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Firing Room Remote Application Software Development 

Janette Garcia1  
NASA Kennedy Space Center (KSC), Merritt Island, Florida, 32899  

ABSTRACT 

The National Aeronautics and Space Administration (NASA) is creating a way to send 
humans beyond low Earth orbit, and later to Mars. Kennedy Space Center (KSC) is 

working to make this possible by developing a Spaceport Command and Control System 
(SCCS) which will allow the launch of Space Launch System (SLS). This paper's focus is 
on the work perform by the author in her first and second part of the internship as remote 

application software developer. During the first part of her internship, the author worked 
on the SCCS’s software application layer by assisting multiple ground subsystems teams 
including Launch Accessories (LACC) and Environmental Control System (ECS) on the 

design, development, integration, and testing of remote control software applications. 
Then, on the second part of the internship, the author worked on the development of robot 

software at the Swamp Works Laboratory which is a research and technology development 
group which focuses on inventing new technology to help future In-Situ Resource 
Utilization (ISRU) missions.  

Nomenclature 

ACL = Application Control Language 
COTS  = Commercial off the Shelf Software 

CUI  = Compact Unique Identifier 
ECS = Environmental Control System 
GHe = Gaseous Helium 

GSDO  = Ground Systems Development & Operations 
GSE = Ground Support Equipment 
GN2 = Gaseous Nitrogen 

IDE = Integrated Development Environment 
ILOA = Integrated Launch Operations Applications 

KSC  = Kennedy Space Center 
LACC = Launch Accessories 
LCC   = Launch Control Center 

LCS = Launch Control System 
NASA = National Aeronautics and Space Administration 
SCCS = Spaceport Command and Control System 

SLS  = Space Launch System 
SRDS = Software Requirements and Design Specification 

TD   = Test Driver 
VM           = Virtual Machine 
GUI =  Graphical User Interface 

ML  = Mobile Launcher 
PLC   = Programmable Logic Controller 
ICPS = Interim Cryogenic Propulsion Stage 

                                                             
1 Remote Application Software Development, NASA NE-ES, Kennedy Space Center, The University of Texas – Rio 

Grande Valley. 
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I. Introduction 

     The author’s1 work in her second-term internship consisted in developing software for the Spaceport Command 
and Control System’s (SCCS’s) software application layer for the first part of her internship. The significance of this 

software is that it monitors and controls local hardware that is used to be able to launch SLS rocket to space. In order 
to accomplish her work, the author1 was required to complete multiple steps including technical training, 
demonstrating technical skills, and assisting LACC, and ECS ground subsystems by meeting their milestones in the 

software development lifecycle. Specifically, the author1 developed software applications (test scripts) in order for 
NASA engineers to spend less time in the testing phase of remote control graphical user interfaces (GUIs) also referred 

as remote control displays. The author1 also developed multiple displays which will help monitor, and control the 
measurement on the mobile launcher (ML). After that, she developed a display for the Interim Cryogenic Propulsion 
Stage (ICPS) which is a significant part of NASA’s new Space Launch System (SLS) rocket. After that, the author1 

developed another remote control display which will provide power to the ECS instrumentation located on the ML.  
  
 The first part of this report explains the objectives for the first part of the internship. Then, a technical approach is 

describe in order to accomplish the author’s1 objectives. After that, a brief description of the architecture of command 
and control system is presented. The next section is about the software developed by the author1 during her two-month 

period for the first part of the internship. This last section focuses on the development of Mobile Launcher (ML) 
Distributer Power, Vehicle Assembly Building (VAB) ML Measurements, and Interim Cryogenic Propulsion Stage 
(ICPS) remote control graphical user interfaces (GUIs). It also talks about the development of Application Control 

Language (ACL) software applications (test scripts) to perform automated testing on the Tail Service Mast Umbilical 
(TSMU) and ML remote/local control user-interfaces.  

II. Objectives  

 The objective for the first part of the internship was to develop remote control software applications in order to 

remotely control the local hardware used to launch rockets into space. Another objective is  to perform automated 
testing on displays in order to reduce the time spent on their testing phase. Another objective is the documentation of 

software, and to make it accessible to the author’s ground subsystem teams  in order for them to re-utilize the code to 
perform future automated tests . 

III. Technical Approach 

 The technical approach taken to reach the objectives was that of understanding each of the software development 

lifecycle phases that each ground subsystem team follows, and to requested and set up the information technology 
(IT) accounts that are required to support subsystem applications and displays such as ILOA Share Drive Access, 
Enhanced ICE Account, KDDMS Account, LCSDEV Domain Account, X-Win32 Account, Admin Rights, 

ClearQuest Account, AccuRev Account, and VEMS. The author1 learned about the software development lifecycle 
phases from the Integrated Launch Operations Applications (ILOA) training provided by her mentor, and throughout 

her internship. She also learned about the implementation of remote applications using Application Control Language 
(ACL), a custom language created by KSC Application Services and Framework (ASF) team. This language provides 
an extension to C++ that allows the developers to focus on the application logic required to perform operations, and 

for executing sequences and rules within a Launch Control System (LCS) set. Control software applications were 
created in a Netbeans integrated development environment (IDE) in a Linux virtual machine (VM).  The author1 used 
Display Editor (DE) to develop user-friendly interfaces to allow NASA engineers at the Launch Control Center (LCC) 

to remotely control equipment out in the field. Without any of this software, the control of ground equipment such as 
valves, pumps, and motors can only be controlled manually. To make the code available to her team, the author1 

promoted the software into AccuRev, a configuration management program used by the SCCS team. In order to 
promote the code into AccuRev, the author1 had to create multiple work orders (WO) in ClearQuest.  

IV. Architecture  

 Learning about the command and control system high level architecture was important in order for the author1 to 

complete her work. The way this works is that end items which are pumps, valves, motors, and power supplies publish 
their data on an industrial controller which is located in the field. This industrial controller is also known as  a 
programmable logic controller (PLC). When the PLC receives the data, it then publishes it to a network where it is 
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received by the ground support equipment (GSE) gateway; that GSE gateway publishes the data over a message bus 
for any participant in the Launch Control System (LCS) to obtain. Therefore, the path of measurements go from end-

items (hardware) to the PLC, then transfer to the GSE gateway, then to a message bus, and finally obtained by a user-
interface or an application running in the application server.  
 

 The opposite process happens when commands are sent from the launch control center (LCC) to perform a task 
on a specific hardware component, or end-item. Commands are sent through the user interface, then they are published 

on the message bus, after which the GSE gateway acquires those commands, which publishes them to the appropiate 
PLC; the PLC then sends the command directly to the end-items. Finally, the specified task stated by the command is 
performed on the hardware component.  

 
 
 

 
 

 
 
 

 
 
 

 
 

 
 
 

 
 
 

V.  Software Applications Developed 
 

A. Skills Demonstrations 
 

       The remote control display as illustrated 
in Figure 2.  was developed using Display 
Editor (DE) on a Linux Virtual Machine 

(VM). It consisted of at least one of each of 
the 4 different widgets, and a background 

image. The display also contained multiple 
text measurement widgets, which included 
one analog/float measurement formatted to 

show at least 2 decimal places and an 
enumerated string type measurement 
showing the text of the value. It was tested 

using the Display Test Driver (TD).  

 
 

 
 

 
B. Remote Control Graphical User Interfaces (GUIs)  
 

 1. Interim Cryogenic Propulsion Stage (ICPS) G12 Remote Control GUI 
 

 Figure 2. Demo Remote Control Graphical User Interface - Display 

 Figure. 1. Command and Control System High Level Architecture 
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 The Interim Cryogenic Propulsion Stage (ICPS) is a significant part of the of NASA’s new SLS rocket ; it lies 
below the Orion capsule, at the top of the SLS rocket. It is a liquid oxygen/liquid hydrogen-based system. On the first 

test mission of Orion and SLS called Exploration Mission-1, the ICPS will give Orion the big push needed to fly 
beyond the moon before the spacecraft returns to Earth. The LC-39 Pad Environmental Control System (ECS) requires 
the ability to remotely control the ICPS gaseous nitrogen purge panels located on the ML. The purge panels provide 

a heated nitrogen purge to components within the SLS core stage. The remote control of this equipment is 
accomplished through the LCS using the ICPS remote control GUI that the author1 created in a customized Display 

Editor (DE) as shown in Figure 4. This user-interface will send commands and receive data from the Pad ECS console 
operators to monitor and control the ICPS purge from the launch control center (LCC) in Firing Room 1. 
Understanding the ground integrated schematic created by NASA electrical engineers, and referring to the appropriate 

Software Requirements and Design Specification (SRDS) was essential for the author1 to develop the remote control 
user-interface as shown in Figure 3. 

 

 

 

 

 

 
 

 

 

 

 
 

 
 

 
 
 

 
 
 

 
 

 
 
 

 
 
 

 
 

 
 
 

2. VAB ML Measurements Remote Control GUI 
 

The Vehicle Assembly Building (VAB) ML Interface Measurements Remote Control GUI was developed by the 
author1 to allow the ECS Engineer to monitor all interface measurements on the ML. These measurements consist of 

System A and System B redundant measurements for duct temperature, duct pressure, and a calculated air humidity 
ratio based on relative humidity measurements. It will also provide the engineer with the ML elevation and PPU 
number that is providing air to the specific ML duct. The user-interface is also selectively colored to aid in 

identification of purge circuits, which are common to one of the three PPUs as shown in Figure 5. The SRDS, and a 
customized Display Editor (DE) were used by the author1 to create the remote control user-friendly interface. Similar 

Figure 4. Interim Cryogenic Propulsion Stage (ICPS) Remote 

 Figure 3. Interim Cryogenic Propulsion Stage (ICPS) ground integrated schematic 
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to the previous GUI, each command button was set to a specific compact unique identifier (CUI). ), which are utilized 
to control a specific piece of equipment out in the field that is essential for the launching of rockets to space.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. PAD ECS ML Remote Distributer Power Remote Control GUI 
 

The PAD ECS ML Remote Distributer GUI as illustrated in Figure 6. is made up of approximately 16 end item 
measurements and 50 commands. This user-friendly interface was created to provide power to the Environmental 
Control System (ECS) instrumentation located on the ML. It will allow the NASA engineers to power off primary and 

secondary electrical busses within the remote distributor, as well as to monitor the Ground Special Power (GSP) 
voltage and amperage measurements of the main power feeds. The Software Requirements and Design Specification 
(SRDS) and a customized a Display Editor (DE) were used to create the GUI. Each command button was then set to 

a specific Compact Unique Identifier (CUI).  

 

 
 

Figure 5. VAB ML Interface Measurements 

Figure 6. ECS ML Remote Distributer Power 
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C. Remote Control Software Applications To Perform Automated Testing 
 

4.  Remote Control Application for Tail Service Mast Umbilical (TSMU) Remote Control GUI 
 

 ACL software applications in a form of test script were developed by the author1 to perform automated testing on 
the Tail Service Mast Umbilical (TSMU) remote control GUI. This test script verified approximately 291 CUIs that 

consisted of command buttons, indicators, and feedback commands  for the (TSMU) remote control display. 
Performing manual testing on the TSMU remote control user-interface takes approximately 4 minutes for each 
command button, which adds up to 19.4 hours of testing. While manual testing takes 19.4 hours, automated testing 

takes approximately 8 minutes. Hence, performing automated testing reduces the time spent on the testing phase of 
the software development lifecycle. Other test scripts were also developed for the previous remote control GUIs  as 

well as for the local versions. The author1 promoted the scripts into AccuRev for her team to access them. She also 
created work orders (WO) on ClearQuest in order to be able to promote the code into the appropriate AccuRev 
repository of her ground subsystem team.  

 
 
 

 
 

 
 
 

 
 
 

 
 

 
 
 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 7. Tail Service Mast Umbilical (TSMU) 
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Robot Software Development 
 

Janette Garcia1 
NASA Kennedy Space Center (KSC), Merritt Island, Florida, 32899  

 

Nomenclature  

ISRU   =   In-Situ Resource Utilization 
ROS    =   Robot Operating System 

RASSOR 2.0   =   Regolith Advanced Surface Systems Robot  
Swarmies   =   Small robots that perform ant behaviors 

Gazebo    =   Robotic simulator  
Swarmathon  =   Collegiate competition to develop robotics that aid in space exploration 
Algorithm  =   Set of operation to be performed to solve a specific problem 

GA           =   Genetic Algorithm 

II. Introduction 

      The second part of the internship started on March 14th, 2016 and will last until May 6th, 2016. The author’s1 work 
consisted of robot software development at the KSC Swamp Works laboratory. The Swamp Works laboratory is a 

research and technology development group which focuses on inventing new technology to help future In-Situ 
Resource Utilization (ISRU) missions. Such technologies include Regolith Advanced Surface System Robot 

(RASSOR 2.0), a mining robot whose mission is to be a cargo delivery to Mars to prove In-Situ Resource Utilization 
(ISRU) capabilities4. Another technology is the creation of small autonomous robots referred as Swarmies which are 
a ground based research for ISRU missions5. During her three weeks of work at Swamp Works laboratory, the author1 

managed to teach herself about the robotic software that is utilized for both  technologies. Moreover, she assisted her 
mentor in the testing phase of 16 Swarmies as well as the calibration of their inertial measurements unit (IMU). 
Additionally, she assisted her mentor in the NASA first Swarmathon Competition, a collegiate competition to develop 

robotics that will help in space exploration. 
 

      Note that this report only presents the author’s 1 three weeks of work at Swamp Works laboratory. The first part of 
this report explains the objectives for the second part of the internship. Then, a technical approach is describe in order 
to accomplish the author’s1 objectives. After that, a brief description of the Robot Operating System (ROS) 

architecture is presented. The next section illustrates the author’s1 learning experience on RASSOR’s 2.0 robotic 
software. The following section illustrates the learning experience on the Swarmies’s robot software in a simulated 
environment using Gazebo, a robot simulator. Then next section describe the challenges that the author1 overcome 

while working at Swamp Works Laboratory. Finally, a section describing the accomplishments during three weeks of 
work at Swamp Works are illustrated. The last sections of this report briefly summarizes the author’s 1 overall 

internship experience as a software developer, and the individuals that the author1 acknowledges. 

I. Objectives 

 The author’s1 main objective is to assist in the KSC preparation for its first Swarmathon competition, which is a 
challenge to invent cooperative robotics to revolutionize space exploration. Another objective is to work on the robot 

software for RASSOR 2.0, a mining robot constructed at NASA Swamp Works Laboratory which will be utilized for 
future in-situ resource utilization (ISRU) missions. 

III. Technical Approach 

 To assist in the development of robot software the author1 taught herself how to build robot applications using 

Robot Operating System (ROS) framework. This framework provides libraries, device drivers, message passing, and 
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package management to help built robot applications2. In addition, the author1 taught herself how to develop virtual 
robots using Gazebo, a robot simulator that is essential to test algorithms, design robots, and perform regression testing 

using realistic scenarios. The author1 found Gazebo simulation tools very useful since it allows the developer to test 
algorithms without spending money on the construction of physical robots.3 Moreover, the author1 learned about the 
Swarmies software current implementation in order to better assist in the preparation of the first Swarmathon 

competition. She also furthered her understanding on RASSOR 2's current software implementation. 

III. ROS  

A. Architecture 

The author1 enjoyed learning about the ROS architecture, which consists of nodes, the master, messages, and 
topics. The role of nodes is to perform computations. The master plays an important role in ROS architecture since  

it acts as the registrar which keeps track of the nodes that are actively sending or receiving messages. Throughout 
her training, the author1 understood the importance of the master in the ROS framework because when she did not 

run the master she ran into problems. Through this experience, she learned that there cannot exist any 
communication between nodes without the master. By writing simple robot applications, the author1 understood 
how nodes communicate with each other through messages. A message consists of data that sends information to 

other nodes. When a node sends data, it is publishing to a topic as illustrated in Figure 1. These nodes can receive 
topics from other nodes by subscribing to the specific topic that they want to receive information from.  

 

IV. RASSOR 2 .0  

A. RASSOR 2.0 Description 
     RASSOR 2.0 is a mining robot whose mission is to be a cargo delivery to Mars to prove ISRU capabilities. The 
way this this is going to work is that a lander will carry the RASSOR 2.0 and ISRU (in-situ resource utilization) 

processing plant. Once it is on the surface, RASSOR 2.0 will drive to the specific mining site that is assumed to be 
100 meters from the lander. Once RASSOR 2.0 is on the mining site, it will lower its bucket drum and begin excavating 
regolith while slowly driving forward where there are higher concentrations of water4. 

 

B. RASSOR 2.0 High Level Onboard Software 
 During her three weeks of working at Swamp Works, the author1 learned about RASSOR 2.0 software by going 
over the code and understanding every line of code out of more than 5,000 lines of code. Figure 2. illustrates the high 

level onboard software for RASSOR 2. To be specific, it illustrates the ROS nodes that make up RASSOR’s 2.0 
software. Each node is written in the C++ programming language, and they communicate with each other by sending 
messages such as target data, obstacle data from sensors, manipulator commands, motor commands, GPS data, robot 
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position, and Inertial Measurements Unit (IMU) data. In the coming weeks of her internship, the author1 will be 
working on RASSOR 2 in order to improve the existing software implementation.  

 

V.   SWARMIES 
 

A. Swarmies Description 
      The behavior of the robot swarm imitates the central-place foraging strategy of ants to find and collect resources 

in an unknown environment, and return those resources to the central site. These small robots do not have prior 
knowledge of the environment. They use trails as a simple indirect communication strategy and use a genetic 
algorithm to evolve a set of behavioral parameters5. 

 

B. Swarmies in a virtual environment  
The author1 managed to learn about the swarmies simulations using Gazebo. This simulation is conducted in   

order to test their software without having to do it in physical robots. The author1 made some experiments with 

them in this virtual environment as shown in Figure 3. Those experiments consisted of controlling the simulated 
robots manually by using the arrow keys in the keyboard, as well as controlling them using a random search 
algorithm using C++ programming language. The implemented code is located inside their respective ROS 

workspace src folder, and then it is built using the catkin_make tool. 

Figure 3 .Swarmies in a simulated environment 
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VI. Challenges 

    It has been challenging, and at the same exciting to learn and understand the RASSOR’s 2.0 software in less than 
a month. The author's1 main challenge was to understand how each of the components that make up the robot work in 

the world of robotic software. After going over each line of code on RASSOR’s 2.0 software, and learning about each 
of the nodes that make up RASSOR 2.0 high level architecture, the author1 has a better understanding of how to 
implement its robot software.  

 

VII. Results for Three Weeks of Work at Swamp Works  

 
1. Virtual Robots 
 The author’s1 work is in progress for this portion of the internship. So far the author1 taught herself to create 

virtual reality robots in order to do regression testing faster, without the need of constructing physical robots. The 
virtual robots illustrated in Figure 5. illustrate a robot with camera and sensors which can detect obstacles just as a 

physical robot. Figure 4. illustrates a kitchen simulated environment with a virtual robot. If the author1 invents a 
new algorithm, she can test her code on a virtual robot. The author1 found this fascinating because she will be 
capable of writing code that can be run on a virtual, yet inexpensive robot.  

 
 
 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 
 

           Figure 4.Virtual Robot in a simulated kitchen environment 
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2.   Construction of 10 Swarmies for 1st NASA Swarmathon Competition at KSC 

 The author1 assisted in the construction of 10 swarmies, small robots, which are composed of 3D printed parts, a 

Global Positioning System (GPS), NUC Base,  Battery Base, Battery Brace, Ultrasound Tower, Motors, Wheels, 
Ultrasound sensors, USB web camera, Arduino, and inertial measurement unit (IMU). This was a tedious process. 
The wheel motors and the batteries are placed inside the enclosed chassis. The micro-controller stack and all sensors 

are placed on top of the enclosed chassis. Then, the USB web camera is placed on top of the robot’s protective lid in 
order to get a better angle on the AprilTags that will be on the ground. The IMU sensor is also placed on top next to 

the USB web camera.  

3. Swarmies Software Testing/ Inertial Measurements Unit (IMU) calibration/Installation of 

Software for NASA Swarmathon 

 The author1 has been assisting in the testing phase of 16 swarmies ,which will be utilized in the NASA first 

Swarmathon Competition. This competition will take place at KSC in April 2016. The intention of this competition is 
for minority-serving universities to develop efficient search algorithms to make the swarmies work together to find 
targets. This code will be a great help in space exploration. The testing consists of connecting via secure shell (SSH) 

into each of the swarmies, cloning each of the universities code from their specific Github repository, and then 
verifying that the swarmies perform the steps on the code. A graphical user interface is used to observe that all the 

components of the robots are working correctly. Thanks to the numerous hours that the author1 spent teaching herself 
about ROS framework, she is able to perform her task on the testing phase of the Swarmies software development 
lifecycle. Additionally, the author1 helped with installing the software from GitHub for each of the 16 robots, as well 

as starting the IMU calibration. This IMU is utilized to measure linear and angular motion of the robot with a three 
axis accelerometer, which then sends the data to the central processing unit in order for the swarmies to be able to 
determine its own orientation in space.  

 

          Figure 5.Virtual Robot with a camera, and sensors. 
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IV. Conclusion 

 Overall, the author’s1 internship experience has been a worthwhile one, providing her with the opportunity to 
collaborate with multiple subsystems at KSC, and most importantly, for allowing her to contribute in the development 

of SCCS’s top layer, as well as on the development lifecycle of robot software such as the one for RASSOR 2.0 at 
Swamp Works laboratory. The author1 accomplished the development of remote control displays for Mobile Launcher, 
and, Interim Cryogenic Propulsion Stage. She also accomplished the development of ACL control applications to 

perform automated testing on the Tail Service Mast Umbilical remote control display as well as for the Mobile 
launcher remote control displays. In addition, she taught herself in less than a month about the robotic software used 

for RASSOR 2.0, and about the Swarmies simulation using Gazebo. Thanks to the shadowing opportunities that she 
participated in, the author1 has a better understanding of each of the phases that make up the software development 
lifecycle. She enjoyed collaborating with individuals who have different fields of study, including electrical, and 

mechanical engineers.  
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