall thruster provides the highest net revenue despite being 
the lower performance thruster.

Objective
The objective of this research is to guide technology investments for the highest infusion potential through:
• Understanding the in-space propulsion technology that creates the highest net revenue
• Understanding the sensitivities to the propulsion system cost and performance
 – Ef�ciency
 – Speci�c impulse
 – Cost, mass
• Understanding the sensitivities to cost and performance of ancillary systems
 – Solar array performance, mass and cost
 – Launch performance and cost
• Understanding the sensitivities to net revenue factors
 – Insurance costs
 – Rate of return
 – Mission duration

Launch market capture for Falcon 9
with Advanced In-Space Propulsion

Sensitivity to speci�c power, Falcon 9 Sensitivity to ef�ciency, Delta IV H
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Background
The cost of access to space is the single biggest driver is 
commercial space sector. NASA continues to invest in both launch 
technology and in-space propulsion. Low-cost launch systems 
combined with advanced in-space propulsion offer the greatest 
potential market capture.1 Launch market capture is critical to 
national security and has a signi�cant impact on domestic space 
sector revenue. NASA typically focuses on pushing the limits on 
performance. However, the commercial market is driven by 
maximum net revenue (pro�ts). In order to maximum the infusion 
of NASA investments, the impact on net revenue must be known.

As demonstrated by Boeing’s dual launch, the Falcon 9 combined 
with all Electric Propulsion (EP) can dramatically shift the launch 
market from foreign to domestic providers.2

Methodology
• Identify the trajectory performance (∆V and transfer time) for the propulsion system options
• Identify the cost and revenue drivers for the spacecraft
• Perform parametric time value net revenue calculations
• Perform sensitivity analyses to the revenue drivers
• Identify the near-term, mid-term, and far-term technologies with the highest infusion potential

Results for Trajectory Performance
SEPSPOT6 is a trajectory optimization program used to determine both delivered mass and transfer time 
performance as a function of propulsion system characteristics.

Example Results for Trajectory Performance
The time value calculations are:

A Subset of Conclusions
• A method has been developed to assess new technology impacts on GEO-space revenues.
• As solar power systems continue to increase in performance, the optimal technology transitions from high 
 thrust-to-power to higher voltage Hall thrusters and then gridded ion systems.
• Ef�ciency improvements at constant speci�c impulse yield ~$1M/% bene�t per �ight.
• Projected reduced launch costs (either through reusable systems or heavy lift) could obviate the bene�ts of 
 advanced propulsion at high power.
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