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Visualization of the flow field around a generic re-entry capsule in subsonic flow and shock wave 

visualization with cylindrical explosives have been conducted to demonstrate sensitivity and 

applicability of background-oriented schlieren (BOS) for field experiments. The wind tunnel 

experiment suggests that BOS with a fine-pixel imaging device has a density change detection 

sensitivity on the order of 10-5  in subsonic flow. In a laboratory setup, the structure of the shock 

waves generated by explosives have been successfully reconstructed by a computed tomography 

method combined with BOS. 

I. Introduction 

Environmental aerodynamic phenomena including sonic boom and wake turbulence are high-speed expanding 

phenomena which require observation with large fields of view. Researchers have investigated these phenomena with 

scale-model experiments in laboratories. Model experiments can simulate some Reynolds-number dominated 

phenomena while others require the use of large scales to capture the physics of interest. The best way to solve these 

problems is to measure real-scale phenomena in the field. 

Several flow visualization methods based on shadowgraph and schlieren have been developed for large-scale 

experiments including explosions or free flight of high-speed projectiles. Most of these methods are only able to 

visualize the shape of the shock front. Theoretically, quantitative visualization including interferometry would be 

possible to carry out in the field. But practically, it is difficult to obtain high-quality interferograms because of strong 

environmental disturbances including weather, vibrations and background interference. 

Background-oriented schlieren (BOS) has been proposed by Raffel1  and been applied for fluid measurements2-12  

for a decade. The BOS technique uses a background with a randomized pattern and a camera with an imaging lens to 

visualize the phase object (density disturbance) in front of the background. BOS has two steps: the first is to record a 

reference image of the background without the density disturbance, the second step is to acquire an image with the 

density disturbance present. The images are compared using a digital post-processing technique to determine 

distribution of displacement of the background pattern due to the presence of the phase object. The digital image 

analysis is based on a cross-correlation analysis similar to that used in particle image velocimetry (PIV). In the case 

of a two-dimensional or axisymmetric phenomena, the displacement of the background is directly related to the 

derivative of the density profile of the phenomena in test section. Therefore, BOS has the potential to detect density 
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profiles of large-scale aerodynamic phenomena propagating at high-speed in the field without the use of lasers or 

sophisticated optical setups such as interferometers which need fine optical alignment. 

In this paper, two kinds of aerodynamic phenomena are visualized by BOS to demonstrate the sensitivity and 

applicability for field experiments. The shear layer around a generic re-entry capsule model in subsonic flow was 

conducted to confirm the sensitivity of BOS for a small subsonic wind tunnel test and applications for flight tests. 

Shock waves generated by explosives with a cylindrical shape were also conducted to explore applicability of BOS 

for computed-tomography. 

II. Background-Oriented Schlieren 

 

Background-Oriented Schlieren (BOS) has been used to visualize the flow density changes for over a decade.1-11 

Its principle of operation is simple and the method is relatively easy to implement with  commercial-off-the-shelf 

equipment. From an optics viewpoint, the BOS method is a white-light speckle photography method that is similar to 

the laser-speckle method, except that a light source is used instead of a laser. However, from the image-processing 

viewpoint, the BOS technique uses an image processing method similar to particle image velocimetry (PIV). A 

significant difference between BOS and PIV is that PIV uses micro-particles, such as oil mist or dust moving with the 

air, to detect flow. Conversely, the BOS method uses a static background pattern (including random dots) on the other 

side of the flow from the camera to detect density variations in the air. Minute shifts in the background pattern, due to 

the density changes in the air, are detected. Thus there is no need to seed the flow with particles. 

Another advantage of the BOS method is its unlimited field of view and, consequently, its capacity to monitor 

objects of unlimited size. Because of the typically conical viewing field of the camera used, the size of any phase 

object can be matched by changing the distance from the object and the focal length of the camera lens. On the other 

hand, the conical shape of the projection and different sensitivities of the spatially distributed schlieren necessitate 

certain correction and calibration procedures. An additional difficulty is the need to focus the background and the 

object simultaneously. This configuration is achieved by using a small aperture on the camera lens and a short distance 

between the background and density disturbance, or by using  telecentric lenses.  Such small apertures require intense 

illumination.  The optimal sensitivity and resolution of the setup are achieved when the background structure has a 

texture approximately  two or three times larger than, the camera resolution.  

 

 
Figure 1. Principle of Background-Oriented Schlieren. 

 

Since the refraction of a single beam contains information about the spatial gradient of the refractive index 

integrated along the axial path, the image refraction angle  is defined as13 : 

 

ε=
1

n0

∫
δn

δy
dZ

ZD+ΔZD

ZD-ΔZD

                                                                                    (1) 

with the assumption that the half-width of the region of the density gradient ZD << ZD. Further, it is seen from the 

geometry (see Fig. 1) that the virtual image displacement is related to the image displacement by the lens distance 
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from the background, ZB, and the image distance from the lens, Zi , which, for large ZB, can be replaced by the focal 

length, f, of the lens: 
ΔY

ZB

=
Δy

Zi

=
Δy

𝑓
                                                                                         (2) 

For small deflection angles, ε can be approximated as 

Δy = ZDM 𝜀                                                                                            (3) 

where M = Zi /ZB = f/ZB. Hence, 

 ε =
ZBΔy

ZD𝑓
                                                                                               (4) 

 

The magnitude of the background displacement on the obtained image of the density disturbance (for example, a 

shockwave) was provided by an image matching algorithm based on the cross-correlation function between the target 

image and the reference image. After determining the background displacement on imaging device y, the refraction 

angle ε of the light passing through interested phenomenon is determined by equation (3).   

 

III. Experimental setup and Result 

A. Subsonic Wind Tunnel Experiment 

A capsule model mounted on a sting with an angle of attack at 28 degrees was studied. Figure 2 shows the 

dimensions of  the 4” (101.6 mm) diameter model. The model was installed with the sting horizontal in the test section 

of the subsonic wind tunnel. The wind tunnel has an octagonal cross section with an inner diameter of approximately 

13". Velocities of the main flow were measured with a pitot probe and converted to Mach number. Conditions with 

Mach  0.20, 0.30, and 0.40 were used. 

  

 
(a) Side view             (b) Bottom (Heat shield) –side surface 

Figure 2. The generic entry capsule model examined in 13” subsonic wind tunnel. 

 

Figure 3 shows the experimental setup. A random-dot pattern was used as a background, where the diameter and 

ratio of the black area to the white one was 0.20 mm and 20%, respectively. Reference images, wind-off images, and 

test images (wind-on) were recorded with the same industrial video camera (Teledyne Dalsa Falcon 2) for one-

dimensional density measurements. Flow field images were recorded for one second at a framing rate of 50 Hz and 

an exposure time of 20 ms for each shot. Background displacement caused by the flow around the model was 

determined by a cross-correlation analysis with the reference image. In this experiment, the distances from the 

background to the center of the wind tunnel, ZB, and to the camera lens, ZD, were 150 mm and 835 mm. The focal 

length of the camera lens was 100 mm, and F-number F/22 was chosen. 
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Figure 3. Schematic diagram of visualization setup of BOS for 13” subsonic wind tunnel. 

 

Figure 4 shows maps of background displacement induced by the flow around the capsule model at flow Mach 

number 0.20, 0.30, and 0.40. The upper row of images represents horizontal pixel displacement toward the right-hand-

side and the lower row shows vertical pixel displacement. The colors in the figures indicate background displacement 

in pixels  ranging from -0.5 (blue) to +0.5 (red). In this experiment, negative values of displacement indicate a positive 

density gradient. On both displacement maps the shear layer, which was emerging from the shoulder of the heat-shield 

and the back shell of the capsule model toward the downstream, clearly appears in flows with Mach numbers higher 

than M = 0.3.  Also, in front of the capsule model, the expansion region, where the flow was accelerated whilst turning 

the shoulder from the heat shield to the main flow, is clearly visible. The strength of the expansion region gradually 

increased in both directions. In Fig. 7, the thickness of the shear layer does not represent the actual thickness because 

of integrated displacement along the line of sight. The actual shear layer around the capsule model is expected to have 

oscillation and curvature so that the visualized image shows a thicker shear layer in Fig. 4, which is a consequence of 

time-integrated blurring. Generally speaking, at lower Mach number, the oscillation amplitude should be larger than 

that at higher Mach number because of the decreasing oscillation frequency. Therefore, the shear layer in Fig. 4a has 

a weaker and broader appearance than that in Figs. 4b and c.  There is a difference in background color across the 

upper row of Fig. 4a and b. Theoretically, there should be no displacement in the main flow which would have uniform 

density distribution. This difference is either the result of an irregular or uniform (DC) background pattern offset 

caused by unintended movement of the background between runs. Based on the fact that background shift has appeared 

just in the x-direction between flows at Mach 0.20 and 0.30, some of disturbances originally given by fluid phenomena 

or the facility have been suspected, but remained unexplained. 

 

 
Figure 4. Maps of background displacement on flow Mach numbers ranging from 0.20 to 0.40. 
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Under the assumption of two-dimensional flow over the measured region, the relative-density difference that was 

induced by the flow around the capsule model was estimated. Figure 5 shows a horizontal and vertical density change 

profile across the flow around the capsule model at Mach number 0.4. Figures 5b and 5c show the relative-density-

difference profile based on displacement of the background along the broken line X-X' and Y-Y' in Fig.5a. Black dots 

indicate the density profile is determined by the percentage of atmospheric density on the day of the measurement, 

1.258 kg/m3. The origin of broken lines is at the left-end and the top for X-X' and Y-Y', respectively. Figure 5b shows 

that a density decrease of about 0.04% from main flow was induced across the shear layer emanating from the shoulder. 

Figure 5c shows that, in the expansion region in front of the capsule model, a density decrease of about 0.04% was 

induced. 

 

 
                         (a) Examined lines                    (b) Along the line X-X’            (c) Along the line Y-Y’   

Figure 5. Density profile across the flow field. 

 

 

Figure 6 shows the density field around the capsule model from the CFD simulation, along with two BOS windows 

superimposed on the image.  The contour lines represent the computed result and the pixel pattern represents the BOS 

results. In region "A", the shear layer separating from near the maximum diameter of the capsule is clearly visualized 

by the BOS technique, and qualitatively matches the computational result . Similarly, a small expansion region just 

upstream of the separation is captured, which also agrees with the computational result. In region "B", the large 

expansion region developing in front of the heat shield, is clearly visualized with color contour.  The shear layer 

emanating from the marginal region of the heat shield and the side surface is also captured. 
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( a )  

             
( b )                                                                                  ( c )  

Figure 6. Comparisons of BOS result with numerical result around the model. a, Superimposed BOS results on 

the computational result (Global flow field); the BOS results represent background displacement while the 

computational result density ; b,  magnification of Region “A”; c, magnification of Region “B”. 

 

B. The  structure of shock waves generated by explosion 

Theoretically speaking, shockwaves generated by the instantaneous release of energy in a finite volume has a 

simple structure which includes spherical shock waves, a so called “negative pressure” region (indicating a relatively 

low pressure region), and a secondary shock. The incident shock with spherical shape must appear after the release of 

energy. In the case of using a cylindrical explosive as an energy source to generate the shock wave, however, a 

distorted shape like a pear will appear because of a strongly oriented combustion jet that propagates from the surface 

attached to a detonator along the axis of the cylindrical explosive. Therefore, the shock waves generated by pellet-

type explosives have non-axisymmetric structure in the early stages of the explosion. After a while, the distorted shape 

at early stage will be changed to a spherical shape as it propagates over a long distance.  

Figure 7 shows schematic diagrams and installation configurations of an asymmetric shock waves being visualized 

with computed tomography based on BOS. Shock waves, which were generated by small cylindrical explosives, a 

PETN-pellet with mass of 2-grams (10-mm diameter, 15-mm long), have been visualized by computed tomography 

based on BOS, herein called CT-BOS. The PETN pellet was ignited with a detonator in the test chamber which has 

three windows with 30-degree intervals. From each window, a high-speed camera with an imaging lens recorded the 

propagation of shock waves at 100,000 frames-per-second. The size of the images is 320 by 320 pixels. The high-

speed cameras were synchronized to obtain an image sequence from each of the three viewing angles simultaneously. 

The PETN pellet was installed at the center of the test chamber by attaching a thin, but strong, nylon string under 

tension. To reconstruct the shock structure, images were recorded from twelve perspectives by rotating the imaging 

system 3 additional times by 90-degrees.  
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    ( a ) High-speed camera layout (top view)                         ( b ) Installation of PETN in the test chamber (side view) 

 

  
( c ) Outside of the test chamber                                                ( d ) Inside of the test chamber 

Figure 7. Schematic diagram of visualization setup of BOS for measuring shock wave structure. 
 

Figure 8 shows the BOS visualization of the shock waves generated by ignition of a PETN pellet. Figure 8a depicts 

the viewing direction  of each of the images from twelve directions that have been recorded;  only four of the 

visualizations are shown here. On each figure, the background displacement is shown on the left-hand side, and raw 

images are shown on the right.  

In Fig. 8b, the image obtained from =  0 degrees is shown.  From this direction, a spherical shock front appears 

because the line-of-sight visualization and the axis of PETN pellet attached to the detonator are coincident.  Distorted 

(non-spherical) shocks are propagating toward and away from  the observer. In the center of the spherical shock, a 

relatively dense area is observed where the combustion gas (inside the broken white circle) generated by the explosion 

of PETN further disturbs the light passing through the shock waves. 

Fig. 8c shows the image obtained from   = 90 degrees. From this direction, a strongly distorted shock wave shape 

is observed. The PETN pellet was ignited by the detonator from the left-hand side of this image. The detonation wave, 

which consists of shock waves and combustion waves, propagated from the left side to the right along the pellet’s axis. 

Finally, the detonation wave arrived at the other end of the pellet. At the other side, the propagating detonation wave 

passed into the air and simultaneously reflected toward the pellet. The reflected wave, which is called an expansion 

wave, induced negative pressure (vacuum) in the region closest to the pellet. The negative pressure region induced at 

the opposite surface generates a strong jet which consisted of combustion gas ejected toward the air along the axis. 

This jet compressed the air to produce a strongly distorted shock wave which propagates to the right-hand side of Fig. 

8c. 



8 

American Institute of Aeronautics and Astronautics 
 

 

Fig. 8d shows the image obtained from  =180 degrees which is similar to Fig. 8b except that  the ignited surface 

is at the opposite end away from the observer. Finally, Fig. 8e shows the image obtained from  =270 degrees. From 

this view, the ignited surface is at the right-hand side of the observer. 

 

 

 

( a ) Visualization direction  

   

( b ) =   0 deg.                                                                    ( c ) =  90 deg. 

   
( d ) = 180 deg.                                                                    ( e ) = 270 deg. 

Figure 8. Analyzed BOS images of explosion with a PETN-pellet from four of twelve directions at 100 s after 

ignition; left of ( b ), ( c ), ( d ), and ( e ), BOS result; right of them, recorded image; SF, shock front. 
 

Figure 9 shows the characteristics of shock front propagation induced by the explosion of the PETN-pellet. The 

horizontal and vertical distance from the origin of the explosion, which is indicated in Fig. 8c, are plotted in Fig. 9a. 

In Fig. 9a, the legend X indicates the horizontal direction, and Y the vertical. The subscripts, left/right, and up/down 

indicate the propagation direction of shock front in each direction. The right bound Xright had the fastest propagation 

velocity among the directions because the combustion gas jet accelerated the shock front while the left bound Xleft has 

the lowest velocity. In contrast, both Yup and Ydown had similar velocities because of symmetry. The shock front rapidly 

expanded in all directions until about 100 s after ignition and then gradually decreased its velocity. From about 200 

s after ignition, the shock front propagated in all directions at the speed of sound, about 340 m/s which is equivalent 

to 0.034 in Fig. 9b. 



9 

American Institute of Aeronautics and Astronautics 
 

 

 
( a ) Propagation of the shock front.                              ( b ) Expansion rate of the shock front.  

Figure 9. Characteristics of shock wave propagation generated by explosion of a PETN-pellet. 

 

Figure 10 shows reconstructed density field inside the shock front by CT-BOS from 50 to 150 s after ignition. 

The density field was reconstructed using the algebraic-reconstruction technique (ART)14 , which is widely used for 

computed tomography in medical image analysis.15 . CT-BOS successfully reconstructed the shock-wave structure 

including the shock front, SF, the combustion gas, CG, and secondary shock, SS. In this experiment, the combustion 

gas did not allow the background to be seen so that no data were obtained in that region. 

 

 
( a ) t = t0 +  50 s                        ( b ) t = t0 + 100 s                            ( c ) t = t0 + 150 s 

Figure 10. Background displacement of CT-BOS image of inside the shock front generated by a PETN-pellet 

ignition. SF, shock front; CG, combustion gas; SS, secondary shock. 

 

V. Conclusion 

 

The background-oriented schlieren (BOS) method was used to visualize the separated flow on the wake of a 

capsule entry vehicle at low subsonic speed. The flow field around the capsule model was examined in the test section 

of a subsonic wind tunnel with flow speed ranging from Mach 0.20, 0.30, and 0.40. Both the shear layer emanating 

from edge of the model and the expansion region in front of the capsule model were clearly visualized by BOS.  The 

shape of these flow structures in the computational simulation agreed qualitatively with measurements at Mach 0.40. 

This experimental result suggests that BOS has the sensitivity for measuring density variations on the order of 10-5 in 

subsonic flow. This result shows that BOS has the capability of qualitative, and potentially quantitative, visualization 
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for complicated subsonic flows without the need for particle seeding, toxic gas seeding, or complicated and expensive 

laser technology.  

The BOS technique was also used to reconstruct the structure of propagating shock waves generated by the ignition 

of a PETN-pellet with mass of 2-grams. From twelve directions, images of the propagating shock waves were recorded 

by high-speed video cameras. The images were reconstructed by the computed-tomography, algebraic- reconstruction 

technique (ART) which is widely used in the medical field. The structure of the resulting shock waves were visualized, 

including the shock front, the secondary shock, and the combustion gas.  
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