

Interface Region Imaging Spectrograph

Launched in 2013 for a 2+ year mission to investigate energy transport mechanisms on the sun

IRIS Mission

 IRIS is a NASA Small Explorer Mission developed to study the region of the sun between the photosphere (5000 K) and the corona (1.5M K)

- The Mission Includes
 - Instrument (telescope and imaging spectrograph)
 - Spacecraft (power, pointing, C&DH, comm)
 - Ground Data Systems
 - Mission Operations Center
 - Science and data analysis

IRIS Mission Objectives

[Core ~ 16 million K]

Photosphere + 500km @ 4,100 Deg K

Chromosphere @ up to 20,000 Deg K

Corona @ 1-2,000,000 Deg K (& up to 20 million)

Why this increase?

And what is the energizing mechanism?

NASA's Heliophysics Fleet

Solar Eclipse

What does IRIS really do?

- IRIS records images AND spectra of the sun throughout the Interface Region all ultraviolet spectrum.
- How does IRIS image different layers of the sun?

IRIS Spectra

How do the scientists use spectra?

Good indications of:

- -Velocity
- -Density
- -Temperature
- -Magnetic Fields

IRIS the Microscope?

IRIS has a FOV of 175x175 arc secs Less than 5% of total solar disk

Collaboration

IRIS science team regularly collaborates with various spacecraft and ground observatory teams

Swedish Solar Telescope (SST)

Dunn Solar Telescope (DST)

Hinode

Solar Dynamics Observatory (SDO)

Computation

- Simulation of Interface Region dynamics
- Over 30 MILLION CPU hours on Pleiades Supercomputer at NASA Ames.
- Other computing facilities used as well
- MHD equation simulations
- University of Oslo team
- Aids in interpretation of IRIS data and is crucial for the mission!

IRIS Spacecraft

Launch Date: June 27, 2013

Launch Vehicle: Pegasus XL

Solar Pointing

Telescope resolution: 0.33 arcseconds

Observing wavelengths:

■ 1332-1406 Å & 2796 - 2803Å

■ Human eye detects ~ 3800 – 7500 Å

Orbit: Polar & Sun synchronous

• 620 x 670 km (385 – 416 miles)

Orbit period: 97 min

Mass: 183 kg

Power: 342 W

■ Telemetry rate: 15 Mbps, 60Gb/day (X-band)

Recording capacity: 48 Gbits

Mission Life: >2 Years

Spacecraft Bus

Orbit and Ground Stations

Ames on the IRIS Team

- Ames has been a critical partner on IRIS from the beginning
 - Assistant Project Manager
 - J. Marmie
 - Mission Operations
 - Ground Systems
 - E/PO
 - Science participation
 - P. Worden
 - Flight Software support
 - ACS support
 - Simulator support
 - Instrument FSW support
 - Thermal Engineering Support ¹⁴

Eddy Bio

- Started working at NASA in 2006 as an intern
- BS/MS at San Francisco State and Santa Clara
- Various Projects at NASA
 - Testing/Qualification of payload to ISS
 - Hardware/Software projects
 - Proposals
 - And IRIS worked extensively at Lockheed Martin
 - Also supporting UAS effort at Ames
- Look forward to supporting future exciting projects!

Attitude Control System (ACS)

Attitude Control System (ACS)

ACS

- Several Different modes of Operation:
 - De-tumble
 - Sun Search
 - Coarse Control
 - Inertial Sun Point
 - Fine Sun Point
 - Spend ~99% of time in this mode during operations
 - Better than 0.5 arc-sec stability

Instrument

Flight Software

- Separate CPU/Code for Spacecraft Bus and Instrument
- RAD750 and RAD6000 CPUs
- Coded in C/C++ with VxWorks OS
- Fault Management
 - Checks on various components and health
 - Responds to many potential anomalies
- Flight Software Loads
 - Sometimes things just aren't perfect!
 - Loaded FSW from the ground for Instrument, Spacecraft, AND Star Tracker!

Robert Bio

- BS Computer Engineering Santa Clara University 1995
- Graduate Program Spacecraft Systems Engineering APEX/ Stevens Institute of Technology 2009
- Started as an intern at Ames in 1993
- Highlights of NASA career include:
 - Leading and supporting Ames mission proposals
 - Operations and Information Architecture for Constellation
 - Developing astronaut training management systems
 - Supporting the Columbia Accident Investigation Board
 - Developing Operations for upcoming Resource Prospector
- Robert has long been a space enthusiast, and looks forward to the exciting new things that NASA is doing

Ground Data System

- The tools to support the operation of the mission
 - Building Command packages
 - Receiving and processing Telemetry
 - CommunicationScheduling

- Systems Engineering
 - Requirements coverage
 - Architecture and Interface design
 - System design
 - Verification and Validation
- Tool Development

Testing and Training

Testing

- GDS Component
- GDS System
- Flight Software
 - Range of Simulators
- Interfaces
 - Flight Software
 - Ground Stations
 - Science Planning
 - Scheduling Systems

Training

- Flight Software
- Spacecraft Systems
- Instrument Systems
- Ground Stations
- Voice Systems
- GDS Systems
- Mission Sims
 - Day in the Life
 - Launch and Early Ops
 - Comm Scheduling

IRIS is acquired by TDRSS!

First Light

- First light announcedJuly 25, 2013
- Nearly 1 year of successful on orbit operations
- Threshold mission requirements met
- Data available to public at: iris.lmsal.com/iristoday

IRIS Day in the Life

Backup

GDS Architecture Overview

Science Implementation

UV slit-jaw Images Si IV (65,000K) C II (30,000K)

Mg II h/k (10,000K)
Mg II h/k wing (6,000K)

20 cm UV telescope:

1/6 arcsec pixels

multi-channel spectrograph

far-UV: 1332-1358 Å, 1390 -1406 Å,

40 m Å resolution, effective area 2.8 cm²

near-UV: 2785-2835 Å,

80 m Å resolution, effective area 0.3 cm

slit-jaw imaging

1335 Å & 1400 Å with 40 Å bandpass each; 2796 Å & 2831 Å with 4 Å bandpass each.