
ER-2 High Altitude Solar Cell Calibration Flights

Matthew G. Myers and Michael F. Piszczor Photovoltaic and Electrochemical Systems Branch

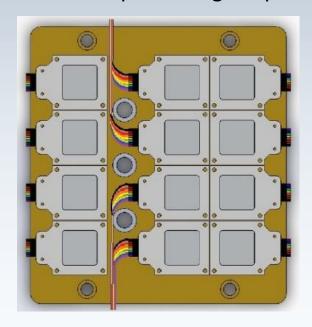
Test Platform Overview

Instruments Flown

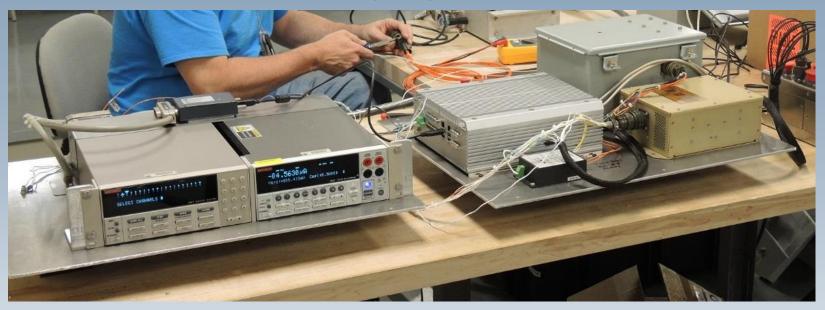
Keithley 2425 Source/Measure Unit Ocean Optics HR2000+ Spectrometer Ocean Optics NIRQuest NQ512-1.9 Spectrometer

Demonstrated Capabilities

Altitude: 70,000ft+

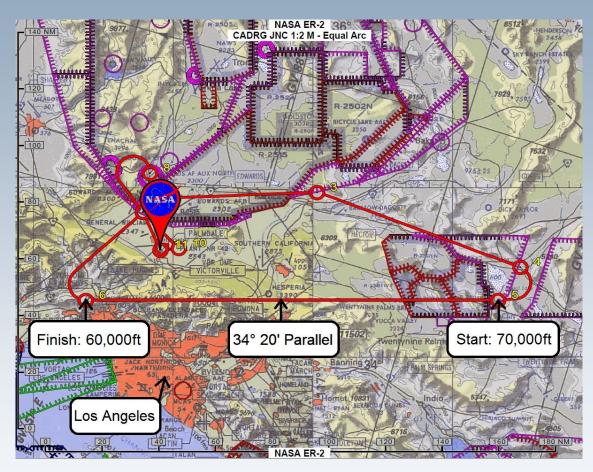

Illuminated Area: 5.6 x 5.6 inches Pointing Accuracy: <2° deviation Temperature Control: (+/-) 0.5°C

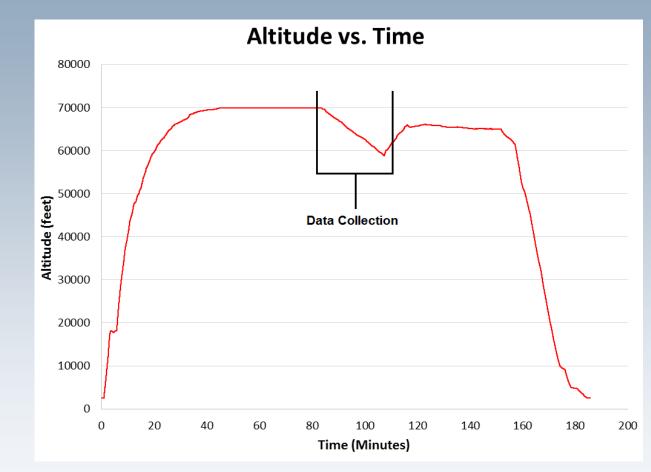
Number of devices per flight: 12 Maximum


Cell Measurements: Isc, Voc, IV Curve

Fiber-optic Port for spectrometer or other sensor

Flight Season: April through September


Equipment



Flight Profile

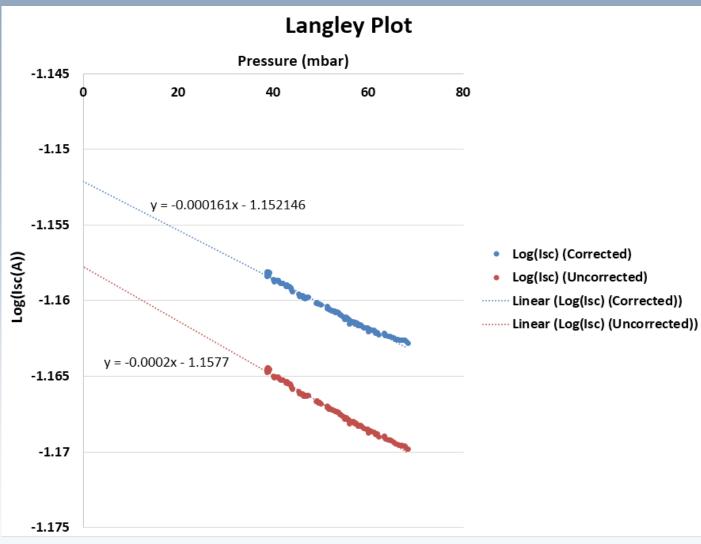
Ideal Regular Season Flight Path

Actual Altitude Profile

Langley plot method

1. Estimate ozone above cell using tables from appendix A in publication:

"Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Products User's Guide"

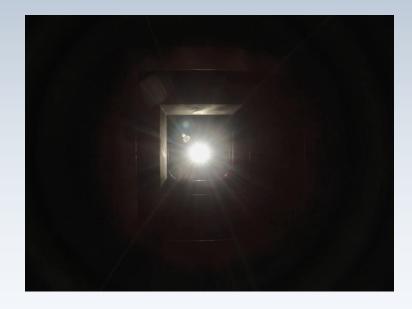

			Table A	A.1. TOM	S Version	7 Standa	rd Ozone l	Profiles						
					Umkeh	ır Layer N	lumber							
Profile	0	1	2	3	4	5	6	7	8	9	> 9			
225L	15.0	9.0	5.0	7.0	25.0	62.2	57.0	29.4	10.9	3.2	1.3			
275L	15.0	9.0	6.0	12.0	52.0	79.2	57.0	29.4	10.9	3.2	1.3			
325L	15.0	9.0	10.0	31.0	71.0	87.2	57.0	29.4	10.9	3.2	1.3			
375L	15.0	9.0	21.0	53.0	88.0	87.2	57.0	29.4	10.9	3.2	1.3			
425L	15.0	9.0	37.0	81.0	94.0	87.2	57.0	29.4	10.9	3.2	1.3			
475L	15.0	9.0	54.0	108.0	100.0	87.2	57.0	29.4	10.9	3.2	1.3			
125M	6.0	5.0	4.0	6.0	8.0	31.8	28.0	20.0	11.1	3.7	1.4			
175M	8.0	7.0	8.0	12.0	26.0	41.9	33.6	22.3	11.1	3.7	1.4			
225M	10.0	9.0	12.0	18.0	44.0	52.1	39.2	24.5	11.1	3.7	1.4			
275M	16.0	12.0	15.0	29.0	58.0	63.7	40.6	24.5	11.1	3.7	1.4			
325M	16.0	14.0	26.0	45.0	74.7	66.9	41.7	24.5	11.1	3.7	1.4			
375M	16.0	16.0	39.0	64.0	85.7	71.1	42.5	24.5	11.1	3.7	1.4			
425M	16.0	18.0	54.0	84.0	97.7	71.7	42.9	24.5	11.1	3.7	1.4			
475M	16.0	22.0	72.0	107.7	101.0	72.6	43.0	24.5	11.1	3.7	1.4			
525M	16.0	26.0	91.0	127.7	108.0	72.6	43.0	24.5	11.1	3.7	1.4			
575M	16.0	30.0	110.0	147.7	115.0	72.6	43.0	24.5	11.1	3.7	1.4			
125H	9.5	7.0	18.3	7.6	8.2	28.6	22.0	12.4	7.7	2.5	1.2			
175H	9.5	8.0	22.8	22.0	26.9	32.3	26.8	15.0	8.0	2.5	1.2			
225H	10.0	9.0	27.6	45.7	41.0	35.0	28.8	15.4	8.3	2.9	1.3			
275H	14.0	12.0	34.0	66.9	54.2	36.0	28.8			Î	· · ·		1/01/1	
325H	14.0	15.0	46.8	82.6	65.2	41.7	28.8		Ozone			bove top of level (DU)		
375H	14.0	20.0	61.2	93.8	75.2	45.9	32.5	U	Umkehr		for specified total column			
425H	14.0	25.0	76.2	104.9	84.2	51.4	35.6	1	Level		290			
475H 525H	14.0 14.0	32.0 41.0	91.0 107.1	117.1 128.1	93.0 101.0	55.8 60.2	37.5 38.2	G	Ground		290.00			
575H	14.0	49.0	123.2	142.2	111.0	60.6	38.8		0		275.53			
									1		264.86			
								2		+	251.72			
								3		+	224.65			
								4			163.79			
								5			90.39			

- a.) Linearly Interpolate ozone distribution data to flight latitude
- b.) Find polynomial fits of ozone in given levels as a function of total ozone column
- c.) Use data from the Ozone Monitoring Instrument (OMI) on board the Aura spacecraft to determine total ozone column at the time and location of the flight
- d.) Use ozone layer distribution model to interpolate and estimate of the ozone above the cell for each data point taken as the aircraft descends

Langley plot method

2. Generate Langley Plot

- a.) Correct each Isc data point for overhead ozone, ozone sensitivity coefficient, and sun elevation angle
- b.) Plot log of ozone-corrected Isc vs airmass (pressure over sine of elevation angle
- c.) Extrapolate linear fit of plot to zero airmass and estimate AM0 Isc


Langley Plot shown for GRC ZTJ 2x2cm top cell flown October 10th 2014

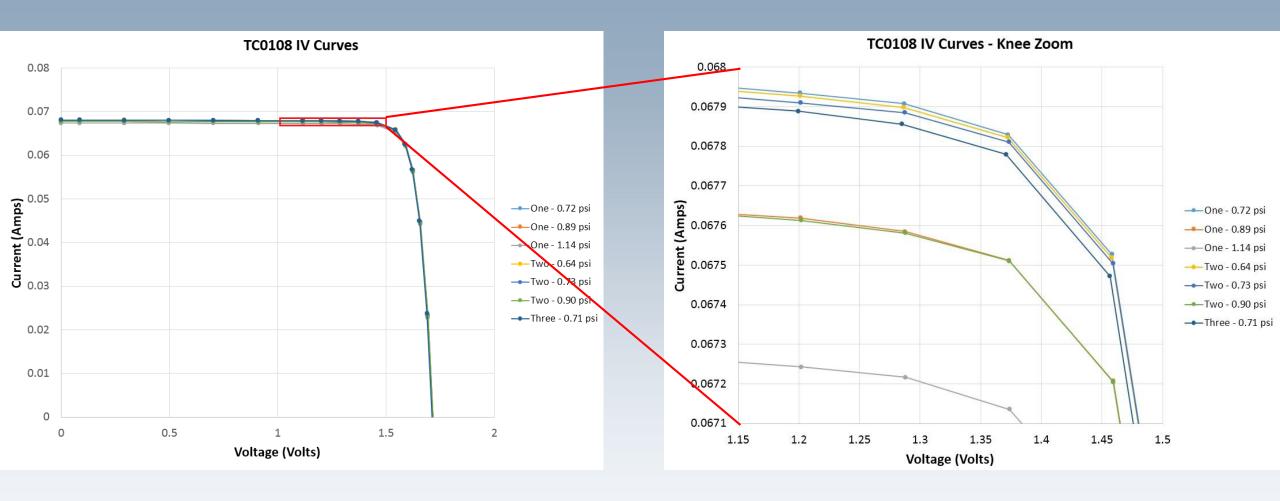
Summary of First ER-2 Campaign

- Three flights were flown between October 8th and October 14th, 2014
- Data was taken between 55,000 and 70,000 feet
- The first flight consisted of six 2x2cm cells and a camera to observe plate illumination conditions
- The second and third flights consisted of twelve 2x2cm cells
- All flights carried two sun sensors and two Ocean Optics spectrometers
- A ZTJ top and middle 2x2cm sub cell which were previously flown on the Learjet were flown all three flights
- Thirteen other cells were flown at least once

First flight stage plate configuration

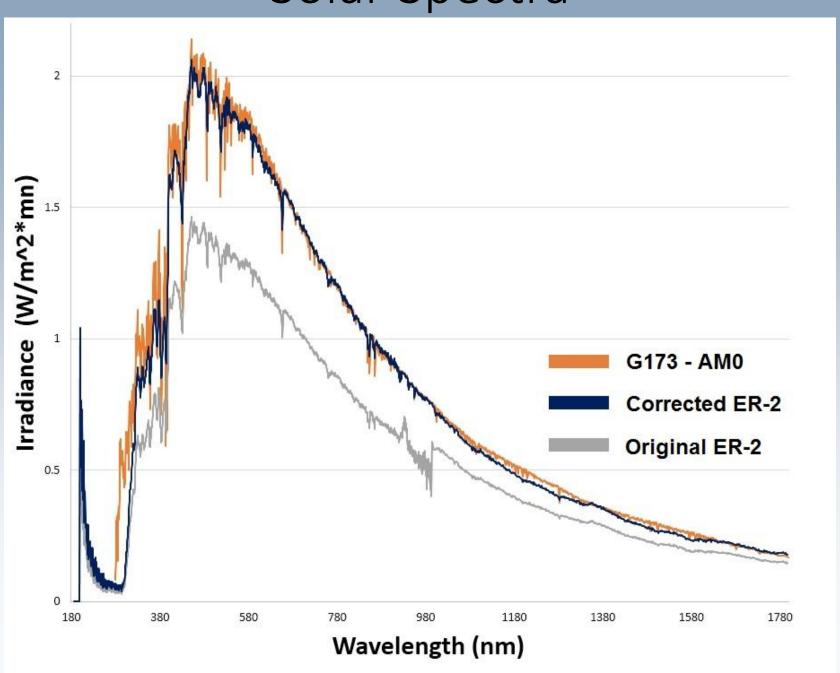
View of sun from stage plate

Second and Third flight stage plate configuration

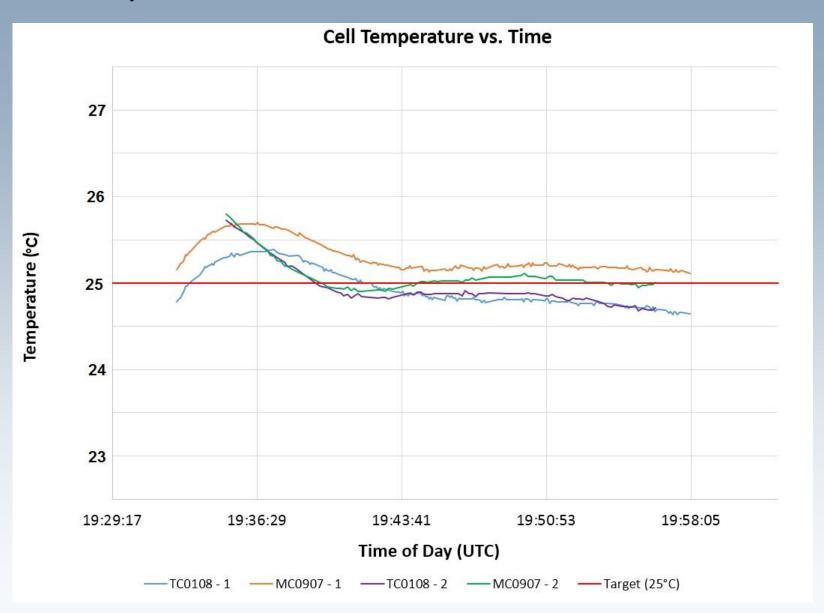

ER-2 Takeoff and Landing

Corrected Isc Results

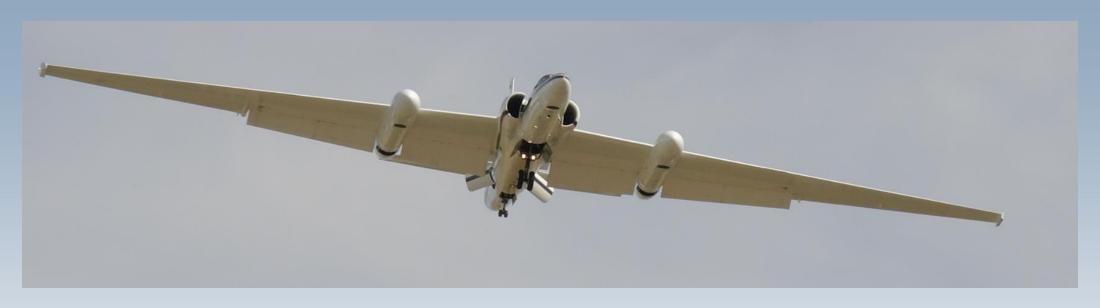
Full Data Set								
Cell	TC0108	MC0907	TC0109					
Flight One	69.925	66.004	70.096					
Flight Two	70.232	66.063						
Flight Three	70.289	65.990						
Average	70.149	66.019	70.096					
Std Dev	0.196	0.039						
Covar %	0.279	0.059						
Learjet Value	70.510	66.230	70.51					
Lear Variance (%)	0.512	0.319	0.587					
<60mb Data Only								
Cell	TC0108	MC0907	TC0109					
Flight One	70.339	65.995	70.576					
Flight Two	70.325	66.069						
Flight Three	70.289	65.990						
Average	70.318	66.018	70.576					
Std Dev	0.026	0.044						
Covar %	0.037	0.067						
Learjet Value	70.51	66.23	70.51					
Lear Variance (%)	0.27	0.32	-0.09					


- Data shown for GRC 2x2cm ZTJ sub cells (two top cells and one middle)
- Ozone corrections based on established Learjet methods
- Further atmospheric correction methods are being investigated
 - SMARTS or other ozone models
 - Using only higher altitude data
 - Ozone correction coefficients using cell EQE data

IV Curve Examples


IV Curves show good repeatability over multiple flights and a predictable change with pressure

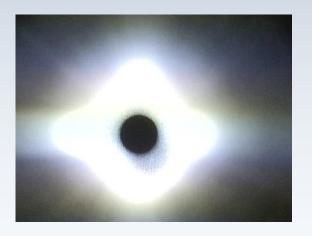
Solar Spectra


Device Temperature Control

- Mounting Plate temperature is used for heater feedback control
- All cell temperatures are monitored independently using AD590 IC temperature transducers
- After a slight bump caused by initial solar illumination, all cell temperatures were maintained within approximately 0.25°C from the target of 25°C
- Variation of temperature for any individual cell was on the order of 0.1°C after the initial on-sun disturbance

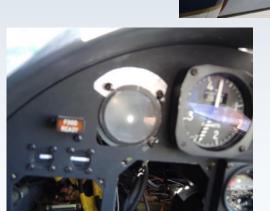
Sun Pointing

Summary of ER-2 Capability



- Flights can be conducted once every one to two days during a campaign
- Flight season runs from April through September
- Twelve 2x2cm cells can be flown per flight, or any other configuration that fits inside of the 14.2x14.2cm illuminated area
- This capacity could be doubled if the second ER-2 pod is used
- Data supplied includes Isc, Voc, IV curve, and cell temperature
- Other optical or atmospheric sensors can be flown as able

Recent Results on Solar Cell Experiment on ISS


2015 GRC/AFRC ER-2 Flight Campaign for Creating Air Mass Zero (AMO) Primary Calibration Standards

- GRC announcement sent out the week of May 4, 2015
- New platform supplements the Learjet AM0 calibration capability
 - GRC Learjet flight season January March
 - DFRC ER-2 flight season April September
- Current 2015 ER-2 Flight Campaign:
 - July 6th 20th, 2015

