Availability and Use of Weather, Climate, and Climate Change Data

Cory Morin
NASA Postdoctoral Program Fellow
cory.morin@nasa.gov

(Special thanks to Dr. Kacey Ernst, Dr. Dale Quattrochi and Dr. Jeff Luvall)
Weather

- Weather: The conditions of the atmosphere at a particular location and time period (i.e., it's raining in Cape Town and the temperature is 20°C)

Daily
- Weather events
 - Storm
 - Frost
- Role
 - Habitat destruction or creation
 - Die offs

Weekly
- Weather systems
 - Frontal system
 - Heatwave
- Role
 - Water contamination
 - Life cycle acceleration

Monthly
- Seasonal cycles
 - Precipitation patterns
- Role
 - Cycles of transmission
 - Potential introductions

Annual
- Climate regimes
 - Climate change
 - Ecological shifts
- Role
 - Species range expansion
 - Novel ecologies

Decadal
Climate

- Climate: The long-term average conditions of the atmosphere over a region (i.e. Tucson, Arizona has an arid climate with seasonal precipitation)

Daily
 - Weather events
 - Storm
 - Frost
 - Role
 - Habitat destruction or creation
 - Die offs

Weekly
 - Weather systems
 - Frontal systems
 - Heatwave
 - Role
 - Water contamination
 - Life cycle acceleration

Monthly
 - Seasonal cycles
 - Precipitation patterns
 - Role
 - Cycles of transmission
 - Potential introductions

Annual
 - Climate regimes
 - Climate change
 - Ecological shifts
 - Role
 - Species range expansion
 - Novel ecologies

Decadal
Climate Variability

- Climate variability: The fluctuation in climate around its mean value
 - Can include phases and oscillations
Climate Change

- Climate change: A long-term alteration in climate mean or variation
 - Associated with trends
Sources of Data

• Weather/Climate Data
 • Paleoclimate data
 • Stations and other recorders
 • Satellite and remotely sensed data
 • Reanalysis datasets
 • Forecasting

• Climate Change
 • Global climate models (GCMs)
 • Scenario building
 • Downscaling
Paleoclimate Data

- Past climate data obtained through proxy records
- Many methods of obtainment
 - Ice cores
 - Tree rings (dendrochronology)
 - Sediments
 - Various organisms
- Rarely used in climate and disease research

http://www.thenakedscientists.com/HTML/interviews/interview/643/
http://www.visualisingdata.com/2015/02/dendrochronology-visualisation-literacy/
http://sites.dartmouth.edu/stroup/photo-gallery/
Earthobservatory.nasa.gov
Weather Stations

• Can record a suite of variables depending on the instrumentation
 • Temperature, precipitation, humidity, wind speed, wind direction, incoming solar radiation
 • Records are usually daily
• Found at many airports, universities, and research centers
• Data is often available through local or national weather services
Weather Stations

• **Strengths**
 - Often record many variables
 - Daily resolution (sometimes hourly)
 - Most populated areas contain at least one
 - Long record history

• **Weaknesses**
 - Not uniformly distributed
 - Potential breaks in recording or location
 - Can be heavily influenced by local environment
 - Not representative of a large area
 - Data is sometimes unavailable or expensive

https://www.wunderground.com/weatherstation/installationguide.asp
Global Historical Climatology Network

Mini Weather Data Loggers

• Devices for collecting weather data
 • Generally record temperature and/or humidity
 • Data downloaded via connection to laptop or wifi

• Advantages
 • Small and inexpensive
 • Can record at various time intervals
 • Good for sampling microclimates

• Disadvantages
 • Usually self employed
 • Limited variables
 • Representative of very small areas

http://thermometer.co.uk/71-humidity-and-temperature-data-loggers
Remote Sensing: How it Works

- Technique that collects information through signals (i.e., electromagnetic radiation) using sensors with filters specific to certain wavelengths
 - Found on satellites, planes, towers, etc.
 - Features on Earth identified through their specific radiative frequencies

https://www.e-education.psu.edu/geog160/node/1958
http://www.seos-project.eu/modules/classification/classification-c00-p05.html
Remote Sensing Techniques

• Passive vs Active remote sensing
 • Passive only collects signal
 • Active emits a signal and then collects a return signal

• Levels of data
 • 0: Raw data
 • 1: Data calibrated, georeferenced, time-referenced, etc.
 • 2: Derived geophysical variables
 • 3: Data mapped on uniform grid
 • 4: Modeled variables from the lower level data (NDVI)
What Can Remote Sensing Measure?

- Temperature: ECOSTRESS (2017), HyspIRI (2020+), ASTER (1999), Landsat (5,7,8), MODIS
- Precipitation: GPM (2014)
- Structure: IceSat2 (2016)
- Flooding/water levels: lakes, streams, groundwater storage – GRACE (2002) SWOT (late 2020)
Remote Sensing Strengths

• Measures environmental state functions important to pathogen life cycles
 • Precipitation, soil moisture, temperature, vapor pressure deficits, wet/dry edges, solar radiation....
• But also the interfaces as process functions:
 • Land use/cover mapping; Ecological functions/structure, canopy cover, species, phenology, aquatic plant coverage.....
• And provides a Spatial Context
 • Spatial coverage & topography – local, regional & global...
• Lastly, but perhaps the greatest strength:
 • Provides a time series of measurements
Remote Sensing Weaknesses

- **Tradeoff between spatial and temporal resolution**
 - Satellites may pass over multiple times per day or once every few weeks
 - Spatial resolution can be sub-meter to kilometers

- **Atmospheric interference**
 - Clouds can obscure views
 - Detrimental if the data has poor temporal resolution

- **Accuracy and interpretation**
 - Algorithms often required and will not be perfect

- **Availability**
 - Although NASA provides data free, other space agencies and private companies charge exorbitant prices for data
Reanalysis Data

• Uses multiple sources of recorded climate data combined with data assimilation and modeling techniques to create a gridded environmental datasets
 • Observational data from weather stations, satellites, radiosondes, etc.
• Multiple sources
 • NASA Global Land Data Assimilation System
 • NCEP Reanalysis

[Links: https://climatedataguide.ucar.edu/climate-data/atmospheric-reanalysis-overview-comparison-tables]
Reanalysis Data

- **Advantages**
 - Includes huge amount of variables
 - Global gridded data with consistent spatial and temporal resolution
 - Incorporates millions of observations
 - Free and relatively easy to use

- **Disadvantages**
 - Reliability depends on location, time period, and variable
 - The type and number of observations changes over time
 - Use of modeled data

http://cpo.noaa.gov/ClimatePrograms/ModelingAnalysisPredictionsandProjections/MAPPNewEvents/TabId/506/ArtMID/1256/ArticleID/197/MAPP-kicks-off-Climate-Reanalysis-Task-Force-activities.aspx
Weather Forecasts

• Short-term predictions out to 2 weeks into the future
• Meteorologists use multiple methods to produce forecasts
 • Current observational data
 • Tracking weather systems and air masses
 • Weather forecasting models
 • Weather research and forecasting model WRF
• Experience

Weather Forecasts

• Multiple sources
 • Local or national weather service
 • Private companies: TV or Websites
 • weatherunderground.com

• Considerations when using weather forecast data
 • Uncertainty
 • Forecasts degrade in quality as they extend out
 • Evaluation of forecasts are important

Bauer at al. 2015
Seasonal Forecasts

• 1-6 Month Forecasts
 • Based on long-term climate trends, sea surface temperatures, oscillations
 • From numerical weather prediction models and/or statistical models

• Example: North American Multi-Model Ensemble
 • Made up of multiple models
 • Gridded, monthly
 • Daily downscaled version available but are not specific daily predictions

Climate Variability and Change

- Shift in mean and variance
- Increase in frequency of extreme conditions
Global Climate Models

- Global climate models
 - Attempt to simulate the climate system through mathematically modeling the physical, chemical, and biological processes that occur within and between the atmosphere, hydrosphere, lithosphere, and biosphere
 - Many different models with different resolutions, assumptions, and regional accuracy

nca2014.globalchange.gov
Climate Change Models

- Earth and atmosphere divided into a 3-d grid which interact
- Higher resolution is more accurate but requires increased computing power
- Can simulate the climate system under various conditions

https://www.e-education.psu.edu/earth103/node/524
Climate Change Data

- GCM inputs
 - Greenhouse gas, aerosol, and pollutant concentrations
 - Land use/cover
- Representative concentration pathways
 - Scenarios created based on projected socioeconomic conditions
- Designed to deal with uncertainty

Van Vuuren et al. 2011
Downscaling Climate Change Data

- A method of estimating local scale climate/weather features from larger scale models
 - Important for local impact assessments
- Downscaling can refer to both spatial and/or temporal downscaling
- Two major methods of downscaling GCM climate data
 - Dynamic downscaling
 - Statistical downscaling

[Image: Downscaling examples showing different scales and spatial resolutions]
Dynamic Downscaling

• Regional GCMS
 • GCM boundary conditions used to drive a finer scale numerical weather/climate model

• Advantages
 • Based on known atmospheric mechanics
 • Atmospheric processes resolved
 • Does not rely on historical records

• Disadvantages
 • High complexity and computing power
 • Small scale processes still difficult to simulate
 • Relies on accuracy of GCMs
Statistical Downscaling

- Based on relationships between large-scale and local atmospheric conditions
 - Methods: linear regression, weather classification, weather generators

- Advantages
 - Simple with little required computer power
 - Can downscale to very fine resolution
 - Methods are flexible

- Disadvantages
 - Assumes stationary relationships over time
 - Accuracy and resolution are method dependent
 - Relies on accuracy of GCMs and historic data

https://rcmes.jpl.nasa.gov/content/statistical-downscaling
Data Considerations in Climate and Health Research

- What is the required resolution?
 - Spatial
 - Temporal
- What is the period of study?
 - Historic
 - Future
- How to deal with uncertainty?
 - Sources
 - Solutions

What is the required resolution?

- **Site/Point**
 - Microclimate
 - Pool of standing water
 - Protected area like sewer
 - Data
 - Weather data logger
 - Weather station

- **Local**
 - Ecosystem
 - Wetlands area
 - Forrest
 - Data
 - Weather station
 - Remote sensing/satellite
 - Reanalysis data

- **Regional**
 - Climate zone
 - Tropical, Arid, temperate
 - Data
 - Remote sensing/satellite
 - Reanalysis data

Remember that temporal resolution may also be an issue but only when trying to obtain a finer resolution
What is the Period of Study?

• Historic
 • Methods of collecting weather/climate data change over time
 • Certain variables are only available more recently
 • The number of collections also changes over time

• Future
 • Short-term: weather forecast
 • Mid-term: seasonal forecast
 • Long-term: climate change

Uncertainty increases as forecast increases while specificity decreases
How to Deal with Uncertainty?

• Uncertainty comes from multiple sources
 • Model parameterization
 • Model accuracy
 • Data accuracy

• Solutions
 • Select appropriate models and data
 • Use multiple models / parameters / datasets
 • Evaluate predictions when possible
 • Report ranges

CMIP5 projected changes in global mean ANN temperature

Temperature change relative to 1961–1990 [K]

Year

http://flattish2.rssing.com/chan-1497342/all_p1116.html