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An overview of the capabilities of the CHarring Ablator Response (CHAR) code is presented. CHAR is a
one-, two-, and three-dimensional unstructured continuous Galerkin finite-element heat conduction and abla-
tion solver with both direct and inverse modes. Additionally, CHAR includes a coupled linear thermoelastic
solver for determination of internal stresses induced from the temperature field and surface loading. Back-
ground on the development process, governing equations, material models, discretization techniques, and nu-
merical methods is provided. Special focus is put on the available boundary conditions including thermochem-
ical ablation and contact interfaces, and example simulations are included. Finally, a discussion of ongoing
development efforts is presented.

Nomenclature

α thermal diffusivity (m2
/sec) or coefficient of thermal expansion (K−1) or absorptivity

αt, βt, γt temporal finite-difference weights (sec−1)
β extent of reaction (degree of char)
f external force vector (N/m3)
U vector of discrete unknowns
u displacement vector (m)
v velocity vector (m/sec)
x vector of coordinates (m)
∆h characteristic mesh length scale (m)
∆t time step (sec)
ω̇ mass source (kg/m3·sec)
ṁ mass flux (kg/m2·sec)
Q̇ energy source (W/m3)
q̇ heat flux (W/m2)
Γ domain boundary (m2) or volume fraction in virgin material
γP parameters for defining gas flow contact model stability parameter (m2

/sec) and (sec)
n̂ unit normal vector
κ permeability (m2)
λ Lamé’s first parameter (Pa) or blowing reduction parameter
R residual
µ dynamic viscosity (Pa · sec) or Lamé’s second parameters (Pa)
ν Poisson’s ratio
Ω domain volume (m3)
φ porosity
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ψ basis function
ρ density (kg/m3)
σ Stefan-Boltzmann constant (W/m2·K4) or stress (Pa)
σP gas flow contact model stability parameter (m/sec) and (sec/m)
σT thermal contact model stability parameter (W/m2·K)
τ shear stress (Pa)
α̃ coefficient of thermal expansion tensor (K−1)
σ̃ shear stress tensor (Pa)
ε̃ mechanical strain tensor
C̃ rotation matrix to shift coordinate reference frame
K̃ stiffness tensor (Pa)
κ̃ permeability tensor (m2)
k̃ thermal conductivity tensor (W/m·K)
ε emissivity
A element face area (m2)
b Klinkenberg parameter (Pa)
B′ non-dimensional mass flux
C specific heat (J/kg·K)
CH convective heat transfer Stanton number
DE discretization error
E activation energy (J/kg) or Young’s modulus (Pa)
eo total internal energy (J/kg)
H convective heat transfer coefficient (W/m2·K)
h enthalpy (J/kg)
Hc contact conductance coefficient (W/m2·K)
ho total enthalpy (J/kg)
k pre-exponential factor (sec−1) or roughness height (m) or thermal conductivity (W/m·K)
k+ non-dimensional roughness height
m reaction order
N number of nodes
nc number of components
P pressure (Pa)
p temporal order of accuracy
q spatial order of accuracy
R gas constant (J/kg·K)
S interface boundary (m2)
T temperature (K)
t time (sec)
u displacement (m) or velocity (m/sec)
V element volume (m3)
v test function
y effective mass fractions in solid
DoF acronym for degree of freedom
PDE acronym for partial differential equation
TC abbreviation for thermocouple
TPS acronym for thermal protection system

Subscripts and Superscripts

∞ denotes far-field state
ν iteration index
c quantity of the char
cond denotes conduction
e quantity at boundary layer edge
g quantity of the gas
h denotes finite-dimensional approximation
i component index
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m quantity of the mesh
n time index
o denotes total quantity or initial value
r denotes recovery state
rad denotes radiation
s quantity of the solid
spec denotes user-specified quantity
v quantity of the virgin or denotes Voigt notation
w quantity of gases adjacent to the wall

I. Introduction

Ablation is the phenomenon by which a material sacrifices mass through mechanical and thermochemical pro-
cesses such as spallation, sublimation, oxidation, nitridation, and other reactions in order to expel energy from the
material. Ablative materials (ablators) are often used in thermal protection system (TPS) applications such as fire
protection, rocket nozzle linings, launch vehicle heatshields, entry vehicle heatshields, and hypersonic cruise vehicle
heatshields. Ablators have high temperature capability, and are typically used when the aerothermodynamic environ-
ments are too high for reusable TPS materials, such as those used on the Space Shuttle Orbiter. Additionally, ablators
are typically more chemically and thermally complex than reusable TPS materials.

In general, there are two types of ablators: charring and surface (non-charring) ablators. A generalized schematic
of a charring ablator can be seen in Figure 1. Initially, the material starts out as a virgin composite, which is usually
composed of a fibrous material injected with a resin that fills the pore space and strengthens the composite. As heat
is transferred into the material, constituents of both the resin and fibrous material can pyrolyze, and the resulting
gases percolate away from the decomposition zone toward the surface and eventually out of the material. The fully
pyrolyzed material that remains is called char, which has a higher porosity and permeability than the virgin composite.
The pyrolysis process is typically endothermic, and the gases are expelled from the surface, which mitigates heat
transfer to the substructure. Additionally, pyrolysis gas injection into the boundary layer will reduce the convective
heat flux incident on the surface. As the heat flux is increased, chemical reactions with boundary layer gases begin to
ablate the surface char, and mass is removed, thereby thinning the material. Char layers typically have low conductivity
with high emissivity so that a high surface temperature can be maintained and a significant portion of the incident heat
flux can be reradiated. Surface ablators are a simplification of charring ablators in that they only undergo the surface
reaction and mass loss process, while they are thermochemically stable in-depth.

Figure 1. In-depth schematic of a charring (pyrolyzing) ablator.

Reliable predictions of the performance of TPS is critical in the design of such systems. This is typically done
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through testing and computer modeling. For decades, design engineers have relied on numerical heat transfer solutions
for the highest fidelity thermal response predictions. Numerical methods were first applied to ablative materials in the
1960s during intercontinental ballistic missile and spacecraft development efforts.

This document outlines the physical and numerical models that are implemented in the CHarring Ablator Response
(CHAR) code. CHAR is a one-, two-, and three-dimensional heat transfer, ablation, and porous flow simulation tool
with both direct and inverse solver modes. It uses a continuous Galerkin finite-element spatial discretization with an
Euler implicit time discretization and solves the governing equations coupled and implicit with a full-matrix (whole
domain) linear system solver. CHAR’s primary purpose is to perform engineering analysis for design work. Conse-
quently, the developers have attempted to balance fidelity with speed such that it can be useful in typical engineering
design processes. Consequently, CHAR employs a macroscale model that leverages volume-averaged assumptions,
and it does not have the potential fidelity of microscale models such as those implemented in PATO.1

An exhaustive literature review detailing the history of ablation modeling would be prolix and has been done (at
least in parts) in other publications. However, the development of CHAR was strongly influenced by previous and
ongoing modeling efforts including: CMA,2 Chen and Milos,3–5 Dec,6 Blackwell,7,8 Martin,9–11 April et al.,12,13 and
Amar.14

The intent of this document is to provide an overview of the modeling capabilities implemented in CHAR. In an
attempt to provide broad coverage, many low-level details are omitted especially in cases where additional references
are provided. Notably, details of the inverse algorithm are provided by Oliver,15 surface-to-surface radiation exchange
models are described by Salazar,16, mesh motion boundary conditions are given by Droba,17 and verification strategy
and results are provided by Amar et al.18

II. Software Development Approach

II.A. Code Architecture

To expedite the software development process, the development team has chosen to take advantage of pre-existing,
high quality, and freely available software libraries to avoid duplicating the efforts of others. Consequently, the CHAR
program can be thought of as an ablation and heat transfer physics wrapper around a hierarchy of libraries that aid
in the solution and data management processes. The primary software packages included in CHAR are outlined
in Figure 2, and there are additional libraries that the noted libraries rely on for the functionality in CHAR. The
majority of the physics and application-dependent code is in the top-level routines denoted by the CHAR bubble. This
includes simulation management, initialization, calls to library functions, matrix assembly routines for element-level
integration, boundary condition application, and material property data structures and look-up routines. Those routines
comprised the bulk of the development effort for the current study.

Eigen19 is a library for linear algebra including: matrix/vector math, numerical solvers, and other related algo-
rithms. It is primarily used in CHAR for its matrix and vector data structures and solutions to small linear systems.

Cantera20 is a collection of object-oriented software tools for problems involving chemical kinetics, thermodynam-
ics, and transport processes. For CHAR, it is used to calculate thermodynamic state properties and transport properties
for gaseous mixtures in equilibrium. It is used for both the in-depth gas mixture and the environment gas mixture at
surface conditions. Since repetitive calls to the equilibrium calculator can get expensive over the course of a simula-
tion, Cantera is only used in the beginning of a simulation to build the required data tables over a range of relevant
conditions for the problem. Subsequently, CHAR interpolates in these data tables to determine gas properties.

The workhorse for CHAR is the libMesh finite-element library, which is developed at NASA Johnson Space
Center and the University of Texas at Austin with many other contributors around the world.21 libMesh performs
nearly all of the physics independent tasks of the software and can be thought of as the framework on which the
physics-dependent application code is built. While the functions of libMesh within CHAR are many, the notable
functions include linear system data management, mesh data management, parallel communication, finite-element
utilities that streamline integration, and adaptive mesh refinement. libMesh also provides user-transparent interfaces
to the Portable, Extensible Toolkit for Scientific Computation (PETSc) library,22 which solves the assembled linear
system, and METIS,23 which provides the domain decomposition for parallel execution.

II.B. Software Verification

The CHAR development process has included an extensive verification effort to improve confidence in the software’s
functionality. Software verification is the mathematical exercise of proving that the model equations and numerical
methods have been correctly implemented in the software, not to be confused with software validation which provides
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Figure 2. CHAR software architecture.

evidence that the correct equations have been chosen to solve the physical problem of interest. Verification includes
proving that the spatial and temporal integration techniques and the nonlinear solvers give the desired orders of con-
vergence. While verification studies should be performed for every term in the governing equations, all boundary
conditions, and all modeling options, there is some practical limit to how rigorously a developer can verify a code
given that most software of this nature is developed in an environment where sooner than later practical problems need
to be solved for engineering design and analysis.

Verification exercises are typically done by generating solutions on successively refined space or time meshes for
problems with known exact solutions. Examining the discretization error, DE, as the mesh is refined shows the orders
of accuracy of the model as implemented.

DE = a∆tp + b∆hq + (higher order terms) (1)

where a and b are constants, ∆t is the time step, ∆h is the characteristic mesh spacing, p is the temporal order of
accuracy, and q is the spatial order of accuracy. The general verification approach for CHAR is outlined in Amar et
al.,18 where the verification of the fixed-mesh terms in the governing equations are demonstrated. Typically, the spatial
and temporal orders of accuracy are independently verified, but an approach for simultaneously verifying the spatial
and temporal orders of accuracy is described therein. In general, the two approaches that are used to verify CHAR are
through analytic solutions and manufactured solutions24,25 to the governing equations.

III. Governing Equations

CHAR solves the governing equations for heat conduction and gas flow through decomposing porous media in one,
two, or three dimensions. In general, this would include

• Continuity equations for each of the chemically reacting gaseous species resulting from flowfield ingestion and
pyrolysis gas generation through in-depth decomposition

• Momentum equations accounting for transport through porous media

• Energy equations for both the solid and gas phases

• Solid mass conservation equations for progression of pyrolysis
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However, CHAR employs several simplifying assumptions to reduce the equation set to be more amenable for engi-
neering application and design analyses. These assumptions include

• Flowfield gases are not allowed to penetrate the surface. Consequently, all the gas inside the porous medium is
generated through pyrolysis.

• Pyrolysis gases do not react with or condense on the porous material.

• Pyrolysis gas diffusion is neglected such that the elemental composition of the gas is constant.

• All ablation occurs at the surface, and volume ablation effects are neglected.

• The solid and gas are assumed to be at the same temperature.

• The gas is assumed to be a mixture of perfect gases in chemical equilibrium.

• The momentum equations can be sufficiently represented by the steady form of Darcy’s law.

Under these assumptions, the governing equations for a moving mesh simplify to

Energy:
∂(ρeo)

∂t

∣∣∣∣
node

−∇ ·
(
k̃∇T

)
+ ∇ ·

(
φρghogvg

)
− vm ·∇(ρeo)− Q̇ = 0

Gas Mass:
∂(φρg)

∂t

∣∣∣∣
node

− ω̇g + ∇ · (φρgvg)− vm ·∇(φρg) = 0

(2)

where the node subscript denotes conservation with respect to a constant location in the moving coordinate frame
(such as a node in the moving mesh) and Darcy’s law defines the velocity field by

vg = − κ̃
φµ

∇P (3)

Additionally, the solid mass conservation equation, given by

∂ρs
∂t

= ω̇s = −ω̇g (4)

is solved in a stationary reference frame and treated as a constitutive relation when defining the temporal derivative in
the energy equation.

IV. Numerical Methods

IV.A. Finite-Element Formulation

In order to develop the finite-element equations, Galerkin weak statements can be developed for the energy and gas
mass conservation equations in Eqn. (2) by first multiplying each by a suitable test function, v, and integrating over the
domain, Ω, while integrating the appropriate terms by parts to give the natural boundary condition terms. The weak
statement is then: Find ρeo and φρg ∈ H1 such that∫

Ω

[
v
∂(ρeo)

∂t
+ ∇v ·

(
k̃∇T

)
−∇v ·

(
φρghogvg

)
− vvm ·∇(ρeo)− vQ̇

]
dΩ

+

∮
Γ

(
vhogṁg + vq̇conds

)
dΓ = 0 ∀v ∈ H1 (5)

∫
Ω

(
∂(φρg)

∂t
v −∇v · (φρgvg)− vvm ·∇(φρg) + ω̇sv

)
dΩ +

∮
Γ

vṁgdΓ = 0 ∀v ∈ H1 (6)

where the boundary mass flux due to gas convection is

ṁg = (φρg)vg · n̂ (7)

and the boundary heat flux is
q̇conds = −k̃∇T · n̂ (8)
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The finite-element approximation to Eqns. (5) and (6) can be reached by expanding the independent variables and test
functions in terms of a finite dimensional basis

(ρeo)h (x) =

N∑
j=1

(ρeo)j ψj (x) (9)

(φρg)h (x) =

N∑
j=1

(φρg)j ψj (x) (10)

Th (x) =

N∑
j=1

Tjψj (x) (11)

Ph (x) =

N∑
j=1

Pjψj (x) (12)

vh (x) =

N∑
i=1

viψi (x) (13)

where the subscript h is introduced to denote a finite dimensional approximation. The unknowns in the system are
chosen to be the nodal temperatures and pressures, Tj and Pj . Since the unknowns are not functions of x, the partial
differential equation system is reduced to an ordinary differential equation system in which the temporal derivatives
can be defined as

∂(ρeo)h
∂t

=

N∑
j=1

d (ρeo)j
dt

ψj (x) (14)

∂(φρg)h
∂t

=

N∑
j=1

d (φρg)j
dt

ψj (x) (15)

Since the equation system should be satisfied for all combinations of nodal shape function coefficients, vi, their choice
is arbitrary as long as a unique combination is chosen for each node. In typical finite-element fashion, the coefficients
are chosen to be vi = δil for the lth nodal equation. Consequently, the nodal residual equations resulting from Eqns. (5)
and (6) can now be written as∫

Ω

ψi
∂(ρeo)h
∂t

dΩ +

∫
Ω

∇ψi · k∇ThdΩ−
∫

Ω

(φρg)h hog∇ψi · vgdΩ

−
∫

Ω

ψivm ·∇(ρeo)hdΩ +

∮
Γ

ψiq̇condsdΓ +

∮
Γ

ψihogṁgdΓ−
∫

Ω

ψiQ̇dΩ = 0 (16)

and∫
Ω

ψi
∂(φρg)h
∂t

dΩ −
∫

Ω

(φρg)h∇ψi · vgdΩ −
∫

Ω

ψivm ·∇(φρg)hdΩ +

∮
Γ

ψiṁgdΓ +

∫
Ω

ψiω̇sdΩ = 0 (17)

for i = 1,2,...,N .
The residual equations are numerically integrated with either Gaussian or trapezoidal quadrature depending on

the user’s preference. First order Lagrangian shape functions are used, which gives a second order accurate spatial
discretization. Supported element types include:

• 1D: 2-DoF bar elements

• 2D: 4-DoF quadrilateral and 3-DoF triangle elements

• 3D: 8-DoF hexahedron, 4-DoF tetrahedron, 6-DoF prism, and 5-DoF pyramid elements
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IV.B. Time Discretization

The semidiscrete weak form of the system given by Eqns. (16) and (17) is discretized in time using backward finite-
difference schemes. Both first- and second-order accurate schemes may be derived from Taylor series expansions in
time about Un+1 as outlined by Kirk26 to give

∂Un+1

∂t
= αtUn+1 + βtUn + γtUn−1 +O

(
∆tpn+1

)
(18)

where the weights are given for p = 1 and p = 2 in Table 1.

Table 1. First- and second-order accurate time discretization coefficients.

p αt βt γt

1 1
∆tn+1

−1
∆tn+1

0

2 −βt − γt −
[

1
∆tn+1

+ 1
∆tn

]
∆tn+1

∆tn(∆tn+1+∆tn)

The resulting temporal derivatives are given by

d (ρeo)j
dt

= αt (ρeo)
n+1
j + βt (ρeo)

n
j + γt (ρeo)

n−1
j (19)

and
d (φρg)j
dt

= αt (φρg)
n+1
j + βt (φρg)

n
j + γt (φρg)

n−1
j (20)

which can be substituted into Eqns. (14) and (15) respectively.

IV.C. Linearization

Through the iteration process, the nodal residual equations will be driven to machine zero so that the nonlinear gov-
erning equations are satisfied in a discrete sense. The DoFs are chosen to be nodal values of T and P , which is an
update from the earlier version of CHAR described in Amar et al.18 To aid in the iterative process, it is necessary to
linearize the residual equations in iteration space. This will be done according to a Taylor-series expansion

Rν+1
i = Rνi +

N∑
j=1

{
∂Ri
∂Tj

∣∣∣∣ν ∆Tj +
∂Ri
∂Pj

∣∣∣∣ν ∆Pj

}
+ higher order terms (21)

where the superscript ν has been introduced to denote iteration level and

∆Tj = T ν+1
j − T νj (22)

and
∆Pj = P ν+1

j − P νj (23)

Keep in mind that the Jacobian terms, ∂Ri

∂()j
, are only nonzero if nodes i and j share an element.

Since the intent of CHAR is to allow for easy addition of new physical models, the Jacobians will not be derived
analytically yet they will be calculated exactly (to machine precision) using the complex-step method as described in
Amar et al.18 and originally introduced by Lyness.27,28 The residuals can be expanded according to a Taylor-series
in independent variable space about a point [Tj , Pj ]. For example, the expansion in temperature space with complex
step, i∆T , is

R [Tj + i∆Tj , Pj ] = R [Tj , Pj ] + i
∂R
∂Tj

(∆Tj) −
1

2

∂2R
∂T 2

j

(∆Tj)
2 − i

6

∂3R
∂T 3

j

(∆Tj)
3

+ higher order terms (24)

Now looking at just the imaginary part and ignoring the higher order terms gives

Im {R [Tj + i∆Tj , Pj ]} =
∂R
∂Tj

∆Tj −
1

6

∂3R
∂T 3

j

(∆Tj)
3 (25)
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Solving for the first derivative gives the Jacobian terms

∂R
∂Tj

=
Im {R [Tj + i∆Tj , Pj ]}

∆Tj
+O

[
(∆Tj)

2
]

(26)

This process can be repeated for each independent variable. The proper choice for the perturbation steps is not
immediately obvious from looking at the equations, but as demonstrated in Amar et al.,18 picking a good value to
obtain exact Jacobians is easily accomplished in practice. Since after the residual is calculated there are no addition or
subtraction operations in Eqn. 26 to introduce truncation errors, choosing a very small value for the perturbation step,
such as ∆Tj = Tj × 10−100, is sufficient.

V. Material Model

The material model is an extension of the CMA model developed by Moyer and Rindal.2 It is assumed that all the
pores are interconnected, and therefore pyrolysis gases occupy all of the pore space and are free to flow through it.
Consequently, the density of the solid/gas system is described by

ρ = φρg + ρs (27)

where the solid density is a bulk density, the gas density is with respect to the space the gas occupies (pore space), and
the porosity is equal to the gas volume fraction. In terms of units, Eqn. (27) can be expressed as

ρ︷ ︸︸ ︷
[total mass]

[total vol]
=

φ︷ ︸︸ ︷
[pore vol]

[total vol]

ρg︷ ︸︸ ︷
[gas mass]

[pore vol]
+

ρs︷ ︸︸ ︷
[solid mass]

[total vol]
(28)

The solid material is modeled as a mixture of components each with their own rate law governing its decomposition.

ρs =

nc∑
i=1

Γiρsi (29)

It is assumed that the solid does not change volume due to thermal expansion, and therefore the total volume is
constant. It is important to note that the solid description in Eqn. (29) is only a modeling assumption, and the solid
is not truly comprised of nc components, species, or distinguishable materials. Taking the temporal derivative of
Eqn. (29) gives the solid decomposition rate in terms of component decomposition rates.

∂ρs
∂t

= ω̇s =

nc∑
i=1

Γi
∂ρsi
∂t

=

nc∑
i=1

Γiω̇si (30)

It is assumed that the decomposition of each component can be described by an Arrhenius relationship of the form

ω̇si = −kiρvi
(
ρi − ρci
ρvi

)mi

e−Ei/RT (31)

which is in a stationary reference frame. The decomposition kinetics in Eqn. (31) are simplified to ordinary differential
equations by treating the temperature constant over a time step as proposed by Moyer and Rindal. They are then treated
as a constitutive relation and directly integrated as part of the solution to the energy equation.

Since most thermophysical properties of the solid are only known for the virgin and fully charred states, the
intermediate solid is modeled as an interpolated state between virgin and char. This interpolated state is characterized
by the extent of reaction (β), or degree of char, given by

β =
ρv − ρs
ρv − ρc

(32)

where the virgin and char bulk densities are known constants. The definition in Eqn. (32) can be rearranged to more
clearly describe the interpolated state.

ρs = (1− β) ρv + βρc (33)
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Although the virgin and char materials are not distinguishable entities within the intermediate solid, Eqn. (33) reveals
that the degree of char represents an effective char volume fraction within the solid. In a similar light, CMA defines
an effective virgin mass fraction given by

yv =
ρv

ρv − ρc

(
1− ρc

ρs

)
(34)

which can be related to the extent of reaction through

yv =
ρv
ρs

(1− β) (35)

Similarly the char mass fraction is given by
yc = 1− yv =

ρc
ρs
β (36)

These effective parameters are used to interpolate between virgin and char thermophysical properties for partially
decomposed material.

ρeo = (1− β) ρvev + βρcec + φρgeog (37)

k = yvkv + yckc + φkg (38)

ε = yvεv + ycεc (39)

α = yvαv + ycαc (40)

Additionally, the porosity and permeability are treated as user-defined functions of degree of char, β. Also, the
permeability is treated with a pressure dependence according to the Klinkenberg model.29

κ = κo

(
1 +

b

P

)
(41)

Finally, both the thermal conductivity and the permeability can be treated anisotropically.

VI. Mesh Motion

For materials that undergo small deformation, to good approximation, the stress in the material is linearly propor-
tional to its strain. Such materials are said to behave as linear elastic materials, and their displacement u under an
external force f is described by

−∇λ (∇ · u)− (∇ · µ∇)u−∇ · µ (∇u)
T

= f (42)

where λ and µ are the Lamé parameters.
A weak formulation can be constructed for Eqn. (42) in the usual way. Multiplying by a suitable test function v

and integrating by parts, the weak form is then: Find u ∈ H1 such that∑
k,l

∫
Ω

λ
∂ul
∂xl

∂vk
∂xk

dΩ +
∑
k,l

∫
Ω

µ
∂ul
∂xk

∂vl
∂xk

dΩ +
∑
k,l

∫
Ω

µ
∂ul
∂xk

∂vk
∂xl

dΩ =
∑
k

fkvk dΩ (43)

∀v ∈ H1, where the summation indices expand over the number of spatial dimensions in the problem. The finite-
element approximation follows immediately by introducing finite dimensional approximations for uh and vh. It
should be emphasized this implementation of the linear elasticity equations is used solely for mesh motion. In this
setting, the “material” properties λ and µ can be chosen to tailor the mesh deformation and need not represent the
actual material being modeled. In this work, these parameters are fixed at λ = 0 and µ = 1, but other choices could
improve mesh quality for some situations.

The discrete analog of Eqn. (43) is implemented in the CHAR. For generality, the form presented in Eqn. (43) is
implemented, although it is expected that only the homogeneous (f ≡ 0) will be of practical interest.
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VI.A. Usage Within an Ablation Simulation

Eqn. (42) is steady. Under the assumption that the mesh deformation is quasi-steady, it can be applied at each time step
within an ablation simulation. The general usage scenario is that the surface displacement is prescribed as a Dirichlet
boundary condition along some portion of the boundary, and the resulting nodal displacements within the ablator are
determined from Eqn. (42). The mesh nodal coordinates are then updated using these displacements. Furthermore,
the mesh nodal location history is stored at two time levels. This location history can be used to compute the “mesh
velocity” terms required by CHAR via finite-differencing. This procedure is repeated at each time step.

The mesh motion scheme in CHAR is explicit. The surface recession distribution is calculated at time level n,
then it is applied and held constant at time level n+ 1. For typical ablation problems, the recession rate changes slow
enough that this assumption does not greatly impact accuracy while it provides a significant speed-up over a fully
implicit approach.

A critical feature of the implementation is to restrict the linear elasticity solve to a subdomain of the mesh. In this
approach, the mesh motion will only occur on a subset of the entire computational mesh. This capability is useful when
the full simulation includes both ablating and non-ablating components, for example an ablative material mounted to
a rigid structure. This feature will be explicitly demonstrated in Section VI.B.

As CHAR has been applied to a broader set of moving mesh problems, it has been recognized that the simple
boundary conditions first implemented (not described in detail herein) are insufficient for many problems, especially
those with large mesh deformations. Consequently, a current effort is focused on developing a suite of generalized and
robust boundary conditions for the linear elastic solver associated with the mesh motion algorithm. These boundary
conditions and associated example problems are outlined in Droba.17

VI.B. Demonstration Case

The example case considers a generic “iso-q” shape characteristic of arcjet stagnation test specimens. This shape is
characterized by a blunt “puck” with a radius of curvature equal to its diameter. When exposed to an impinging stream,
this shape results in a laminar heat transfer distribution, which is roughly constant over a large portion of the face. A
cross-section of a notional iso-q is shown schematically in Figure 3. This case makes use of the ability to restrict mesh

Figure 3. Canonical arcjet iso-q geometry for mesh motion demonstration case.

motion to a specific subdomain. The amber-colored material in this case is assumed to be an ablator, which is allowed
to deform. The gray-colored material is treated as fixed. Such a scenario would result from the common test article
setup in which an ablative material is bonded to a fixture.

The boundary conditions for this case are shown in the figure. A “sliding” boundary condition is applied on the
two vertical sides. Specifically, the displacement is restricted such that u · n̂ = 0. This allows nodes to slide tangential
to the boundary, but not move normal to it. The top surface is the surface that in an actual ablation calculation would
be exposed to the highest heat flux and therefore experience the most severe recession. In this case, the ablation code
would specify the surface displacement at each time step. For demonstration purposes, surface displacement will be
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prescribed analytically as

u1 = 0 (44)
u2 = −0.01 (2 + cos (2πx)) (45)

where x ∈ [−0.5, 0.5]. This displacement profile is repeatedly applied at the surface in a quasi-static simulation. The
displacement history is shown in Figure 4. It is clear from the figure that the mesh motion is properly restricted to the

(a) t=0.00 (b) t=0.01 (c) t=0.02

(d) t=0.03 (e) t=0.04 (f) t=0.05

(g) t=0.06 (h) t=0.07 (i) t=0.08

(j) t=0.09 (k) t=0.10 (l) t=0.11

Figure 4. Deformation history for arcjet iso-q geometry.

ablator subdomain.

VII. Boundary Conditions

CHAR has a rich suite of boundary conditions each of which can be treated as temporally and spatially varying.
For the energy equation, the options for incident fluxes can be any combination of the following:

• Perfect gas convection: q̇ = H (Tr − Tw)

• Real gas convection (Aeroheating): q̇ = ρeueCH (hr − hw)
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• Specified heat flux: q̇ = qspec

• Reradiation: q̇ = σε
(
T 4
∞ − T 4

w

)
• Radiation: q̇ = αq̇rad

In addition, surface-to-surface radiation exchange is available as described by Salazar.16 Finally for the energy equa-
tion, a specified surface temperature (Dirichlet) condition is also available. For the gas mass conservation equation,
specified mass flux and specified pressure (Dirichlet) conditions are available. Dirichlet conditions are applied numer-
ically via the penalty boundary method.30

For surface recession, melting and thermochemical ablation models are available. The thermochemical ablation
model is described in more detail in Section VII.A.

VII.A. Thermochemical Ablation

The fluid ablator interface is governed by mass and energy balances that account for the thermochemical interactions
occurring at the surface. Following the film coefficient approach of Moyer and Rindal,2 the surface energy balance
can be expressed as

ρeueCH (hr − hw) + αq̇rad − σε
(
T 4
w − T 4

∞
)
− ṁwhw + ṁchc + ṁgshg + q̇conds = 0 (46)

In order to simplify the solutions to the mass and energy balances, non-dimensional mass fluxes are introduced

B′c =
ṁc

ρeueCH
(47)

B′g =
ṁgs

ρeueCH
(48)

and
B′ = B′c +B′g (49)

Substituting these new definitions and solving for the conduction flux gives

q̇conds = −ρeueCH
[
(hr − hw)−B′hw +B′chc +B′ghg

]
− αq̇rad + σε

(
T 4
w − T 4

∞
)

(50)

Knowing the temperature and pyrolysis gas mass flux at the surface (from the in-depth solution) and the film coefficient
and pressure from the fluid dynamics, the mass balance and surface chemistry problem can be solved to give the solid
mass loss rate, ṁc (or B′c) and the wall enthalpy, hw. Solving the mass balance/surface chemistry problem is typically
done with an external software package such as ACE31 or MAT.32 A multitude of solutions over a bounding range
of conditions is typically pre-computed and supplied to the thermal analysis software in tabular form. These surface
thermochemistry tables are commonly referred to as “B′ tables.” For CHAR, the independent variables in the B′

tables are pressure, B′g , and temperature. The dependent variables are the wall enthalpy and B′c. Given the B′ tables
in addition to the convective, radiation, and reradiation input parameters and the pyrolysis gas information from the
in-depth solution, all the information is known to solve for the conduction flux in Eqn. (50).

It should be noted that for typical thermochemical ablation problems, the surface boundary condition for the gas
continuity equation is a specified pressure condition, which is known from the fluid dynamics analysis and is already
a required input for the surface thermochemistry tables.

VII.A.1. Film Coefficient Corrections

Typically, when performing an uncoupled analysis of an aerothermal and material response problem, the fluid dynam-
ics analysis is performed to provide a heating boundary condition, and the material response simulation takes this fixed
boundary condition as input. In reality, the physics of the two problems are coupled because the thermal response im-
pacts the aerothermal environments through wall temperature changes, surface chemical state, mass injection, shape
change, and surface roughening. When it is not feasible to perform a coupled analysis to account for these effects,
which is most often the case, correction models can be implemented in the material response code. These correc-
tions typically come in the form of film coefficient adjustment models while they leave the recovery state unchanged.
Currently, CHAR contains film coefficient correction models for both blowing and roughness effects. Although wall
temperature correction models are often employed, no such model has been implemented in CHAR to date.
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BLOWING REDUCTION

Mass injection from the ablator to the boundary layer is known to reduce the convective heating environment to
the surface of the ablator. The blowing reduction model in CHAR is based on the model presented in Kays.33 It is
derived based on manipulation of the boudary layer equations under Couette flow assumptions, and its applicability is
supported by a wealth of test data. It is also the same model implemented in the CMA code.2

ρeueCH
ρeueCH |o

=
2λB′o

e2λB′
o − 1

(51)

where
B′o =

ṁgs + ṁc

ρeueCH |o
=

ṁw

ρeueCH |o
(52)

where ρeueCH |o is the uncorrected film coefficient supplied as part of the aeroheating boundary condition, and ṁw is
the total mass flux being injected into the fluid stream from the ablator. λ is the blowing reduction parameter, which is
dependent on the flow state and can be a tunable parameter for a specific application. Previous experience has shown
that suitable choices for λ are

λ = 0.5 for laminar flow
λ = 0.4 for turbulent flow

Notice that for a given injected mass flux, the blowing reduction is more effective for a laminar flow than it is for a
turbulent flow.

ROUGHNESS AUGMENTATION

Surface roughness is known to augment the convective heating environment, particularly in turbulent flow. Typi-
cally, roughness augmentation models are based on test data or Reynolds analogy given a corresponding augmentation
in skin friction. Consequently, the roughness models implemented in CHAR involve a two-step process. The first step
is to model the skin friction augmentation given the surface conditions, and the second step is to augment the film
coefficient given the skin friction augmentation.

For the skin friction augmentation, a model based on a curve fit of adiabatic flat plate data presented by Reda34

has been implemented.
τw
τwo

= 1 + 0.9 log

(
k+

10

)
for k+ > 10 (53)

where the non-dimensional roughness height is defined as

k+ =
ρw
√

τwo

ρw
k

µw
(54)

The roughness height, k, and uncorrected shear stress, τwo , are supplied to CHAR as boundary condition inputs, and
the wall density, ρw, and wall viscosity, µw, are functions of temperature, pressure, and wall gas composition and are
tabulated as dependent variables in the surface thermochemistry (B′) tables. It is important to note that while the shear
stress is corrected to account for the wall gas species resulting from blowing and surface ablation, it is not corrected
for changes in the velocity profile due to blowing, which could be significant.

The two available roughness models were developed by Dahm35 and Finson36 and are given by

Dahm:
ρeueCH
ρeueCH |o

= 1 + 0.6

(
τw
τwo

− 1

)
(55)

Finson:
ρeueCH
ρeueCH |o

=

√
τw
τwo

(56)

The roughness heating augmentation models should be used with caution because the applicability of these models
may not apply to a broad range of roughness types or flow regimes. Consequently, the roughness heating augmentation
models available in literature can give a wide range of results. If the luxury exists, development of an application-
specific roughness heating augmentation model is advised, which can be easily implemented in the software.
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VII.B. Contact Interface Conditions

VII.B.1. Thermal Contact

CHAR has the capability to model thermal contact at interfaces with or without aligned meshes. The two moti-
vations for this capability are contact resistance modeling and eliminating conformal meshing requirements. For
non-conformal meshes, the elements at the interfaces are not logically connected in the mesh data. Consequently, al-
gorithms were implemented in CHAR to detect element connectivity and book-keep DoF dependencies. While contact
modeling has been implemented in the governing equations, CHAR cannot currently handle contact interfaces within
a moving domain when the mesh motion DoFs on the two sides of the interface depend on each other. This will be
addressed in future development.

Two thermal contact models are implemented. The first allows for impedance of heat transfer through a finite
contact conductance, Hc.

q̇ = Hc

(
T+ − T−

)
(57)

Lower contact conductance values will result in larger differences in temperature at the two sides of the interface,
T+ and T−. As the contact conductance approaches infinity, the two sides approach thermal equilibrium and perfect
thermal contact is recovered. However, very large values for the contact conductance led to numerical issues.

To overcome the numerical issues, a perfect thermal contact model was implemented. Recall the Galerkin weak
statement of the energy equation given in Eqn. 5. However, the continuous FEM assumes a continuous solution space,
which typically involves a conformal grid. To address this problem, the approach proposed by Dolbow and Harari37

was followed. In this method, the conditions at the interface are enforced weakly by application of Nitsche’s method.38

To do so, consider a pair of disjointed domains separated by an interface S, which can each have different material
properties as shown in Figure 5.

Ω+

Ω−

S
Γ

n

Figure 5. Disjointed domain schematic.

To accommodate this new method, it requires modification to the energy equation’s weak statement in Eqn. 5 to
include additional terms due to the embedded interface∫

Ω

[
v
∂(ρeo)

∂t
+ ∇v ·

(
k̃∇T

)
−∇v ·

(
φρghogvg

)
− vvm ·∇(ρeo)− vQ̇

]
dΩ

+

∮
Γ

(
vhogṁg + vq̇conds

)
dΓ−

∮
S

[[v]] 〈k̃∇T · n̂〉dS (58)

−
∮
S

〈k̃∇v · n̂〉 [[T ]] dS +

∮
S

σT [[v]] [[T ]] dS = 0 ∀v ∈ H1
0
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where the interface operators are defined as

〈T 〉 =
1

2

(
T+ + T−

)
(59)

[[T ]] = T+ − T− (60)
[[v]] = v+ − v− (61)

The stability parameter used in this work is similar to the definition proposed by Dolbow and Harari37

σT ≥ 8

(
A−‖k̃

−
· n̂−‖

V −
+
A+‖k̃

+
· n̂+‖

V +

)
(62)

where the only difference is the consideration of the face area of each side of the interface, where these areas are not
necessarily equal. However, the definition and sensitivity of this term is still being investigated. From Eqn. VII.B.1,
the finite-element discretization follows.

VII.B.2. Gas Flow at Contact Interfaces

Modeling the gas flow at contact interfaces was done through extension of Dolbow’s and Harari’s37 model. To ac-
commodate this new method, it requires modification to the governing equations’ weak statements in Eqns. 5 and 6 to
include additional terms due to the embedded interface. Since there are gas convection terms in both equations, each
must be modified. First, if Darcy’s law is assumed to define the gas velocity, the energy equation weak statement is
modified to give ∫

Ω

[
v
∂(ρeo)

∂t
+ ∇v ·

(
k̃∇T

)
−∇v ·

(
φρghogvg

)
− vvm ·∇(ρeo)− vQ̇

]
dΩ

+

∮
Γ

(
vhogṁg + vq̇conds

)
dΓ−

∮
S

[[v]] 〈ρghog
κ̃

µ
∇P · n̂〉dS (63)

−
∮
S

〈ρghog
κ̃

µ
∇v · n̂〉 [[P ]] dS +

∮
S

σP1 [[v]] [[P ]] dS = 0 ∀v ∈ H1
0

where the interface operators are defined as

〈P 〉 =
1

2

(
P+ + P−

)
(64)

[[P ]] = P+ − P− (65)
Similarly, the gas continuity weak statement is rewritten as∫

Ω

(
∂(φρg)

∂t
v −∇v · (φρgvg)− vvm ·∇(φρg) + ω̇sv

)
dΩ

+

∮
Γ

vṁgdΓ−
∮
S

[[v]] 〈ρg
κ̃

µ
∇P · n̂〉dS (66)

−
∮
S

〈ρg
κ̃

µ
∇v · n̂〉 [[P ]] dS +

∮
S

σP2 [[v]] [[P ]] dS = 0 ∀v ∈ H1
0

The stability parameter used in this work follows very closely that proposed by Dolbow and Harari.37 For the
energy equation, the stability term is determined as follows

σP1 ≥ 8

(
A−γ−P1

V −
+
A+γP1+

V +

)
(67)

γ±P1 = ρ±g h
±
og

‖κ̃± · n̂±‖
µ±

(68)

Similarly, the stability parameter for the gas continuity equation contribution is given by

σP2 ≥ 8

(
A−γ−P2

V −
+
A+γP2+

V +

)
(69)

γ±P2 = ρ±g
‖κ̃± · n̂±‖

µ±
(70)

From Eqns. VII.B.2 and VII.B.2, the finite-element discretization follows.
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VIII. Example Thermochemical Ablation Problem: PICA Iso-Q in Arcjet

Consider a 4 inch diameter iso-q attached to a cylindrical base, which is characteristic of arcjet test specimens used
for thermal protection material testing. The iso-q is made of Phenolic Impregnated Carbon Ablator (PICA), and the
cylindrical base is made of LI-2200, which is a silica based insulating material. The schematic of the test specimen
can be seen in Figure 6, which includes both dimensions and material split lines. The figure shows one plane of the
axisymmetric body. Also, the test specimens were constructed in a piece-wise manner as discussed by Agrawal,39 but
no bonding agent was used to join the components. This specimen design lends itself to be easily modeled since no
adhesive layers need to be included. For the current calculation, the PICA sections are assumed to be in perfect contact
so no contact resistance model is included. Several samples with different thermocouple (TC) locations were tested
consecutively at identical conditions. Consequently, the data and comparisons presented here are a conglomeration of
three different sample exposures all tested at the same condition.

Figure 6. PICA problem iso-q geometry.

The material model inputs for both PICA and LI-2200 are not included in this document due to publication restric-
tions. However, there is limited permeability information for PICA available in the open literature,29 and those values
are used here. A second permeability model was derived in an attempt to make CHAR mimic the physical modeling
assumptions in legacy ablation codes. Consequently, the virgin permeability was minimized, and the char permeability
was maximized such that a stable solution could be reached. This effectively forces all of the pyrolysis gas generated
in-depth to be pushed to the surface as quickly as possible. However, it should be noted that it is not possible for
CHAR to be altered to employ all of the same physical modeling assumptions of the legacy tools.

While the TC traces suggest a wide variability in initial temperature, for the CHAR simulation the specimen is
initially at 294.25 K. The initial pressure condition is not known, but it should be low since the test chamber is
evacuated prior to a run. For the CHAR simulation, the pressure was initialized to 800 Pa, which is an order of
magnitude less than the surface pressure at the stagnation point (8581 Pa). A study was performed to assess the
sensitivity of the solution to the initial pressure condition. It was found that the initial pressure made little difference
to the solution as long as it was an order of magnitude or more lower than the stagnation pressure.

The PICA is exposed to a convective heating boundary condition shown in Figure 7 for 42 sec and allowed to
reradiate to 340 K. The recovery enthalpy is assumed to be constant across the surface at the freestream total value,
hr = 19.0 MJ/kg for a 298 K reference temperature. This is a good assumption in the stagnation region, but it is
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Figure 7. PICA problem film coefficient and surface pressure conditions.

erroneously high in the sidewall region. The convective heating and pressure conditions were derived using a compu-
tational fluid dynamics simulation from the DPLR CFD code.40 The flow was assumed to be laminar, and the blowing
reduction parameter (λ) was set to 0.5. The arcjet stream is partially dissociated air with argon, and the surface ther-
mochemistry tables appropriately account for the environment gases reactions with PICA. The LI-2200 on the sides
of the cylinder is assumed to be exposed to a constant heat flux of 25 W/cm2 during the 42 sec exposure, and it also
reradiates to 340 K. The base of the LI-2200 is assumed to be adiabatic throughout the simulation. The surfaces sur-
rounding the gap between the PICA and LI-2200 are assumed to be adiabatic since the enclosure radiation exchange
is minimal at the temperature differences the two sides will see. The PICA boundaries around this gap are assumed to
be impermeable. This is likely true only if the PICA was coated with an adhesive or sealant, but those details about
the specimen construction are not known. Pyrolysis gases are not allowed to flow into the LI-2200.

After the 42 sec exposure, the model experiences a 538 sec cool-down during which it reradiates to 340 K. Dur-
ing the cool-down phase, the PICA is still allowed to pyrolyze, and pyrolysis gas rejection from the surface is still
accounted for in the surface boundary condition. The surface pressure condition is reduced by an order of magnitude
relative to what is shown in Figure 7 since removal from the arcjet stream would put the specimen back into its initial
low pressure state. While data was taken for the entire 600 sec, the first 100 sec (42 sec exposure plus a 58 sec cool
down) will be looked at in detail.

The data presented is a conglomeration of three test specimens at the same conditions. The heating environments
for all three tests are the same within the facility’s ability to repeat and/or maintain a condition. One specimen was
instrumented with five TCs on the center axis. The second and third specimens had nine TCs. Three TCs were on the
center axis, and six TCs were off-axis. Both specimens had the same TC locations to give repeat data. Altogether,
there were 10 unique TC locations as shown in Table 2 with most locations having redundant data as denoted in the
table. Notice that the total number of TCs represented in Table 2 is 22, and the total number of TCs in the specimens
is 23. This is because the final data available to the authors was missing one TC trace at the TC 2 location. All the
TCs are in PICA, which can be seen in Figure 8. The uncertainty in the reported temperature is not known, therefore
no error bars are reported with the data traces.

The problem was run with several different assumptions which are outlined in Table 3. The surface boundary
condition for the one-dimensional simulation, case 1, was assumed to be the same as the stagnation point conditions
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Figure 8. PICA problem three-dimensional grid and thermocouple locations.

Table 2. PICA problem thermocouple locations.

Name Depth (cm) Radius (cm) Redundancy

TC1 0.381 0.0 1
TC2 0.762 0.0 2
TC3 1.143 0.0 1
TC4 1.524 0.0 1
TC5 2.286 0.0 2
TC6 3.048 0.0 3
TC7 2.286 2.54 2
TC8 2.286 3.81 2
TC9 2.286 4.45 2
TC10 3.048 4.45 6
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Table 3. PICA problem case matrix.

Case Dimensions Permeability Model

1 1D A
2 2D Axi A
3 2D Axi B
4 3D A

Table 4. PICA permeability models.

Model A Model B29

Through-the-Thickness In-Plane Through-the-Thickness In-Plane
β κo, m2 b, Pa κo, m2 b, Pa κo, m2 b, Pa κo, m2 b, Pa

0 1.0e-12 0 1.0e-12 0 13.3e-12 3.85e3 34.9e-12 2.09e3
1 1.0e-10 0 1.0e-10 0 38.1e-12 2.5e3 53.8e-12 1.87e3

for the multi-dimensional cases.
The permeability models are given in Table 4. Permeability model A was chosen so that all of the pyrolysis gases

would be pushed toward the surface while minimizing the flow through virgin PICA. The through-the-thickness and
in-plane models are assumed to be the same so there is no preferential direction for the gas to flow. Although this model
was chosen to make CHAR behave like legacy codes, lateral gas flow with respect to the surface cannot be completely
eliminated since there is a strong pressure gradient across the heated surface as shown in Figure 7. Permeability model
B was taken from a study done by Marschall.29

All four cases were run with the same time step scheme shown in Table 5, and the time step was assumed to
vary linearly between entries. The one-dimensional grid had 200 elements with a constant stretching ratio of 1.05.
The two-dimensional grid, which is comprised entirely of quadrilateral elements, can be seen in Figure 9. The three-
dimensional grid, which is made of all hexahedral elements with the exception of the prisms on the axis, can be seen
in Figure 8. The three-dimensional grid took advantage of symmetry to reduce computational time. The temperature
solutions were all shown to be spatially and temporally grid converged.

Table 5. PICA problem time step schedule.

Time (sec) Time Step (sec)

0.0 0.005
2.0 0.25

42.0 0.25
50.0 0.5
100.0 0.5

VIII.A. Numerical Results with Test Data

For all of the comparisons with test data, the CHAR solution from case 2 in Table 3 was used. It is important to point out
that the TC measurement and junction location uncertainties are not accounted for in the comparisons. Additionally,
the TC wires were not modeled in the simulation, and no contact resistance or thermal lag models were used in the
comparisons.

A comparison with centerline TCs 1, 2, 3, and 4 can be seen in Figure 10. During the heat pulse (0 − 42 sec),
CHAR’s agreement with the data is reasonable with the CHAR prediction being higher than the data except at early
times. The data for TC 1 stops around 27 sec because the TC has reached its calibration limit and starts to provide poor
data. For TC 2, the redundant measurements do not agree very well. While it can not be said for certain, it appears
that the lower trace may be from a faulty TC given that it is an outlier from the rest of the data set, and the trace
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Figure 9. PICA problem two-dimensional grid.

has significantly more noise than all the other TC traces. After the heat pulse, the CHAR results show a more rapid
cool-down than the data suggests. This could either be due to deficiencies in the model or poorly defined boundary
conditions during that phase of the test.

A comparison with TCs 5, 7, 8, and 9, which are all 2.286 cm deep, can be seen in Figure 11. Again, the agreement
is reasonable during the heat pulse but begins to worsen during the cool-down phase. It is evident from Figure 11 that
not all TCs were reporting the same temperature at time zero. Also, there is significant variability in the redundant
data. This could be due to condition variability, model fabrication differences, and variability in thermal properties
between samples. It is possible that there was an anomaly for the TC 9 trace that was initially near 400 K. Neither the
starting temperature nor the trend seem to be consistent with the rest of the data set.

A comparison with TCs 6 and 10, which are both 3.048 cm deep, can be seen in Figure 12. There is a wide
variation for the TC 10 data, including in the initial conditions, but the agreement is again reasonable. It is evident
from the TC 6 traces that there is an early temperature rise and plateau between 20 and 40 seconds that is not captured
in the model. This phenomenon has been seen in many PICA arcjet tests and is thought to be due to water phase
change, which is not being modeled in CHAR.

The measured surface recession at the centerline was 0.406 cm. It is not clear if this is taken from one specimen
or is an average of the three specimens. Also, the uncertainty on this measurement is not known. CHAR predicted a
centerline recession of 0.378 cm which is a 7% under-prediction.

Overall, the agreement with the data is reasonable but there is certainly room for improvement for the CHAR
PICA model. Given the assumptions that went into developing the boundary conditions and the wide variation in the
redundant TC data, the comparison is satisfactory, but it is recognized that forward work must be done to investigate
the validity of the PICA model for use in CHAR over a wider range of environmental conditions.

VIII.B. Dimensionality Effects

For cases 1, 2, and 4, where the only difference is the dimensionality of the problem, a comparison for centerline TCs
1-6 can be seen in Figure 13. Only the centerline TCs can be examined for this comparison since the one-dimensional
case cannot model the off-centerline TCs. The two- and three-dimensional solutions are coincident at all TC locations,
including those not shown in the plot. This is the expected result since the problem is axisymmetric and both cases
are grid converged. This confirms that the implementation of the axisymmetric and anisotropic conduction terms are
consistent between the two options in the code.

For the surface and all TC locations, the one-dimensional solution shows lower temperatures. Since the one-
dimensional assumption assumes an infinite planar slab in all directions, there is significantly more thermal mass to
absorb energy from the environment thereby decreasing the heat getting to the centerline TCs. Also since the one-
dimensional case only simulates the stagnation point, all of the pyrolysis gases getting to the surface are going through
the stagnation point. This will maximize the blowing reduction effects thereby decreasing the stagnation point heat
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Figure 10. Code-to-data comparison for TCs 1, 2, 3, and 4.
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Figure 11. Code-to-data comparison for TCs 5, 7, 8, and 9.
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Figure 12. Code-to-data comparison for TCs 6 and 10.
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Figure 13. One-, two-, and three-dimensional CHAR results for centerline TCs 1-6.

23 of 37

American Institute of Aeronautics and Astronautics



flux more than is seen in the multi-dimensional cases.

VIII.C. Permeability Modeling

A comparison of permeability models A and B in cases 2 and 3 respectively can be seen in Figures 14-16. Permeability
model B over-predicts the temperature results for model A at all TC locations except TCs 9 and 10, which are the two
TCs closest to the specimen sidewall. One difference between the permeability models is that model B is anisotropic
with a higher permeability in the in-plane direction than in the through-the-thickness direction. Therefore the pref-
erential direction for the pyrolysis gases to flow for model B is out the sidewall, which is also promoted by the low
sidewall pressure. Consequently, the blowing reduction in the stagnation region is much more significant for model
A resulting in lower stagnation point heat fluxes and lower in-depth temperatures relative to model B. The opposite is
true on the sidewall where model B will have a more significant blowing reduction.
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Figure 14. Permeability model comparison for TCs 1, 2, 3, and 4.

The pyrolysis gas mass flux solutions at 40 sec are shown in Figure 17. The mass flux direction is denoted by the
streamlines, and the magnitude is denoted by the contour level. The pink lines denote where the degree of char, β,
is between 0.02 and 0.98, which is a common way to define the pyrolysis zone. While the mass flow directions are
similar between the two models, it is evident that model A is focusing the bulk of the mass flow toward the surface
while not letting gas flow through the relatively impermeable virgin layer. For model B on the other hand, much of
the pyrolysis gas generated in the stagnation region is free to flow into the virgin material and eventually flows out the
sidewall. Consequently, the two models will predict different blowing reductions across the heated surface which is a
major contributor to the differences in the temperature field.

It is evident from this exercise that it is necessary to develop a PICA response model that is consistent with
the physical modeling assumptions in CHAR. Using a fabricated permeability model to mimic legacy code behavior
may provide a reasonable temperature solution, but the pressure and mass flux fields may be grossly mis-predicted.
Dedicated tests with both temperature and pressure instrumentation would be required to provide model development
and validation data for CHAR.
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Figure 15. Permeability model comparison for TCs 5, 7, 8, 9.
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Figure 16. Permeability model comparison for TCs 6 and 10.
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(a) Permeability model A

(b) Permeability model B

Figure 17. Mass flux solutions at 40 sec (pyrolysis zone, β = 0.02 and 0.98, highlighted in pink).
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VIII.D. With Contact Surfaces and Adaptive Mesh Refinement

In an attempt to demonstrate other functionality, case 2 will be repeated with the addition of contact interfaces em-
bedded in the mesh and adaptive mesh refinement (AMR). The contact interface modeling has been described in
Section VII.B, and the AMR functionality in CHAR is supplied by libMesh. Algorithm details and other appli-
cations are provided by Kirk.26 The AMR implementation in CHAR allows the user to refine and coarsen elements
based on error estimates or solution features. For this problem, feature based refinement was used. Elements would
be refined if β on any node was between ? and ?, and they would be candidates for coarsening if β on all nodes was
not between ? and ?. Elements were limited to one refinement, which implies that no element face would have more
than two elements as neighbors. AMR was allowed every ? timesteps, and only once within a given timestep. Within
a timestep, the logic flow is:

Iteratively converge nonlinear system→ Refine Mesh→ Iteratively converge nonlinear system on new mesh

The initial mesh for the problem can be seen in Figure 18a. Notice that there is a region of triangle elements that
are not aligned, node-for-node, with the surrounding quadrilateral mesh. Other than this section of triangle elements,
the mesh is identical to the case 2 quadrilateral mesh in Figure 9. The interface of the triangle and quadrilateral meshes
are modeled with perfect thermal and gas flow contact conditions. As mentioned in Section VII.B, there is a restriction
in CHAR such that the mesh motion DoFs on a contact boundary cannot depend on the mesh motion DoFs across
the contact boundary. Therefore, the contact boundaries must remain fixed during the solution process although the
material is ablating.

The thermocouple traces shown in Figure 19 indicate that the presence of the contact interfaces did not impact
the temperature field solution. While this does not verify the implementation, it does improve confidence in the
capability. Additionally, Figure 20 shows temperature (colors) and pressure (lines) contours at 50 sec, which indicate
smooth contour lines in both field variables across the interface boundaries. Figure 18 shows the progression of mesh
recession and adaptive mesh refinement throughout the solution. Figure 18c indicates that refinement occurred in both
quadrilateral and triangle elements. A closer look at the final mesh in the interface region can be seen in Figure 21
where the β = 0.02 and 0.98 contours are highlighted in white. It is evident that the adapted region is contained
between these two contours as expected.

IX. Thermoelastic Solver

CHAR has the ability to solve the linear thermoelastic equations in a one-way coupled quasi-steady fashion to give
the displacement, stress, and strain fields for a body under thermoelastic loading. The equations are linearized by
only considering the linear terms in the strain-displacement relationships and by assuming that the material properties
are not functions of the displacement. The thermoelastic equations are one-way coupled to the thermal and ablation
equations such that an instantaneous temperature field provided from the thermal and ablation solver is assumed to be
fixed during the thermoelastic solve. There is no feedback from the thermoelastic solver to the energy equation either
in the form of solid deformation or thermoelastic coupling terms in the energy equation. The thermoelastic solver can
be thought of as a post-processing of the thermal and ablation equations that can occur at a user-defined frequency.
In the current implementation, the pressure field within a decomposing ablator is not considered to contribute to
the thermoelastic response. It is recognized that this capability must be added to predict internal pressure induced
spallation or delamination.

The solution to the thermoelastic equations is quasi-steady in that the displacement field, u, is assumed to be static
at the end of each solve. This implies that

∂u

∂t
= 0 (71)

The physical assumption is that the material elastically responds quickly relative to changes in the temperature field.

IX.A. Governing Equations

The equations that govern the steady thermoelastic response of a solid under loading are

∇·σ̃ + f = 0 (72)
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(a) Initial Mesh (0 sec)

(b) Intermediate Mesh (20 sec)

(c) Final Mesh (100 sec)

Figure 18. Initial and final AMR mesh with contact surfaces.
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Figure 19. Case 2 temperature traces from baseline mesh and AMR mesh with contact interfaces.

Figure 20. Temperature (colors) and pressure (lines) at 50 sec (contact interface highlighted in white).
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Figure 21. Degree of char contours on final mesh 100 sec (β = 0.02 and 0.98 highlighted in white).

where σ̃ is the stress tensor, f is the body force per unit volume, and u is the unknown displacement field, which is
embedded in the definition of the stress tensor.

u =

u1

u2

u3

 (73)

The symmetric stress tensor is defined as

σ̃ =

σ11 σ12 σ13

· σ22 σ23

· · σ33

 =
[
σ1 σ2 σ3

]
(74)

where the diagonal terms are the normal stresses and the off-diagonal terms are the shear stresses. where

σd =

σ1d

σ2d

σ3d

 for d = 1, 2, 3 (75)

The linear elasticity equation for each dimension can now be written as

∇·σd + fd = 0 for d = 1, 2, 3 (76)

In order to derive the relationship between the stress and the displacements, it is necessary to recognize that the
orthogonal 123-coordinate system that the problem is solved in (denoted as the “problem coordinate system” from here
on) is in general not the same orthogonal 1′2′3′-coordinate system that the material properties are defined in (denoted
as the “material coordinate system” from here on). Any value, vector, or tensor followed by the prime symbol, ‘′’, will
be with respect to the material coordinate system, while any non-primed value, vector, or tensor will be with respect
to the problem coordinate system.
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In the material coordinate system, the stress is related to the strain via Hooke’s law for small deformations

σ̃′ = K̃
′

:
[
ε̃′ −∆T α̃′

]
(77)

where the strain, ε′, is also a symmetric tensor and is defined via the linear strain-displacement relationship

ε̃′ =
1

2

[
∇u′ + (∇u′)T

]
(78)

∆Tα′ are the thermal strains where

α̃′ =

α′1 0 0

· α′2 0

· · α′3

 (79)

and α′i are the coefficients of thermal expansion. K̃
′

is the fourth-order stiffness tensor containing the 81 elastic
coefficients, k′ijkl, which are properties of the material and are defined with respect to the material’s coordinate system.
Because of the linear assumption, the elastic coefficients are independent of the displacement, but they do vary with
temperature. Due to symmetry, there are only 21 independent elastic coefficients in the stiffness tensor. Consequently,
Voigt notation is often used to represent the stress and strain tensors to reduce the order of the problem.

σ′v =



σ′11

σ′22

σ′33

σ′23

σ′13

σ′12


, ε′v =



ε′11

ε′22

ε′33

2ε′23

2ε′13

2ε′12


,α′v =



α′1
α′2
α′3
0

0

0


(80)

and the stiffness tensor is simplified to

K̃
′
v =



k′1111 k′1122 k′1133 k′1123 k′1131 k′1112

k′2211 k′2222 k′2233 k′2223 k′2231 k′2212

k′3311 k′3322 k′3333 k′3323 k′3331 k′3312

k′2311 k′2322 k′2333 k′2323 k′2331 k′2312

k′3111 k′3122 k′3133 k′3123 k′3131 k′3112

k′1211 k′1222 k′1233 k′1223 k′1231 k′1212


=



K ′11 K ′12 K ′13 K ′14 K ′15 K ′16

· K ′22 K23 K24 K25 K26

· · K ′33 K ′34 K ′35 K ′36

· · · K ′44 K ′45 K ′46

· · · · K ′55 K ′56

· · · · · K ′66


(81)

where the subscript v is introduced to differentiate the reduced order in Voigt notation.

σ′v = K̃
′
v [ε′v −∆Tα′v] (82)

or 

σ′11

σ′22

σ′33

σ′23

σ13′

σ′12


=



K ′11 K ′12 K ′13 K ′14 K ′15 K ′16

· K ′22 K23 K24 K25 K26

· · K ′33 K ′34 K ′35 K ′36

· · · K ′44 K ′45 K ′46

· · · · K ′55 K ′56

· · · · · K ′66







ε′11

ε′22

ε′33

2ε′23

2ε′13

2ε′12


−∆T



α′1
α′2
α′3
0

0

0




(83)

The stress vector, σ′v , can now be used to fill out the stress tensor, σ′. Next, a rotation matrix,C, is required to get the
stress tensor from the material coordinate system to the problem coordinate system.

σ̃ = C̃
T
σ̃′C̃ (84)

In CHAR, the approach will be to use Eqns. (82) and (84) to define the stress tensor for integration of the PDEs.
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IX.B. Finite-Element Formulation

The Galerkin weak statement for the equations can be developed using Eqn. (76). The equation is multiplied by a
suitable test function, v, and integrated over the domain, Ω, while integrating the first term by parts to give the natural
boundary condition term. The weak statement is then: Find u ∈ H1 such that∫

Ω

∇v · σddΩ−
∫

Ω

vfddΩ−
∫

Γ

v (σd · n̂) dΓ = 0 ∀v ∈ H1
0 for d = 1, 2, 3 (85)

The finite-element approximation to Eqn. (85) can be reached by expanding the independent variables and test func-
tions in terms of a finite dimensional basis

(ud)h (x) =

N∑
j=1

(ud)j ψj (x) (86)

∇(ud)h (x) =

N∑
j=1

(ud)j∇ψj (x) (87)

vh (x) =

N∑
i=1

viψi (x) (88)

∇vh (x) =

N∑
i=1

vi∇ψi (x) (89)

where the subscript h is introduced to denote a finite dimensional approximation. Now, the unknowns are no longer
functions of x. Since the equation system should be satisfied for all combinations of nodal test function coefficients, vi,
their choice is arbitrary. Choosing a unique combination for each node allows for the development of a linear system
where the number of equations equals the number of unknowns. In typical finite-element fashion, the coefficients are
chosen to be vi = δil for the lth nodal equation. Consequently the nodal residual equations can now be written as∫

Ω

∇ψi · σddΩ−
∫

Ω

ψifddΩ−
∫

Γ

ψiTddΓ = 0 for d = 1, 2, 3 (90)

for i = 1,2,...,N . The surface traction is defined as

Td = σd · n̂ for d = 1, 2, 3 (91)

IX.C. Example Thermoelastic Problem: Bimetallic Strip

Bimetallic strips consist of two long, thin strips of differing metals bonded together. Since the two metals have
different coefficients of thermal expansion, thermal stresses will cause the strip to bend as the bimetallic strip heats up.
Bimetallic strips can be found in many devices such as clocks, thermostats, thermometers, lamp flashers, and time-
delay relays. The operation of a bimetallic strip can be simulated using the one-way coupled thermal and thermoelastic
solvers in CHAR.

Consider a bimetallic strip of two materials with identical thermal and elastic properties, but two different coef-
ficients of thermal expansion. Metal A is on the bottom half of the strip and metal B is on the top half. Each metal
half is 0.0005 m thick, 0.005 m wide, and 0.1 m long. The strip is cantilevered at one end and free to move elsewhere.
There is no external loading on the strip. However, there is a constant heat flux of 20 W/cm2 applied to the cantilevered
end. A schematic of the problem can be seen in Figure 22 and the problem parameters can be found in Table 6. The
solution to the problem at every second from 0 to 10 sec can be seen in Figure 23 where the displacement is multiplied
by 10 for visualization purposes. As expected, the strip bends towards material A so that the larger expansion can be
accommodated in material B.
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Material A

Material B

L = 0.1 m

b = 0.005 m

{2h = 0.001 m

Figure 22. Schematic of bimetallic strip geometry.

Table 6. Bimetallic strip problem parameters.

E = 200 GPa

ν = 0.3

αA = 1× 10−5 m/m·K

αB = 2× 10−5 m/m·K

L = 0.1 m

b = 0.005 m

h = 0.0005 m

Q̇ = 2× 106 W/m3

C = 500 J/kg·K

k = 100 W/m·K

ρ = 1000 kg/m3

To = 300 K
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Figure 23. Solution to the bimetallic strip example problem (10× displacement shown).

X. Conclusions and Ongoing Development Efforts

The CHAR code has been developed to perform engineering design analysis of ablative TPS systems in one, two,
and three dimensions. The physical models are at the macroscale level, which enables analysis of complete systems,
but lacks the fidelity of micro and multi-scale modeling approaches. It is expected that higher fidelity models, such as
those implemented in PATO,1 can be used to identify relevant physics and develop appropriate macroscale models to
be implemented in CHAR.

Model equations and demonstration cases have been presented for many of the physical models implemented in
CHAR including porous flow, thermochemical ablation, contact modeling, mesh motion, adaptive mesh refinement,
and thermoelasticity. While comparisons to data are presented, additional work must be done to fully validate CHAR
for the broad class of charring ablation problems it is intended to solve.

Ongoing development efforts are intended to increase the modeling fidelity and improve the usability of the code.
This includes

• Water phase change and transport modeling: This capability is necessary to model the phenomenon shown in
Figure 12.

• Unsteady porous flow momentum equations: Implementation of unsteady porous flow momentum equations
described by Weng9 will allow for assessment of accuracy of assuming steady form of Darcy’s law, which was
done in this work. While solving the unsteady porous flow equations will likely be more accurate, using the
steady form of Darcy’s law is desirable since it reduces the coupled PDE count thereby reducing computational
expense.

• Thermal non-equilibrium between solid and gas: Thermal non-equilibrium effects between the solid and gas
could significantly impact the prediction of critical system performance such as substructure temperatures. Ad-
dition of separate solid and gas energy equations with an appropriate exchange term would be necessary to
model this phenomenon. While implementation of such a modeling approach is feasible, it is not yet understood
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how the modeling parameters would be informed, what the proper boundary conditions would be, and how
model validation would be achieved.

• Chemical non-equilibrium modeling: The in-depth equilibrium of pyrolysis gases is likely not an appropriate
assumption for all materials over all temperature and pressure regimes. Conservation equations for each gas
species must be implemented with appropriate source terms to account for chemical reactions. Like the ther-
mal non-equilibrium modeling, the chemical non-equilibrium modeling has similar challenges with informing
modeling parameters and validating the model. This capability is also necessary for proper modeling of water
transport.

• Mesh motion improvements: A robust and general mesh motion scheme is desired for the broad array of an-
ticipated mesh topologies and deformations. Current effort is focused on the implementation of the boundary
conditions developed by Droba.17 Additionally, the development team intends to explore other PDE based meth-
ods for mesh motion and smoothing such as solving the bi-harmonic equation. Finally, other non-PDE based
methods, such as the one presented by Luke et al.,41 will also be investigated for speed and mesh quality under
large deformations.

• Improving robustness of thermoelastic solver: Currently, the thermoelastic solver has only been used by the
development team, and additional work is necessary to improve speed, robustness, and usability. Most notably,
it has been observed that achieving converged linear system solutions is highly dependent on the choice of
iterative linear system solver and preconditioning choices. Additionally, a wider variety of boundary conditions
should be implemented before making this a production capability.

• Optimization: Since CHAR is intended to be used for production design work, it is beneficial to reduce com-
putational expense as much as possible. To this point, minimal effort has been put into code optimization as
the bulk of the development effort has focused on implementing and verifying new physical modeling capa-
bilities. CHAR would greatly benefit from a thorough profiling effort to identify bottlenecks. Additionally, as
larger problems are starting to be solved, memory management is becoming an issue. Effort should be put into
reducing the memory footprint of the code.
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38 J. A. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen,
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