

The D8 Aircraft: An Aerodynamics Study of Boundary Layer and Wake Ingestion Benefit

Shishir A. Pandya Applied Modeling and Simulation Branch

NASA Ames Research Center

AA294: Case Studies in Aircraft Design Stanford University, CA, Apr.22, 2015

With contributions from:Arthur Huang, and Alejandra Uranga at MIT, and H. Dogus Akaydin and Shayan Moini-Yekta, Science and Technology Corporation

MIT/Pratt & Whitney/Aurora D Series

Airframe & Propulsion Technology Overview

Novel configuration plus suite of airframe and propulsion technologies, and operations modifications High Bypass Ratio Engines (BPR 20) **Reduced Secondary** with High-Efficiency Small Cores **Boundary Layer** Structure weight Ingestion Active Load Health and Alleviation **Distortion Tolerant** Usage Fans Monitoring Tt4 Materials and Natural Laminar Flow advanced cooling Community - monormanic in Community on Wing Bottom Variable Area Nozzle Lifting Body Advanced Engine LDI Advanced **Materials** Combustor Faired **Advanced Structural** Undercarriage **Materials**

The D8 Aircraft Concept

- "Double-Bubble"
- Advanced Air Transportation Technologies (AATT) project

-Fixed-wing

- -N+3 advanced vehicle configuration
 - Lower fuel burn, noise, emissions
- 180 passengers
- 3000 nmi range
- 118 ft span
- Boeing 737/A320 class
- Lifting fuselage, pi-tail
- Flush-mounted engines

Lower Cruise Speed

- M=0.72
 - -Lower wing sweep
 - Reduced structural load => lower weight
 - Increased CL
 - Can eliminate high-lift devices
 - -Proper speed at engine fan face (M=0.6)
 - Reduces nacelle, inlet size
- Reduced nacelle drag
 - –Nacelles embedded in the π -tail and fuselage
 - -Reduced size, weight

M. Drela, MIT

Fuselage Advantages

- "Double-bubble" fuselage provides more lift
 —Gives partial span-wise loading / smaller wing
- Shorter cabin (wider body, two isles)

 Results in lighter landing gear support structure
 Faster passenger loading with two isles
- Provides a nose-up pitching r
 - -Shrinks horizontal tail
 - -Lighter horizontal tail

Embedded Rear-Mounted Engines

- Boundary Layer Ingesting (BLI) engines for propulsive efficiency
 - -Thicker boundary layer in the rear
 - –Designed for M=0.6 flow around engine inlet area
 - -Distortion tolerant fan
 - –High bypass ratio (~20)
- Lower engine-out yaw

 Reduced vertical tail size

 Noise shielded by fuselage

NASA

Previous Computational Work

- "Double-bubble" fuselage provides more lift
 - Gives partial span-wise loading / smaller wing
- Thicker boundary layer in the rear
 - Designed for M=0.6 flow around engine inlet area
- Provides a nose-up pitching moment
 - Shrinks horizontal tail
 - Lighter horizontal tail
- Validation of CFD
 - Mesh sensitivity
 - Comparison to Experiment

Goals and Approach

- Goal: Quantify benefits of boundary layer and wake ingestion for the D8
- Overset CFD using CGT and Overflow-2:
 - -CFD validation
 - NASA LaRC 14x22 WT data for a 1:11 scale model
 - -Quantifying the BLI and wake ingestion benefit:
 - Direct Comparison between:
 - -Efficient conventional (podded nacelle) configuration
 - -BLI (integrated nacelle) configuration

Wind Tunnel Configurations

Configuration Details

• WT runs at 70 mph, Re_c = 570,000

-lower-speed and Re compared to full-size at M=0.72

- 1:11 Scale powered model
- Wing designed for low Mach, low Re
- Same wings
- Most of fuselage is the same
- Same propulsors plug into both podded and integrated configuration empennage sections

D8 Model

- Larc 14x22 WT model
- -1:11 scale, Full body
- –Mounting hardware controls AoA

- Computational model
 - -1:11 scale, Half body
 - -No mounting hardware
 - –Inviscid wind tunnel walls

Fuselage and Wing Grids

π-tail, Nacelle, Pylon

Wind Tunnel Grids

- Inviscid wall boundary condition
- 7 grids (4 wall grids, 3 core grids) + box grids
- Mach and Re number matched at pitot probe

Computational Mesh

- Chimera Grid Tools
 - -Overset surface and volume mesh
 - Same grids for forward fuselage, wing, and WT
 - -Unpowered: 36 grids, 113 Million points
 - -Podded: 49 grids, 130 Million points
 - -Integrated: 64 grids, 135 Million points
 - –y+ ≈ 0.7

CFD Solver

- OVERFLOW
 - -3D, RANS solver for overset structured grids
 - –Diagonalized approximate factorization Scheme
 - -2nd order central difference + artificial dissipation
 - -Matrix dissipation
 - -RANS SST turbulence model
- Flow Conditions
 - -Mach=0.088
 - -Re = 44000/in.

Fan Model and its Effect

- Actuator disk
 - -Uniform pressure jump
- Four cases with increasing pressure jump settings
 - For both podded and integrated
 - Integrated sees a lower mass flow

Cuts through propulsor centerline.

Typical Convergence

- Simulations without fans
- •Alpha sweep
- Compare to Wind Tunnel test data
- Iterations to match Mach & Re at pitot probe

NASA

Validation-unpowered

Boundary Layer Ingestion

Conventional: wake/BL energy lost

- BLI: Fuselage boundary layer ingested by propulsor
 - —> Reduced viscous dissipation in combined wake + jet
 - -> Reduced flow power required from propulsor

• Use Power-balance method (Drela, 2009, AIAA J.)

Power Balance Method

- Mechanical energy sources and sinks
 - -Sinks: Boundary layer, Wake
 - -Source: Jet Non-BLI Configuration $P_{k} \bigoplus \Phi_{jet}^{*}$ $\Phi_{p, ext}^{*}$ BLI Configuration $\Phi_{p, int}^{*}$ $\Phi_{p, ext}^{*}$ $\Phi_{p, ext}^{*}$
- Power-in (P_K) = Dissipation (Φ)
- Compute dissipation: upstream of the surface of interest, and downstream mixing

BLI Benefit

Compare mechanical flow power:

$$P_K = \oint_{propulsor} \left(p_{t,\infty} - p_t \right) \left(\mathbf{V} \cdot \hat{\mathbf{n}} \right) \mathrm{d}A \; .$$

-Power transmitted by propulsor to the flow

Savings in power required: integrated vs. podded

Computing BLI Benefit

Mechanical flow power

$$P_K = \oint_{propulsor} (p_{t,\infty} - p_t) \left(\mathbf{V} \cdot \hat{\mathbf{n}} \right) \mathrm{d}A \; .$$

- Net axial force: pressure force + viscous force.
 –On airframe solid surfaces + actuator disk
- Compare podded and integrated configs

-At cruise condition

- Net axial force = 0
- Drela, 2009 "PowerBalance in Aerodynamic Flows".

Benefit of BLI (Computational)

Where is the Benefit Coming From?

- Identify sinks of power
 - -Upstream viscous dissipation
 - measured by stagnation pressure flux
 - We can focus on stagnation pressure loss and dissipation

Inlet

Inlet (cont.)

Wake

Wake (cont.)

Fuselage Trailing Edge

Fuselage Trailing Edge (cont.)

Viscous Dissipation

$$\Phi = \Phi_{CV} + \Phi_{\min} = \left(P_K - \dot{\mathcal{E}}\right) + \Phi_{\min}$$

 Φ = Dissipation , P_{κ} = Mechanical Flow Power

• Dissipation coefficient: $\zeta = \frac{\Phi}{q_{\infty}SV_{\infty}}$

Dissipation Computation

- Dissipation computed in each region
 - -No separate nacelle for integrated config

Dissipation at Inlet

	Total	Fuselage	Wing	Nacelle
Unpowered	0.02148	0.01067 (50%)	0.01080 (50%)	0
Podded	0.02425	0.01071 (44%)	0.01132~(47%)	0.0022 (1%)
Integrated	0.02241	0.01129 (50%)	0.01112 (50%)	0
Variation	0.00228	0.00062	0.00052	0.0022

- Minor variations in fuselage and wing regions.
- Only major difference due to presence of podded nacelle.

Dissipation in the Wake

- Wing dissipation not affected by BLI
- Integrated config. has 6% less overall dissipation
 - -3/4 from lower jet velocity
 - -1/4 from lower fuselage/nacelle dissipation

Flow Separation

Wake Ingestion

- Previous podded nacelle almost ingested the wing wake
- Can we move the nacelle out of the way?
- What is the effect of nacelle movement on BLI?

Test Matrix

- Deflect the nacelle up and down (-20°,-10°,0°,10°,20°,30°)
- Power setting: closest to WT test setting
- Keep the outboard position and toe angle unchanged
- Compare to the baseline case
- $\Delta = D_1 D_0 = D_0 (1/\cos \theta 1)$
- Translate by Δ , then rotate by θ

Stagnation Pressure Loss ($\phi=0^{\circ}$) prior to entering the nacelle

Stagnation Pressure Loss (φ=30°) prior to entering the nacelle

Stagnation Pressure Loss (φ=-20°) behind the nacelle

Effect of Pylon Deflection

Lift

Effect of Pylon Deflection

Drag

Effect of Pylon Deflection

Axial Force vs. Mech. Flow Power with power settings of 40, 60, 80 and 100%

Concluding Remarks

- BLI benefit is:
 - -9% less Mechanical flow power with BLI
- Wake ingestion benefit is:

-0.8% less Mechanical flow power with wake ingestion

- BLI has the potential to reduce fuel burn
- Wake Ingestion is not worth pursuing
- Future Work:
 - -Full scale aircraft at cruise Ma, and Re.
 - -Other operating conditions
 - -Improve actuator disk model

Acknowledgements

Thanks also go to:

MIT

- Mark Drela
- •Ed Greitzer
- •and the D8 team

NASA (ARC & LaRC)

- •William Chan
- •Greg Gatlin
- •Judith Hannon
- •Pieter Buning
- •Tom Pulliam

Project

- Nateri Madavan
- Scott Anders
- Sally Viken
- Rich Wahls
- •Ruben Del Rosario
- •Mike Rogers
- John Koudelka