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Walsh functions form an orthonormal basis set consisting of square waves. The dis-
continuous nature of square waves make the system well suited for representing functions
with discontinuities. The product of any two Walsh functions is another Walsh function –
a feature that can radically change an algorithm for solving non-linear partial differential
equations (PDEs). The solution algorithm of non-linear differential equations using Walsh
function series is unique in that integrals and derivatives may be computed using simple ma-
trix multiplication of series representations of functions. Solutions to PDEs are derived as
functions of wave component amplitude. Three sample problems are presented to illustrate
the Walsh function series approach to solving unsteady PDEs. These include an advection
equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate
the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in
multi-dimensions (O(N log(N ))). Details of a Fast Walsh Reciprocal, defined here for the
first time, enable inversion of a Walsh Symmetric Matrix in O(N log(N )) operations. Walsh
functions have been derived using a fractal recursion algorithm and these fractal patterns
are observed in the progression of pairs of wave number amplitudes in the solutions. These
patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A
prolongation of existing solutions to the next highest order exploits these patterns. The
algorithms presented here are considered a work in progress that provide new alternatives
and new insights into the solution of non-linear PDEs.

I. Introduction

The solution of partial differential equations (PDEs) with Walsh functions offers new opportunities to
simulate many challenging problems in mathematical physics. The approach was developed to better simulate
hypersonic flows with shocks on unstructured grids. Fundamental derivations of Walsh functions, their
products, reciprocals, derivatives, and integrals have been documented.1 Examples of shocked flows in
nozzles were used to demonstrate associated algorithms.

While this algorithm holds great promise, there are coding infrastructure challenges that make it difficult
to further explore and develop numerical simulation tools using Walsh functions. Some unique strengths of
Walsh functions are the capabilities to systematically account for non-linear interactions of component waves
and to explicitly propagate boundary conditions across the solution domain. However, the implementation
of these capabilities presents tedious programming challenges. Multiplication and division of two Walsh
functions are fundamentally different from currently supported operations in any programming language.
Keeping track of Jacobians required for the solution of systems of PDEs can become especially tedious in
this environment. Fortunately, all of this tedious detail can be supported in the background through use of a
module that supports operator overloading and other commonly used functions and routines in the solution
of partial differential equations. This support greatly simplifies the learning curve for new users wanting to
explore the use of Walsh functions in solving PDEs. A FORTRAN module for supporting Walsh function
simulations has been documented.2

The purpose of this paper is to document algorithm advances associated with the solution of unsteady
PDEs, with emphasis on the Riemann problem. A longer term goal of this work is to evaluate a multi-
dimensional Riemann solver with small basis set to replace existing flux reconstruction algorithms on tetra-
hedral grids. In addition, two supporting algorithms not previously documented are provided within:

∗Senior Research Engineer, Aerothermodynamics Branch; AIAA Fellow

1 of 44

American Institute of Aeronautics and Astronautics



• The Fast Walsh Transform (FWT) in multi-dimensions is key to efficient problem solving using a large
number (N) of terms in the series. An element of any solution algorithm requires the transformation
from wave number representation to discrete value representation and back. The FWT implements
this transformation in order N log(N) operations (if N = 2p).

• The Fast Walsh Reciprocal (FWR) provides the inverse of a Walsh symmetric matrix in order N log(N)
operations. Any problems involving the evaluation of the reciprocal of a function requires evaluation
of a Walsh symmetric matrix inverse.

This paper is organized as follows. Section II provides a review of Walsh function fundamentals. This
review is based on a more comprehensive article1 published in February, 2014. Section III presents algorithms
for filtering high frequency noise and wave component sequencing (equivalent to grid sequencing in a finite-
difference context). Section IV defines the three unsteady test problems and documents how FORTRAN
module walsh_tools2 is used to obtain their solutions. Both an implicit and explicit formulation are
described. The implicit formulation uses an exact Jacobian of the Walsh series components. It converges
very well but becomes intractably large for more than 213 degrees of freedom in a sub-domain. The explicit
formulation utilizes an approximate Jacobian with respect to the full series representation on a sub-domain.
Critical algorithms affecting solution times are described in the Appendices. The Fast Walsh Transform
(FWT) in multi-dimensions is described in Sec.VII (Appendix A). The Fast Walsh Reciprocal (FWR) is
described in Sec.VIII (Appendix B).

II. Walsh Function Fundamentals

A. Walsh Function Derivation

Let gn(x) be a basis function over the domain xa ≤ x ≤ xb with n segments. The orthonormal basis function
requirements3 that ∫ xb

xa

gn(x)gm(x)dx = δnm (1)

enable a recursive algorithm to define gn(x) based on the following constraints. Constrain |gn(x)| equal to
a constant across the entire domain. Let index p ≥ 0 define a segment size dxp.

dxp = (xb − xa)/2p (2)

An additional constraint on segment lengths within gn(x) requires that at most two segment lengths (dxp and
2dxp) are allowed to create n segments spanning the domain. These new constraints allow basis functions
to be grouped according to the smallest segment size. A basis function gn(x) belongs to group p if

2p−1 < n ≤ 2p (3)
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Figure 1. Basis function in group p=0.

As an example, consider the evolution of the first
four groups of gn(x) corresponding to 0 ≤ p ≤ 3 on
the domain with xa = 0 and xb = 1. For p = 0
the only element of the group according to Eq. 3 is
n = 1. A single segment with length given by Eq.
2 spans the domain. Therefore, g1(x) = 1 (Fig. 1)
is the first basis function, belonging to group p =
0 and satisfying Eq. 1. (While g1(x) = −1 also
satisfies Eq. 1, it is convenient to adopt a convention
where the sign of the function on the first segment
is positive.)

For p = 1, the only element of the group accord-
ing to Eq. 3 is n = 2. Two segments with length equal to 1/2 span the domain. Therefore,

g2(x) =


1 for 0 ≤ x < 1

2

0 for x = 1
2

−1 for 1
2 < x ≤ 1
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where function g2(x) (Fig. 2) is the second basis function, belonging to group p = 1 and satisfying Eq. 1.
The value of the function at interior segment boundaries is set to 0, the average of the function on either
side of the boundary. (The vertical line through interior segment boundaries in Fig. 2 provides strong visual
impact of the discontinuity and is not meant to imply all values between –1 and 1 are included.)
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Figure 2. Basis function in group p=1.

The group defined by p = 2 is the first to have
more than one function, g3(x) and g4(x). The al-
lowed segment sizes in this group are 1/4 and 1/2.
Each function is initialized with the smallest seg-
ment at the beginning and end of the domain. For
n = 3, this initialization leaves a single segment
of length 1/2 available to span the interior of the
domain. For n = 4, the initialization leaves two
segments of length 1/4 to span the interior of the
domain. The corresponding functions are shown in
Fig. 3. By inspection, it is clear that these first four
basis functions all satisfy Eq. 1.

g3(x) =



1 for 0 ≤ x < 1
4

0 for x = 1
4

−1 for 1
4 < x < 3

4

0 for x = 3
4

1 for 3
4 ≤ x < 1

g4(x) =



1 for 0 ≤ x < 1
4

0 for x = 1
4

−1 for 1
4 < x < 1

2

0 for x = 1
2

1 for 1
2 < x < 3

4

0 for x = 3
4

−1 for 3
4 < x ≤ 1
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(a) g3(x)
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(b) g4(x)

Figure 3. Basis functions in group p=2.

The group defined by p = 3 includes four functions, g5(x) through g8(x). The allowed segment sizes in
this group are 1/8 and 1/4. Each function is again initialized with the smallest segment at the beginning
and end of the domain. This is the first group where the distribution of segments required to satisfy Eq. 1
for all combinations of functions in groups 0 – 3 becomes non-trivial. Still, the number of permutations of
segment size distribution is small and a solution, evident by inspection, is shown in Fig. 4.

These results suggest the existence of an algorithm that would allow the definition of basis functions
for p >> 3 and, correspondingly n >> 8. Such an algorithm was first identified by Walsh4 and the basis
functions are used extensively in signal and image processing.5,6 A new derivation applies a fractal-like
bisection algorithm focused on the distribution of segment sizes that yields the following definition for basis

3 of 44

American Institute of Aeronautics and Astronautics



x0 0.25 0.5 0.75 1

­1

0

1

g
5
(x)

(a) g5(x)
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Figure 4. Basis functions in group p=3.

functions gn(x) on the domain xa ≤ x ≤ xb:

gn(x) =


(−1)(m+1)(xb − xa)−1/2 for xm−1 < x < xm 0 < m ≤ n

0 for x = xm 0 < m < n

(xb − xa)−1/2 for x = xa

(−1)(n+1)(xb − xa)−1/2 for x = xb

(4)

where

xm = xa +

m∑
i=1

ĝn(i)dxp (5)

and i, m, and n are positive integers. In Eq. 5, ĝn(i) is a vector of length n in which the value of element i
signifies the length of the ith segment in gn(x). Thus, it defines a dimensionless distribution such that

ĝn(i) =

1 if xi − xi−1 = dxp

2 if xi − xi−1 = 2dxp
where 1 ≤ i ≤ n (6)

and dxp was defined previously in Eq. 2.
The dimensionless distribution function ĝn(i) is defined as a function of group number p. The sum of the

segment lengths must equal the domain length, consequently it follows that

n∑
i=1

ĝn(i) = (xb − xa)/dxp = 2p (7)

Figure 5 presents the sequence of the first 32 ĝn segment length distribution vectors in a manner that
highlights the symmetries inherent in the defining algorithm. (Details of the folding algorithm to obtain
this result are provided in the original reference.1) Note that the two columns on the right side of the
figure include the index n of the basis function and its group number p. Recall that the minimum segment
length in a basis function dxp decreases by a factor of 2 for each increment in group number p. Compare the
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n p
1................................ 1 0

1 1............................... 2 1
1 2 1.............................. 3 2

1 1 1 1............................. 4 2
1 2 2 2 1............................ 5 3

1 2 1 1 2 1........................... 6 3
1 1 1 2 1 1 1.......................... 7 3

1 1 1 1 1 1 1 1......................... 8 3
1 2 2 2 2 2 2 2 1........................ 9 4

1 2 2 2 1 1 2 2 2 1....................... 10 4
1 2 1 1 2 2 2 1 1 2 1...................... 11 4

1 2 1 1 2 1 1 2 1 1 2 1..................... 12 4
1 1 1 2 1 1 2 1 1 2 1 1 1.................... 13 4

1 1 1 2 1 1 1 1 1 1 2 1 1 1................... 14 4
1 1 1 1 1 1 1 2 1 1 1 1 1 1 1.................. 15 4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1................. 16 4
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1................ 17 5

1 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 1............... 18 5
1 2 2 2 1 1 2 2 2 2 2 2 2 1 1 2 2 2 1.............. 19 5

1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1............. 20 5
1 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 1............ 21 5

1 2 1 1 2 2 2 1 1 2 1 1 2 1 1 2 2 2 1 1 2 1........... 22 5
1 2 1 1 2 1 1 2 1 1 2 2 2 1 1 2 1 1 2 1 1 2 1.......... 23 5

1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1......... 24 5
1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1........ 25 5

1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 1....... 26 5
1 1 1 2 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 2 1 1 1...... 27 5

1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1..... 28 5
1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1.... 29 5

1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1... 30 5
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.. 31 5

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 32 5

Figure 5. The distribution vector ĝn for level p ranging from 0 to 5 and 1 ≤ n ≤ 25.

distribution of segments in Figs. 1 – 4 to the top eight rows of Fig. 5 to confirm understanding of the relation
between the basis function gn(x) and the corresponding segment distribution vector ĝn(i). Figure 6 shows
the segments used to partition the interval xa ≤ x ≤ xb for the first 64 basis functions gn(x). The symbols
on each line indicate segment boundaries. The crease lines for the first three bisecting folds are indicated
along the bottom of the figure. A more careful examination of Fig. 6 reveals that the folding algorithm used
to define the distribution of segments propagates patterns through ever smaller bisections of the domain and
larger values of n. For example, take a sheet of paper to cover the right side of Fig. 6 from bisection 1. The
pattern that remains for even (2m) or odd (2m-1) values of n on the bisected figure is exactly that of the
whole figure. The only difference between these same two even and odd basis functions on the full domain is
that the even function had two segments of length dxp on either side of the crease (bisection 1) and the odd
function had a single segment of length 2dxp spanning the crease. Take another sheet of paper and cover
the left side of the figure from bisection 2. The pattern that remains for every fourth value of n is exactly
that of the whole. These patterns have been exploited1 to derive a new recursion formula for gn(x) that
lead to proofs for closure under multiplication and explain the relationships of specific pairs of wave number
amplitudes to be discussed in a subsequent section.

B. Product of Two Walsh Functions

A multiplication table of basis functions is developed in Table 1. The table is constructed based on a
unit domain where xb − xa = 1. The appropriate scale factor for the product in the most general case
is (xb − xa)−1/2 derived from the definition of gn(x) in Eq. 4. This scale factor is inserted in the upper
right corner of the table. The first row of results is simply a recognition that a constant value across the
entire domain (g1(x)) multiplying any other function (gn(x)) returns the rescaled value of gn(x). The lower
diagonal of the table indicates that the square of gn(x) on every segment is a constant across the domain
(except at a finite number of points where gn(x) = 0 on segment boundaries), returning a rescaled value of
g1(x).
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bi­section

n

4 4

8 8

12 12

16 16

20 20

24 24

28 28

32 32

36 36

40 40

44 44

48 48

52 52

56 56

60 60

64 64
12 20 03 3 3 3

Figure 6. Segments spanning domain for the first 64 basis functions gn(x ).

Every other element of Table 1 can be defined by recursion. It is not generally required to perform more
than one bisection and one union to fill out the table.1

C. Series Expansions of Functions

A function f(x) may be represented by an infinite series

∞∑
n=1

Angn(x) (8)
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Table 1. A multiplication table of basis functions.

1√
(xb−xa)

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16

g1 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16

g2 g1 g4 g3 g6 g5 g8 g7 g10 g9 g12 g11 g14 g13 g16 g15

g3 g1 g2 g7 g8 g5 g6 g11 g12 g9 g10 g15 g16 g13 g14

g4 g1 g8 g7 g6 g5 g12 g11 g10 g9 g16 g15 g14 g13

g5 g1 g2 g3 g4 g13 g14 g15 g16 g9 g10 g11 g12

g6 g1 g4 g3 g14 g13 g16 g15 g10 g9 g12 g11

g7 g1 g2 g15 g16 g13 g14 g11 g12 g9 g10

g8 g1 g16 g15 g14 g13 g12 g11 g10 g9

g9 g1 g2 g3 g4 g5 g6 g7 g8

g10 g1 g4 g3 g6 g5 g8 g7

g11 g1 g2 g7 g8 g5 g6

g12 g1 g8 g7 g6 g5

g13 g1 g2 g3 g4

g14 g1 g4 g3

g15 g1 g2

g16 g1

over the interval xa ≤ x ≤ xb. The coefficients An are computed

An =

∫ xb

xa

f(x)gn(x)dx (9)

Because gn(x) is a constant on any given segment and changes sign across segments, the integral in Eq. 9
may be expressed as

An = (xb − xa)−1/2
n∑
i=1

(−1)(i+1)

∫ xi+1

xi

f(x)dx (10)

where

xi+1 = xa +

i∑
j=1

ĝn(j)dxp (11)

xi = xi+1 − ĝn(i)dxp (12)

Note that for domains comprised of N = 2p segments the FWT (see Appendix A) can be used to compute
the wave components An from the integrated average value of f over each segment in order pN operations.

Figure 7 shows the series representation of the function f(x) = x on the interval −1 ≤ x ≤ 1. The basis
function series is truncated at n = 64 (p = 6). Stair-stepping of the segmented representation is evident;
nevertheless, the error norm L6

1 = 0 where Lp1 is given by

Lp1 = (xb − xa)−1
2p∑
m=1

∣∣∣∣∣f(xm+1/2)−
2p∑
i=1

Aigi(xm+1/2)|

∣∣∣∣∣ dxp (13)

The error norm sums the absolute difference between the function and its series representation at the midpoint
of the smallest segment size for each segment. Each contribution is weighted by the ratio of dxp to the total
interval length. A zero norm in this case means that the function and its series representation exactly match
at each midpoint of the smallest segment in the series. Note that the only non-zero coefficients in Fig. 7b
are Ak where k = 2, 4, 8, 16, and 64. All linear functions f(x) = C1x+C0 on all intervals may be represented
using coefficients Ak with k = 2p and p ≥ 0 with Lp1 = 0.

7 of 44

American Institute of Aeronautics and Astronautics



x

f(
x
)

­1 ­0.5 0 0.5 1
­1

­0.5

0

0.5

1

A
n

g
n
(x)

f(x) = x

(a) f(x) compared to
∑64
n=1 Angn(x)

n

A
n

8 16 24 32 40 48 56 64
­1

­0.8

­0.6

­0.4

­0.2

0

(b) Series coefficients

Figure 7. Representation of f (x ) = x by series
∑64
n=1 Angn(x ).
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(a) f(x) compared to
∑64
n=1 Angn(x)
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Figure 8. Representation of f (x ) = cos(x ) by series
∑64
n=1 Angn(x ).

Figure 8 shows the series representation of the function f(x) = cos(x) on the interval −π ≤ x ≤ π.
The error norm for this case is L6

1 = 0.000255735. With successive increases in p (doubling the number of
segments) the L1 norm drops by a factor of 4 (L7

1 = 0.00006392036, L8
1 = 0.00001597925).

Figure 9 shows the series representation of the function f(x) = 1−H(x−1/3) on the interval −1 ≤ x ≤ 1.
The discontinuity in the Heaviside function is placed at x = 1/3 so that it never falls perfectly on a segment
boundary. The error norm for this case is L6

1 = 0.005208338. With successive increases in p (doubling
number of segments) the L1 norm drops by a factor of 2 in this case with a discontinuity (L7

1 = 0.002604162,
L8
1 = 0.001302088). The stair-stepping across the discontinuity is hardly evident on the full scale using p = 8

(n = 256 segments), as seen in Fig. 10. There are no overshoots or ringing in the series representation. An
important detail here is to accurately approximate the integral where the discontinuity crosses a segment.
The variation of the coefficients An in Figs. 9(b) and 10(b) show a constant magnitude within a family p
and a rapid drop in magnitude as p increases.
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Figure 9. Representation of f (x ) = 1−H (x - 1/3) by series
∑64
n=1 Angn(x ).
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(b) Series coefficients

Figure 10. Representation of f (x ) = 1−H (x - 1/3) by series
∑256
n=1 Angn(x ).

D. Series Expansion of Function Reciprocal

If a function f(x) is represented by the truncated series

2p∑
n=1

Angn(x) (14)

over the interval xa ≤ x ≤ xb and its reciprocal, r(x) = 1/f(x), is represented by the series

2p∑
m=1

Bmgm(x) (15)

on the same interval then the coefficients Bm can be computed as a function of coefficients An as follows:

Bm =
[
AP(n,m)

]−1
δ(n, 1)(xb − xa) (16)
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where

[
AP(n,m)

]
=


AP(1,1) AP(1,2) AP(1,3) · · · AP(1,2p)
AP(2,1) AP(2,2) AP(2,3) · · · AP(2,2p)
AP(3,1) AP(3,2) AP(3,3) · · · AP(3,2p)

...
...

...
. . .

...
AP(2p,1) AP(2p,2) AP(2p,3) · · · AP(2p,2p)

 (17)

and P(n,m) refers to the multiplication table shown originally in Table 1 with the mapping explicitly shown
in Table 4 of Sec.VIII (Appendix B). Note that the inverse of this Walsh symmetric matrix can be computed
in O(N log(N)) operations as shown in Appendix B.

As an example, the series expansion for r(x) = 1/x is presented in Fig. 11 over the interval −0.1 ≤ x ≤ 0.2
as derived from the expansion for f(x) = x using Eq. 16.
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(a) p = 6, 64 segments
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Figure 11. Representation of r(x ) = 1/x derived from the series expansion for f (x)=x.

E. Integrals of Series Expansions

If a function is represented by Eq. 8, its derivative with respect to x is not explicitly represented by the
derivative of its component parts in the summation. The basis functions gn(x) have 0 slope on the interior
of each segment and infinite slope at segment boundaries. For this reason, in dealing with any equation
of mathematical physics involving derivatives of various orders, the derivative of highest order may be
represented by Eq. 8 and subsequent lower-order derivatives of the function are obtained by integration.
Thus,

∂f

∂x
(x) = fx(x) =

∞∑
n=1

Angn(x) (18)

and

f(x) = f(xa) +

∫ x

xa

∞∑
n=1

Angn(s)ds = f(xa) +

∞∑
n=1

An

∫ x

xa

gn(s)ds (19)

An integrating matrix χ(n,m) is defined such that∫ x

xa

gn(s)ds = (xb − xa)

∞∑
m=1

χ(n,m)gm(x) (20)

on the interval xa ≤ x ≤ xb. The factor (xb − xa) is introduced to keep χ(n,m) dimensionless. The
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coefficients χ(n,m) are given by

χ(n,m) = (xb − xa)−3/2
m∑
i=1

(−1)(i+1)

∫ xi+1

xi

[∫ x

xa

gn(s)ds

]
dx (21)

where the xi are defined in Eq. 11. The first 16 rows and columns of the integrating matrix are presented
in Eq. 22. It is seen to be sparse; the occurrence of non-zero elements is easily defined so that integrating
transforms need not be especially costly, even for large n.

χ(n,m) =



1
2

−1
4

0 −1
8

0 0 0 −1
16

0 0 0 0 0 0 0 −1
32

· · ·
1
4

0 −1
8

0 0 0 −1
16

0 0 0 0 0 0 0 −1
32

0 · · ·
0 1

8
0 0 0 −1

16
0 0 0 0 0 0 0 −1

32
0 0 · · ·

1
8

0 0 0 −1
16

0 0 0 0 0 0 0 −1
32

0 0 0 · · ·
0 0 0 1

16
0 0 0 0 0 0 0 −1

32
0 0 0 0 · · ·

0 0 1
16

0 0 0 0 0 0 0 −1
32

0 0 0 0 0 · · ·
0 1

16
0 0 0 0 0 0 0 −1

32
0 0 0 0 0 0 · · ·

1
16

0 0 0 0 0 0 0 −1
32

0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 1

32
0 0 0 0 0 0 0 0 · · ·

0 0 0 0 0 0 1
32

0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 1

32
0 0 0 0 0 0 0 0 0 0 · · ·

0 0 0 0 1
32

0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 1

32
0 0 0 0 0 0 0 0 0 0 0 0 · · ·

0 0 1
32

0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
0 1

32
0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·

1
32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . .



(22)

It is now possible to represent f(x) as

f(x) = f(xa) + (xb − xa)

∞∑
m=1

∞∑
n=1

Anχ(n,m)gm(x) =

∞∑
m=1

Ãmgm(x) (23)

where
Ãm = (xb − xa)χT (m,n)An + δ1m(xb − xa)1/2f(xa) (24)

F. Derivatives of Series Expansions

A differentiation operation — computing the series representation of ∂f
∂x from the series representation for

f(x) — may now be derived from Eq. 24. Differentiation of a function represented by a series truncated to
2p terms is implemented as follows. Rewrite Eq. 24 using the transpose of the integrating matrix to obtain

Ãm = (xb − xa)χT (m,n)An + δ1m(xb − xa)1/2f(xa) (25)

where repeated index n indicates summation. Recall that Ãm are the coefficients of the series expansion for
f(x) in Eq. 23 and An are the coefficients for the series expansion of fx(x) in Eq. 18. If one truncates the
series representations at n = 2p in Eq. 25, then the inverse of the transpose of the integrating matrix may be
calculated. The truncated series coefficients for fx(x) are now derived from the truncated series coefficients
of f(x).

An = (xb − xa)−1[χT (m,n)]−1
[
Ãm − δ1m(xb − xa)1/2f(xa)

]
(26)

An = (xb − xa)−1Dp(n,m)
[
Ãm − δ1m(xb − xa)1/2f(xa)

]
(27)

where summation over repeated index m is implied and Dp = [χT (m,n)]−1 with 1 ≤ m ≤ 2p and 1 ≤ n ≤ 2p.
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Note that the elements of the integrating matrix χ are not a function of the truncation level of the series
but the elements of the differentiating matrix Dp are a function of the truncation level n = 2p. For example,

D2 =


0 0 0 −8

0 0 −8 0

0 8 0 −16

8 0 16 32

 D3 =



0 0 0 0 0 0 0 −16

0 0 0 0 0 0 −16 0

0 0 0 0 0 −16 0 0

0 0 0 0 −16 0 0 0

0 0 0 16 0 0 0 −32

0 0 16 0 0 0 −32 0

0 16 0 0 0 32 0 −64

16 0 0 0 32 0 64 128


(28)

D4 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −32 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −32 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −32 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −32 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −32 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −32 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −32 0 0 0 0 0 0 0

0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 −64

0 0 0 0 0 0 32 0 0 0 0 0 0 0 −64 0

0 0 0 0 0 32 0 0 0 0 0 0 0 −64 0 0

0 0 0 0 32 0 0 0 0 0 0 0 −64 0 0 0

0 0 0 32 0 0 0 0 0 0 0 64 0 0 0 −128

0 0 32 0 0 0 0 0 0 0 64 0 0 0 −128 0

0 32 0 0 0 0 0 0 0 64 0 0 0 128 0 −256

32 0 0 0 0 0 0 0 64 0 0 0 128 0 256 512



(29)

The sum of elements in any column is 2p+1, the sum of elements in all but the last row is −2p+1, and
the sum of elements in the last row is 22p+2 − 2p+1. The only non-zero element of the first column of the
differentiating matrix of any order p is in the last row.
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­3 ­2 ­1 0 1 2 3
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g
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f(x) = cos(x)

C = 0

(a) C = 0.

x

f(
x
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­0.5

0

0.5

1

A
n

g
n
(x)

f(x) = cos(x)

A
32

(C) = 0

(b) A32(C) = 0.

Figure 12. Series representation of cos(x ) computed as the derivative of the series representation of sin(x ) on
the interval -3 ≤ x ≤ 3 for p = 5 .

For smooth functions it is observed that the presence of f(xa) serves to drive the value of A2p towards
zero in Eq. 27. As an example of this effect, consider again the sample problem of computing the series
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representation of cos(x) as the derivative of the series representation of sin(x) using the differentiating matrix.
However, in this case change the interval to −3 ≤ x ≤ 3. If the contribution of f(xa) is replaced by an
arbitrary constant C and C is set to zero, then the differentiated series representation yields the comparison
shown in Fig. 12(a) with L5

1 = 1.5097 and A2p = −3.698. If one chooses C such that A2p = 0, then the
comparison in Fig. 12(b) is obtained with L5

1 = 0.00091067. If C = f(xa) = sin(−3) then A2p = −0.0108
and L5

1 = 0.004425. It should be noted that if the definition of Lp1 in Eq. 13 used the difference of the series
representation relative to the function rather than the absolute value of the difference then the representations
in Figs. 12(a and b) have identical norms equal to 0.000069322.
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f(x) exact
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(a) p = 6, full approximation
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(b) p = 6, limited approximation
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(c) p = 8, full approximation

x

f(
x
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f x
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­1 ­0.5 0 0.5 1
­4

­2

0

2

4

f(x) series
f(x) exact
f
x
(x) series

23.2722

­170.666

(d) p = 8, limited approximation

Figure 13. Series representation of Eq. 30 and its derivative using Eq. 27.

If the function f(x) has a discontinuity or it is inadequately resolved by its series representation Ãngn(x),
then the representation of its derivative fx(x) by the series Angn(x) through Eq. 27 is observed to oscillate
around the exact solution. This behavior is illustrated in the left side of Fig. 13 where the function has
discontinuities at x1 and x2.

f(x) =


1 for xa ≤ x < x1

2 for x1 ≤ x < x2

0 for x2 ≤ x ≤ xb

x1 = − 5

11
x2 =

1

3
(30)

In Fig. 13, the original function is shown in red, its series representation is shown as a thick black line, and
the derivative of the series representation from Eq. 27 is shown by the thin black line. The derivative of the
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original function equals zero everywhere except at the points of discontinuity where

lim
ε→0

f(x1 + ε)− f(x1 − ε)
2ε

→∞ and lim
ε→0

f(x2 + ε)− f(x2 − ε)
2ε

→ −∞ (31)

In all cases, the series representation of the original function is good, consistent with the earlier example
of the Heaviside function showing no overshoots or Gibb’s phenomena. However, the series representation
of the derivative of the function exhibits oscillations of constant magnitude over each piecewise constant
segment of the original function that extend all the way to the left and right boundaries. The mean value of
the oscillations equals zero over these piecewise constant segments. A representation that averaged this result
over a segment length equal to 2dxp provides an excellent result. This averaging is easily accommodated by
truncating the highest frequency components of the series from 2p−1 < n ≤ 2p. The right side of Fig. 13
shows this limited series representation of the derivative. The result is implemented by replacing Dp in Eq.
27 with Dplim where

Dplim(n,m) =

Dp(n,m) for n ≤ 2p−1

0 for n > 2p−1
(32)

The "spike" over the discontinuity has width equal to dxp for the original formulation and is twice as wide
in the limited formulation. As p increases the width of the spike decreases and its height grows. Limiting
coarsens the resolving ability of the original series by a factor of 2. The limiting is applied uniformly over
the domain and will affect both smooth (well resolved) and discontinuous (poorly resolved) functions.

III. Truncation and Prolongation

Truncation (filtering) refers to the reduction or elimination of high-frequency (small-wavelength) struc-
tures due to noise or incipient instability from a function represented by a Walsh series. Prolongation
(sharpening) refers to the insertion of high-frequency (small-wavelength) structure into a Walsh series to
smoothly replace eliminated noise or to serve as the first step of a wave-component-sequencing algorithm
(equivalent to a grid-sequencing algorithm in a finite-difference context). Truncation is effective in reducing
Gibbs phenomena in discontinuous solutions and in suppressing instabilities in high-order formulations of
derivatives.

Consider the baseline distribution q0(tn) = cos(2πtn) with 1 ≤ n ≤ N and tn = (n − 0.5)/N where
N = 2pτ . Use a random number generator to add noise to the distribution such that qf (tn) = q0(tn) +
0.1(rn(tn)− 0.5) where rn(tn) is a random number in the interval 0 ≤ rn(tn) ≤ 1. Let

qf (t) =

2pτ∑
n=1

Afngn(t) (33)

Figure 14(a) shows the noisy, unfiltered distribution in green plotted over the smooth baseline distribution
in black. It also shows the time derivative of the noisy, unfiltered solution in blue plotted over the time
derivative of the baseline solution in red. A single level of filtering (nf = 1) is implemented by setting
the wave components in the highest group number (recall Eq. 7) to zero (p = 10 in this example). This
action effectively averages adjacent values of qf (t2i−1) and qf (t2i−1) across these time intervals defined by
1 ≤ i ≤ 210−1, but with fewer operations. Two levels of filtering (nf = 2) are implemented by setting the
wave components in the two highest group numbers to zero (p = 10 and p = 9 in this example). In like
manner, this action effectively averages four adjacent values of qf (t4i−1), qf (t4i−2), qf (t4i−3), and qf (t4i)
across these time intervals defined by 1 ≤ i ≤ 210−2. Each successive level of filtering (nf ) using function
trun below effectively averages another factor of 2 intervals to form a larger, filtering interval.

trun(qf (t), nf ) =

2(pτ−nf )∑
n=1

Afngn(t) (34)

The baseline average value of q0(t) is accurately approximated at the center of the filtering interval if
one assumes (1) the variation of the baseline solution is nearly linear across the filtering interval; and (2)
the filtering interval is sufficiently long that noise fluctuations average to zero. In Fig. 14(b) a single level

14 of 44

American Institute of Aeronautics and Astronautics



of filtering creates a filtering interval of length 2−(10−1) that shows marginal reduction of fluctuating noise.
In Fig. 14(c), five levels of filtering creates a filtering interval of length 2−(10−5) that averages noise over 25

adjacent segments. Note that trun(qf (tn), 5) (in green) shows a 32 stair-step pattern that is flat over each
set of adjacent 25 intervals. The baseline function q0(tn) (in black) is nearly linear over each of these steps.

The five-level filtering in Fig. 14(c) has discarded 210 − 210−5 wave components (all but 32 out of the
original 1024). The time derivative of this piecewise constant distribution from Eq. 27 is zero as shown by
the blue line in the figure. (Note that Eq. 27 is not equivalent to a conventional Taylor series representation
of a derivative in which a divided difference across the stair riser will always yield a large, non-zero result.)
One would like to recover a smooth variation across the original 1024 segments without having to resort to
generating a curve fit through the remaining 32 segments.

(a) qf , unfiltered (b) qf , filter level 1, with prolongation

(c) qf , filter level 5, without prolongation (d) qf , filter level 5, with prolongation

Figure 14. The use of filtering and prolongation to reduce random noise.

The fractal nature of the Walsh basis functions1 introduces repeated patterns in the wave component
magnitudes that can be exploited for the purpose of prolongation — replacing the truncated, high-wave-
number components of the noisy solution with components that yield a smooth solution over the filtering
interval. The repeated patterns are suggested in Figs. 7(b), 8(b), 9(b), and 10(b). Knowing to expect
patterns makes it easier to find them. To this end, plot the wave components using a mapping that retains
group number identity as follows:
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m = 2p + 1− n for 2p−1 < n ≤ 2p (35)

Equation 35 plots wave components for each group in reverse sequency order starting from m = 1. It
enables the superposition of wave components to better reveal underlying patterns as demonstrated in Figs.
15(a–c). (Information regarding the sign of a wave component is lost here in order to focus on component
magnitude using logarithms.) The base 2 logarithm of the Walsh series components of three simple functions
on the interval 0 ≤ t ≤ 1 are plotted as a function of group number using Eq. 35. Elements of each group
are plotted with a different symbol and color. These plots are referred to as fractal fingerprints (FFP) of a
function over an interval. A one-unit change in these figures between component values in adjacent groups
indicates a factor of 2 difference in magnitude. If a function is singularity-free over an interval, then the
magnitude of adjacent groups differ by approximately a factor of 2. This trend is highlighted in Figs. 15(d–f)
in which the FFP is plotted after dividing the wave components in group p by a factor 2p.

(a) t4 (b) cos(2πt) (c) exp(t)

(d) t4, scaled (e) cos(2πt), scaled (f) exp(t), scaled

Figure 15. The fractal fingerprint (FFP) of Walsh series wave components.

Examples of the FFP for functions that include singularities in the interval 0 ≤ t ≤ 1 are presented in
Fig. 16. Note that successive groups still show repeating patterns; however, the magnitude of successive
groups cannot be described by a single factor of 0.5. If the singularity is moved outside of the domain (for
example, q(t) = 1/(t+ 0.1)), the FFP shows good recovery of the 0.5 scale factor between groups.

The repeated patterns in the FFPs are used as a first approximation to increase the resolution of a Walsh
series representation of a function to the next highest group level. It has already been noted that the left
half of the highest group number is already well-approximated by simply setting it equal to half the value
of the preceding group. It will next be observed that polynomials of degree p exhibit a repeating pattern
in their FFP in which the right half of the highest group number can be predicted from the values in the
left half. (These repeated patterns for polynomials are consistently observed but not yet proved.) These
patterns are exploited to fully construct a good approximation to wave components in group p completely
from wave components in group p − 1 — a bootstrap approach to prolongation for the purpose of wave
component sequencing or smoothing the structure that had been truncated in a filtering operation.
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(a)
√
t (b) 1/t (c) Heaviside function, jump at t = 5/9

(d)
√
t, scaled (e) 1/t, scaled (f) Heaviside function, jump at t = 5/9,

scaled

Figure 16. The fractal fingerprint (FFP) of Walsh series wave components for functions with singularities in
the domain.

The algorithm to define elements of group p from a Walsh series that terminates at group p − 1 is
illustrated in Fig. 17. In Fig. 17(a), the scaled FFP for q(t) = t6 is used to discern repeated patterns. First,
note that the scaled elements of group 6 (black squares) in the left half domain match the scaled elements
of group 5 (red delta). Next, note that the distribution in the far right quarter of group 6 (black squares,
25 ≤ m ≤ 32) matches the distribution in the second quarter of group 6 (9 ≤ m ≤ 16) but is displaced
vertically by one unit (a factor of 2 smaller). Next, observe that the distribution in the first half of this
latest group (25 ≤ m ≤ 28) is repeated at the front eighth of the second half (17 ≤ m ≤ 20) but is again
displaced vertically by one unit (a factor of 2 smaller). This fractal algorithm of transferring half of the
last defined pattern to the opposite end of the remaining undefined domain and reducing the magnitude by
factor 2 continues until the entire group is defined.

A schematic of this prolongation algorithm is illustrated in Fig. 17(b). The logical flow goes from the top
to the bottom of the figure. Red blocks represent existing patterns. Blue blocks represent target locations
where the pattern in red is transferred with magnitude reduced by a factor fi in step i of the algorithm.
Gray blocks represent locations in the new group that have been defined previously. White areas have yet
to be filled in. Each step takes half of the latest defined subdomain and transfers it to the opposite end of
the undefined domain, reducing magnitude by a factor fi until the entire group is defined. The reduction
factor fi is currently fixed at 0.5 based on the polynomial template function. Other values may be derived
for other template functions, but such an option is beyond the scope of this paper. The current algorithm
provides good approximations to the prolongation of singularity-free functions across a domain; errors tend
to build on the last reconstruction steps, but these coefficients tend to be orders of magnitude smaller than
other coefficients in the Walsh series.

Figure 17(c) confirms that the reconstructed group 6 coefficients (red circles) obtained by prolongation
from the group 5 coefficients match the exact group 6 coefficients (black squares) obtained from a Fast Walsh
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Transform of q(t) = t6. The sequential application of this prolongation algorithm from group 5 to group 10
was used to recover a smooth baseline solution in Fig. 14(d) (green curve) from the truncated solution in
Fig. 14(c). The time derivative of this reconstructed solution (blue curve in Fig. 14(d)) shows some small
discontinuities associated with approximate nature of the bootstrap algorithm for general functions.

(a) Scaled FFP for q(t) = x6 including
groups 0 ≤ p ≤ 6. The elements in group
6, black squares, are truncated from this
series.

(b) Algorithm schematic to bootstrap
group p using only elements of group
p− 1.

(c) Comparison of reconstructed elements
to original, untruncated elements of group
6.

Figure 17. Overview of prolongation algorithm applied to Walsh series representation of q(t) = x6 starting
with 6 groups.

IV. Application Examples

Three test cases provide examples on the use of the Walsh functions to solve partial differential equations.
All of the sample problems are time-dependent. Two are non-linear. One involves a system of equations.
All solutions utilize the Fast Walsh Transform (FWT) documented in Appendix A to produce the discrete
solution values shown in the figures from the Walsh function wave components.

The formulations in Section A are completely executed in Walsh wave component space. Boundary
conditions are implicitly included in the formulation of derivatives using Eq. 27. The advantage of this
approach is a robust, quadratic convergent algorithm. The Jacobians of every wave component with respect
to changes in every other wave component and with respect to boundary conditions are automatically
implemented using operator overloading and the chain rule. The disadvantage of this approach is that
Jacobian matrices are not sparse and require large amounts of memory. Furthermore, two-point boundary
value problems require the introduction of a second-derivative dissipation in order to accommodate two
boundary conditions through Eq. 27.

The formulations in Section C replace derivative formulations from Eq. 27 with traditional, finite-
difference formulations derived from Taylor series. Finite-difference operations are enabled by a Walsh
function shift in Eq. 36.

shift(F, inc, Fbc) =



FWT (F )→ f

FWT (Fbc)→ fbc

fi → fi+inc

if inc = 1 then fbc → f1

if inc = −1 then fbc → fNi

FWT (f)→ shift

(36)

This equation uses (1) an FWT from wave components Fα to discrete components fi; (2) a shift of the discrete
indices by ±1; (3) insertion of the appropriate boundary condition at the first or last index, respectively;
and (4) an FWT back to wave components Fα from discrete components fi. This approach enables explicit
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inclusion of boundary conditions and does not require storage of the full Jacobian. More relaxation steps
are required per time step than with the implicit formulation but convergence is orders of magnitude faster
than the implicit formulation for problems with more than 1024 degrees of freedom.

A. Test Case Formulation: Implicit Method

1. Advection

The linear, first-order advection equation is

∂u

∂t
+ c

∂u

∂x
= 0 (37)

where c = 1 is the wave speed and u(x, 0) = u0(x) is the initial condition on the domain 0 ≤ x ≤ 1. The
initial profile moves to the right. A periodic boundary condition is applied so that as the profile exits the
right boundary it reemerges from the left. The test is designed to provide an easily evaluated metric to
measure how well the initial profile is preserved. The initial profile in the demonstration case (see Fig. 18)
is a sawtooth defined by

u0(x) =


0 for 0 ≤ x < 1

4

1− 4|x− 1
2 | for 1

4 ≤ x <
3
4

1 for 3
4 ≤ x ≤ 1

(38)

Figure 18. The initial profile for the advection test case, u0(x ).

The basis function series representation of u(x, t) is

u(x, t) =

Nα∑
j=1

Nτ∑
i=1

U(i, j)gi(t)gj(x) (39)

The indices i and τ indicate a basis function component in time t. The indices j and α indicate a basis
function component in space x. The coefficient U(i, j) should never be interpreted as the value of u(x, t) at a
specific point in the space-time domain. Rather, it indicates the magnitude of a basis function component of
the global solution for u(x, t) across the entire space-time domain. The number of basis function components
considered in the x domain isNα = 2pα . The number of basis function components considered in the t domain
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is Nτ = 2pτ . It is important to include every member of a family pα and pτ in non-linear problems to capture
every basis function component that results from a multiplication of two or more functions.

The basis function series representation of ∂u(x,t)∂x = ux(x, t) is

ux(x, t) =

Nα∑
j=1

Nτ∑
i=1

Ux(i, j)gi(t)gj(x) (40)

The coefficients Ux(i, j) may be expressed as a function of the coefficients U(i, j) using the integrating matrix
from Eq. 24.

U(i, α) = Lx
Nα∑
j=1

Ux(i, j)χpα(j, α) + δ(α, 1)Ux0(i) (41)

The factor Lx is the length of the x domain. It is convenient in the case of a two-point boundary value
problem to replace the last term of Eq. 24 with a constant of integration that will be solved implicitly with
the other expansion coefficients. The constant of integration Ux0(i) is most generally a function of time with
basis function component i. The function δ is Kronecker delta. Einstein summation notation is adopted to
derive Ux(i, j) as an explicit function of U(i, j) and Ux0(i).

Ux(i, j) = L−1x [Dpα(j, α)U(i, α)−Dpα(j, 1)Ux0(i)] (42)

Here Dpα(j, α) equals the inverse of χTpα(α, j).
The basis function series representation of ∂u(x,t)∂t = ut(x, t) is

ut(x, t) =

Nα∑
j=1

Nτ∑
i=1

Ut(i, j)gi(t)gj(x) (43)

The coefficients Ut(i, j) are expressed as a function of the coefficients U(i, j) and constant of integration
Ut0(j) using the same algorithm defined in Eqs. 41–42. Therefore,

Ut(i, j) = L−1t [Dpτ (i, τ)U(τ, j)−Dpτ (i, 1)Ut0(j)] (44)

where the factor Lt is the length of the t domain (the time step). A simple, first-order, backward difference
approximation may also be expressed for the case pτ = 0 and i = 1.

Ut(1, j) = L−1t [U(1, j)− Ut0(j)] (45)

A residual equation representation of Eq. 37 for the Walsh function component magnitudes is

R(i, j) = Ut(i, j) + cUx(i, j) (46)

The amplitude of wave components U(i, j), the dependent variables, are solved such that each wave compo-
nent R(i, j) goes to zero. A FORTRAN module, walsh_tools,2 simplifies this solution.

Code for Eq. 37 using walsh_tools is written

if(N_tau > 1)then
resw(1) = intt(q1w(m),fa=q10w(m),diff=.true.) &

+ wave_speed*intx(q1w(m),fa=q1aw(m),diff=.true.)
else

resw(1) = (q1w(m) - q10w(m))/dt &
+ wave_speed*intx(q1w(m),fa=q1aw(m),diff=.true.)

end if

All variable names in this example ending in letter w are of type walsh and include wave components
and their Jacobians with respect to the wave components of the dependent variable. The function call
intx(q1w(m),fa=q1aw(m),diff=.true.) computes Ux(i, j) in Eq. 42. In like manner, the function call
intt(q1w(m),fa=q10w(m),diff=.true.) computes Ut(i, j) in Eq. 44. For the case with pτ = 0 (N_tau = 1)
the expression (q1w(m) - q10w(m))/dt computes Ut(i, j) in Eq. 45. The functions intt and intx implicitly
include the differentiating matrices Dpτ (i, τ) and Dpα(j, α), respectively. Note that for this linear, first-order
equation, only a single Walsh function dependent variable q1aw(m) is required to satisfy a boundary condition
in space, and q10w(m) is required to satisfy an initial condition in time. Also note that index m refers to a
subdomain. The solutions that follow use only one domain.
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2. Burgers Equation

The non-linear, second-order Burgers equation is

∂u

∂t
+

1

2

∂u2

∂x
= ν

∂2u

∂x2
(47)

where the diffusivity ν ≥ 0. The initial condition is a linear function u0(x) = −x on the domain −1 ≤ x ≤ 1
with boundary conditions ua(t) = u(−1, t) = 1 and ub(t) = u(1, t) = −1.

Given these initial and boundary conditions, the solution profile evolves according to the local value of
u. At any given time, points with a positive value of u move to the right and points with a negative value
of u move to the left with speed u. This motion is dissipated as a function of diffusivity ν. Large values of
ν evolve profiles that are nearly linear between the boundary values. Small values of ν evolve profiles with
an abrupt, shock-like transition from 1 to –1 at x = 0. Examples will be provided in Sec. B2.

If the diffusivity is specified 0, then an artificial diffusion term must be included to maintain a stable com-
putation while accommodating boundary conditions from both the left and right. The artificial dissipation
is defined

ν0 =
1

2
(dxp)

2

∣∣∣∣∂u∂x
∣∣∣∣ (48)

where dxp is the smallest segment size used in the Walsh series representation of the solution. The use of a
second-order, artificial dissipation here and in the Riemann problem that follows presents a simple solution
for communicating information from opposite boundaries. Such communication was not an issue in the
linear advection test case in which all waves travel from left to right. It is thought that a characterstic-based
formulation of this problem could offer better accuracy as ν → 0, and the transition from u = 1 to u = −1
occurs over a length smaller than dxp. For now, only the artificial dissipation is used to address this issue.

Code for Eq. 47 using walsh_tools2 is written

if(N_tau > 1)then
resw(1) = intt(q1w(m),fa=q10w(m),diff=.true.) &

+ intx(0.5_dp*q1w(m)**2-tauxw,fa=q1bw(m),diff=.true.)
else

resw(1) = (q1w(m) - q10w(m))/dt &
+ intx(0.5_dp*q1w(m)**2-tauxw,fa=q1bw(m),diff=.true.)

end if

Representation of the time derivative is exactly the same as discussed above for the advection equation. The
shear term, tauxw = ν∂u/∂x, was computed just above this block as

uxw = intx(q1w(m),fa=q1aw(m),diff=.true.)
if(nu==0._dp)then

dx2 = 0.5_dp*dx_eff**2
tauxw = dx2*absw(uxw)*uxw

else
tauxw = nu*uxw

end if

Note that if ν = 0, then the artificial dissipation is added as defined in Eq. 48. Also note that this second-
order equation has two boundary conditions that must be engaged. The Walsh function dependent variables
q1aw(m) used in the definition of uxw = ∂u/∂x and q1bw(m) used in the definition of ∂(0.5u2−ν∂u/∂x)/∂x,
provide additional degrees of freedom required to satisfy the boundary conditions. The Walsh function
dependent variable q10w(m) used in the definition of ∂u/∂t provides the additional degrees of freedom to
satisfy the initial condition.

3. Riemann Problem

The Riemann problem in one dimension defines the compressible gas dynamic flow that follows the breaking
of a virtual diaphragm separating two constant initial states. The solution typically involves the propagation
of a shock, a contact discontinuity, and an expansion fan. A particular instance of the Riemann problem
was defined by Sod7 and is frequently used in the validation of computational fluid dynamics codes.
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The one-dimensional, time-dependent, compressible gas dynamic equations are

∂ρ

∂t
+
∂ρu

∂x
= 0 (49)

∂ρu

∂t
+
∂(p+ ρu2)

∂x
= 0 (50)

∂ρE

∂t
+
∂ρuH

∂x
= 0 (51)

p = (γ − 1)ρe (52)

e = E − u2

2
(53)

H = E +
p

ρ
(54)

The need for artificial dissipation was discussed in the previous section and is added in Eqs. 55 – 57.

∂ρ

∂t
+

∂

∂x

[
ρu− ν1

∂ρ

∂x

]
= 0 (55)

∂ρu

∂t
+

∂

∂x

[
p+ ρu2 − ν2

∂ρu

∂x

]
= 0 (56)

∂ρE

∂t
+

∂

∂x

[
ρuH − ν3

∂ρE

∂x

]
= 0 (57)

The artificial diffusion coefficients defined in Eqs. 58 – 60 are of order (dxp)
2.

ν1 = (dxp)
2

∣∣∣∣∂ρ∂x
∣∣∣∣+ (dxp)

2 (58)

ν2 = (dxp)
2

∣∣∣∣∂ρu∂x
∣∣∣∣+ (dxp)

2 (59)

ν3 = (dxp)
2

∣∣∣∣∂ρE∂x
∣∣∣∣+ (dxp)

2 (60)

The equations are solved on the domain −1 ≤ x ≤ 1 with γ = 1.4. Constant initial conditions on the left
(x < 0) and right (x > 0) for the Sod test case7 are given by

pL = 1 pR = 0.1

ρL = 1 ρR = 0.125

uL = 0 uR = 0

Boundary conditions are given by

∂ρ

∂x
(−1, t) = 0

∂ρ

∂x
(1, t) = 0

ρu(−1, t) = 0 ρu(1, t) = 0

∂ρE

∂x
(−1, t) = 0

∂ρE

∂x
(1, t) = 0

Code for Eqs. 55 – 57 using walsh_tools2 is written

if(N_tau > 1)then
resw(1) = intt(q1w(m),fa=q10w(m),diff=.true.) &

+ intx(q2w(m)-q1xw,fa=q1aw(m),diff=.true.)
resw(2) = intt(q2w(m),fa=q20w(m),diff=.true.) &

+ intx(pw + rhou2w - q2xw,fa=q2aw(m),diff=.true.)
resw(3) = intt(q3w(m),fa=q30w(m),diff=.true.) &
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+ intx(q2w(m)*htw - q3xw,fa=q3aw(m),diff=.true.)
else

resw(1) = (q1w(m) - q10w(m))/dt &
+ intx(q2w(m)-q1xw,fa=q1aw(m),diff=.true.)

resw(2) = (q2w(m) - q20w(m))/dt &
+ intx(pw + rhou2w - q2xw ,fa=q2aw(m),diff=.true.)

resw(3) = (q3w(m) - q30w(m))/dt &
+ intx(q2w(m)*htw - q3xw,fa=q3aw(m),diff=.true.)

end if

The main difference between this code sample and previous ones in this section is that there are three
dependent variables and three corresponding residual equations to be solved. The reciprocal of density is
required to compute velocity and pressure from the conserved variables. The reciprocal evaluation uses the
Fast Walsh Reciprocal documented in Sec. VIII (Appendix B).

B. Test Case Solutions with Implicit Method

1. Advection

The Walsh function solution of the advected profile after one cycle is compared to the exact solution in Fig.
19(a). If a Courant number is defined as the ratio of the distance traveled by a wave in time step dt divided
by the smallest segment size dxp, then the Courant number in this case is cdt/dxp = 2.55. The error norm
after one cycle equals 1.66 10−3. Some oscillation is evident at the front foot of the profile. If the case is
rerun through Eq. 34 with nf = 1 to smooth oscillations, the error norm after one cycle increases to 1.37
10−2, and the profile is shown in Fig. 19(b). Truncation of wave component contributions for n > 2pα−1

eliminates the oscillations at the expense of smoothing out the discontinuities at the tip and feet of the
profile.

If temporal degrees of freedom are exchanged for spatial degrees of freedom by decreasing pτ to 0 and
increasing pα to 10, then the Courant number increases to 10.23, and the profile appears in Fig. 19(c).

In stark contrast to the previous case, if spatial resolution is sacrificed for increased temporal revolution
by setting pα = 6 and pτ = 6 and increasing the time step dt by a factor of 100, then a complete cycle
is computed in a single time step, as shown in Fig. 19(d) with zero error norm for the linear problem.
Zero error means that the advected profile exactly crosses the segment midpoints. The Courant number in
this case is 63, using the previous definition. A more representative definition of the Courant number is to
consider the distance traveled by a wave in the smallest temporal segment size c(dt)p divided by the smallest
segment size in space (dx)p, in which case the Courant number is equal to 1. This result exhibits a resonance
in that the computed profile exactly repeats every time step, so that the l1norm = 0 in a single relaxation
step because the initial condition at the beginning of the time step equals the converged condition at the
end of the time step.

2. Burgers Equation

A steady solution is obtained for t > 6.6 based on attaining an l1norm < 10−10 in a single relaxation step
following an advance in time. The steady solution at t = 10 is shown in Fig. 20(a). The segmented nature of
the underlying Walsh function support is evident in the stair stepping appearance of the solution. The stair
stepping is less evident in Fig. 20(b) in which pα = 8 and segment size is a factor of 4 smaller. The error
norm for this problem is recorded in Table 2. With each increment in pα, the number of segments is doubled
and the error norm decreases by a factor of approximately 4, indicating second-order accuracy relative to
the smallest segment size.

As the shock thickness decreases below the width of (dx)p with decreasing ν, oscillations may be encoun-
tered in the solution. These oscillations are eliminated by truncating the highest family of Walsh function
contributions to the solution at the conclusion of a time step. An example is presented in Fig. 21, where
the solution without (a) and with (b) truncation is shown when ν = 0.001 and pα = 8. The error norm
without truncation is 7.27 10−3 and with truncation is 1.94 10−3, indicating roughly a factor of 4 decrease
in error. It is a subtle but important point to note that the highest order Walsh functions still contribute
to the lower-order non-linear solution retained after truncation through the self-mapping property under
multiplication.
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(a) pα = 8, pτ = 2, truncate = 0, dt = 0.01 (b) pα = 8, pτ = 2, truncate = 1, dt = 0.01

(c) pα = 10, pτ = 0, truncate = 0, dt = 0.01 (d) pα = 6, pτ = 6, truncate = 0, dt = 1.

Figure 19. Advection test problem showing profile after one complete cycle at t = 1. Black is the Walsh
function series solution. Red is the exact solution.

Table 2. Error norms for Burgers equation with ν = 0.1.

pα error norm error norm ratio
3 1.28 10−1 -
4 1.33 10−2 9.62
5 2.60 10−3 5.12
6 5.89 10−4 4.41
7 1.40 10−4 4.21
8 3.45 10−5 4.06
9 8.92 10−6 3.87
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(a) pα = 6 (b) pα = 8

Figure 20. Effect of pα in case of ν = 0.1, pτ = 0, and pdomain = 0 for Burgers equation. Black is the Walsh
function series solution. Red is the exact solution.

(a) truncate = 0 (b) truncate = 1

Figure 21. Effect of truncate in case of ν = 0.001, pα = 8, pτ = 0, and pdomain = 0 for Burgers equation. Black
is the Walsh function series solution. Red is the exact solution.

3. Riemann Problem

The simulation is run with a time step dt = 0.002 with eight sub-domains. The Walsh series representation
of each dependent variable includes 128 terms (pα = 7) in each sub-domain. Each sub-domain overlaps its
neighbor by dxp (Eq. 2). The solution for density at t = 0.42 is presented in Fig. 22. The expansion moving
to the left is evident for −.5 < x < 0. The contact discontinuity at x ≈ 0.35 and the shock at x ≈ 0.7 move
to the right. The constant states between the shock and the contact discontinuity, and between the contact
discontinuity and the head of the expansion, are in excellent agreement with the exact solution. The tail of
the expansion at x ≈ −0.5 is slightly rounded. The contact discontinuity appears more dissipated than the
shock. The largest differences are thought to be associated with the direction of characteristics approaching
the discontinuities.
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Figure 22. Density profile at t = 0.42 for Riemann problem. Black is the Walsh function series solution. Red
is the exact solution.

C. Test Case Formulation: Explicit, Upwind Method

The essential difference between the explicit formulations in this section and the implicit formulation defined
previously in Sec. A is use of the shift function (Eq. 36) to enable explicit treatment of boundary conditions
in the formulation of spatial and temporal derivatives – replacing Eq. 27. Additional advantages include
the ability to introduce accurate formulations higher than second-order and eliminating the requirement for
explicit artificial dissipation for inviscid problems. In essence, numerical tests indicate that the numerical
dissipation implicit in the upwind formulation is sufficient to provide good shock capturing.

A generic formulation of the test problems from the previous section follows. Only one space dimension
is considered, but extension to multiple space dimensions follows identical patterns.

∂q

∂t
+
∂f

∂x
= 0 (61)

∂q

∂t
+ A

∂q

∂x
= 0 (62)

∂q

∂t
+ RΛR−1

∂q

∂x
= 0 (63)

∂q

∂t
+

1

2
R (Λ + |Λ|) R−1

∂q

∂x
+

1

2
R (Λ− |Λ|) R−1

∂q

∂x
= 0 (64)

∂q

∂t
+ A+ ∂q

∂x
+ A−

∂q

∂x
= 0 (65)

∂q

∂t
+
∂f+

∂x
+
∂f−

∂x
= 0 (66)
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Here A is the Jacobian of f with respect to q, R is a right eigenvector matrix of A and Λ is the diagonal
eigenvalue matrix of A. Note that formulations based on Eq. 65 showed poor resolution of jump conditions
across discontinuities in approximations higher than 1st-order whereas Eq. 66 was required for conservation.

The differentials δf±i+1/2 across the interface between segments i and i+ 1 are computed

δf±i∓1/2 = ±A±(q̃i∓1/2) (qi − qi∓1) (67)

δf+w,−1/2 = A+(q̃w,−1/2) (qw − shift(qw, 1,qw,bc,0)) (68)

δf−w, 1/2 = −A−(q̃w, 1/2) (qw − shift(qw,−1,qw,bc,N+1)) (69)

The differential expressions in Eqs. 68 and 69 are written with subscript w to emphasize that the underlying
Walsh series representation is equivalent to the discrete formulation in Eq. 67. The interface average, q̃, is
defined such that Roe’s Property U8 is satisfied, in particular,

A(q̃i+1/2) (qi+1 − qi) = (fi+1 − fi) (70)

The derivative ∂f+

∂x will be approximated by a backward difference formula and ∂f−

∂x will be approximated
by a forward difference formula to inject an accurate zone of dependence and to provide strong diagonal
dominance for the explicit, inviscid solver as follows:

(
∂f±

∂x

)
i

=


(3f±i − 4f±i∓1 + f±i∓2)/(2dx) +O(dx2)

(11f±i − 18f±i∓1 + 9f±i∓2 − 2f±i∓3)/(6dx) +O(dx3)

(25f±i − 48f±i∓1 + 36f±i∓2 − 16f±i∓3 + 3f±i∓4)/(12dx) +O(dx4)

(71)

(
∂f±

∂x

)
i

=


(3δf±i∓1/2 − δf

±
i∓3/2)/(2dx) +O(dx2)

(11δf±i∓1/2 − 7δf±i∓3/2 + 2δf±i∓5/2)/(6dx) +O(dx3)

(25δf±i∓1/2 − 23δf±i∓3/2 + 13δf±i∓5/2 − 3δf±i∓7/2)/(12dx) +O(dx4)

(72)

(
∂f±

∂x

)
i

= δf±i∓1/2/(dx) +


(δf±i∓1/2 − δf

±
i∓3/2)/(2dx) +O(dx2)

(5δf±i∓1/2 − 7δf±i∓3/2 + 2δf±i∓5/2)/(6dx) +O(dx3)

(13δf±i∓1/2 − 23δf±i∓3/2 + 13δf±i∓5/2 − 3δf±i∓7/2)/(12dx) +O(dx4)

(73)

(
∂f±

∂x

)
w

= δf±w,∓1/2/(dx) +


(δf±w,∓1/2 − δf

±
w,∓3/2)/(2dx) +O(dx2)

(5δf±w,∓1/2 − 7δf±w,∓3/2 + 2δf±w,∓5/2)/(6dx) +O(dx3)

(13δf±w,∓1/2−23δf±w,∓3/2+13δf±w,∓5/2−3δf±w∓7/2)/(12dx) +O(dx4)

(74)

where dx is the smallest segment size in the Walsh series representation defined by Eq. 2. The shift function
(Eq. 36) is used to compute all elements of Eq. 74 and explicitly introduces boundary conditions from the
left for δf+ and from the right for δf−. Again, the subscript w emphasizes that these terms are represented
by the Walsh series that span the entire domain (all i). The terms to the right of the brace in Eq. 74 are
treated separately as second-, third-, and fourth-order corrections (δf±i,o, o = 2, 3, 4, respectively) to the
baseline, first-order derivative formulation. The magnitude of these corrections tend to be small except near
discontinuities in f± where they exhibit a relatively large magnitude oscillation. This behavior is clipped
locally in discrete, physical space through clip(δf±i,o).

clip(δf±i,o) =


δf±i,o for |δf±i,o| ≤ fref

max[0, 1− ( 1− δf±i,o/fref )2]δf±i,o for δf±i,o > fref

max[0, 1− (−1− δf±i,o/fref )2]δf±i,o for δf±i,o < −fref

(75)

where fref = f0ref
∑Ni|
i=1δfi,o|/Ni has been used herein and f0ref is a user defined clipping factor relative to

the average value over the domain.
Finally, the third- and fourth- order corrections to spatial derivatives are filtered to suppress instabilities

using Eq. 34. The temporal derivative ∂q/∂t is computed directly from Eq. 74 by substituting δqn−1/2 for
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δf+i−1/2. It is not required to process the high-order corrections for temporal derivatives with the clipping
function clip or the filtering function trun.

The Walsh series representation of qw is obtained by driving the L1 norm of the residual of Eq. 66 to
less than 10−10 over sub-iteration m for each time step as follows:

rw =
∂qw
∂t

+
∂f+w
∂x

+
∂f−w
∂x

(76)

rm+1
w = rmw +

[
∂rw
∂qw

]
(qm+1
w − qmw ) (77)

qm+1
w = qmw −

[
∂rw
∂qw

]−1
rmw (78)

where the Jacobian of the Walsh series representation of the residual with respect to the Walsh series
representation of the dependent variable is defined by[

∂rw
∂qw

]
=

∂

∂qw

(
∂qw
∂t

)
+

∂

∂qw

(
∂f+w
∂x

)
+

∂

∂qw

(
∂f−w
∂x

)
(79)

and each component of the Jacobian is approximated by

∂

∂qw

(
∂qw
∂t

)
≈ cτ

dt
(80)

∂

∂qw

(
∂f+w
∂x

)
≈ ∂

∂qw

(
δf+w,−1/2/dx

)
≈ cα

dx
A+
w,−1/2 (81)

∂

∂qw

(
∂f−w
∂x

)
≈ ∂

∂qw

(
δf−w,+1/2/dx

)
≈ −cα

dx
A−w,+1/2 (82)

The relaxation coefficients cτ and cα are usually set equal to the leading coefficient of δf±w,∓1/2/(dx) in Eq. 72.
The Jacobian in Eq. 79 is a (3x3) for the one-dimensional Riemann problem where each element includes 2p

components of the Walsh series defining the element. Its inverse is calculated using Cramer’s rule for this
small system. In contrast, the linear system in the implicit formulation has size (3 (2p) x 3 (2p)), neglecting
implicit treatment of boundary conditions.

D. Test Case Solutions with Explicit Method

1. Advection

Solutions for the linear, first-order advection equation (Eq. 37) are repeated here with the explicit method.
The wave speed c is a constant equal to 1; consequently A+ = 1 and A− = 0. In addition to the sawtooth
initial condition (Eq. 38) a singularity-free Gaussian initial condition (Eq. 83) is tested to confirm the order
of accuracy.

u0(x) = exp(−10(x− 0.5)2) (83)

Figure 23 summarizes results for the advection of a Gaussian profile. All cases examine the distortion of
the initial profile after 20 cycles (t = 20) through the domain. A periodic boundary is specified so that the
profile exiting the right boundary reemerges through the left boundary. None of the simulations required
any clipping operations (f0ref = 10000) because the profile is continuous. The ratio of time step to minimum
segment size is fixed at 0.9216. The domain is only one segment in time (pτ = 0) in these tests.

A progression of solutions with increasing resolution in space and time is shown in Figs. 23(a–d) for the
third-order formulation with a single filtering step. An oscillation at the tail of the profile grows large after
20 cycles for the largest segment size (p = 6). A single doubling of the number of segments (and halving
the time step) still shows a slight oscillation at the tail of the profile after 20 cycles for p = 7 in Fig. 23(b).
The oscillation is eliminated in subsequent refinements in Figs. 23(c–d). The second-order formulation with
p = 9 did not require any filtering steps in Fig. 23(e); however, preservation of the initial profile is not
quite as good as the corresponding third-order formulation. Solution accuracy is quantified in Fig. 23(f).
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Third-order accuracy is confirmed with a slope 3 reduction in the log of the error norm versus the log of
the segment size. Second-order accuracy is confirmed with a slope 2 reduction in the log of the error norm
versus the log of the segment size. Fourth-order simulations at these conditions required a minimum of two
filtering steps to suppress instabilities at the tail of the profile over large times. That filtering precluded a
slope 4 reduction in error norm. In fact, the third-order result with a single filtering step was consistently
more accurate than the fourth-order formulation with two or more filtering steps.

(a) p = 6, third-order, nf = 1 (b) p = 7, third-order, nf = 1 (c) p = 8, third-order, nf = 1

(d) p = 9, third-order, nf = 1 (e) p = 9, second-order, nf = 0 (f) L1 error norm

Figure 23. Advected Gaussian profile after 20 cycles through the domain.

Advection of the sawtooth profile is reexamined in Fig. 24 using the explicit method. Second- and
third-order formulations are presented in Figs. 24(a and b) with p = 9. Both cases use a CFL (dt/dxmin) =
0.9216. The third-order formulation requires two filtering steps to suppress oscillations. The CFL is raised
to 2.048 in Fig. 24(c) for the third-order formulation, but an extra filtering step was required to suppress
oscillations. In Fig. 24(d), it is confirmed that clipping (f0ref ) is an ineffective substitute for filtering to
suppress instabilities for this C0 continuous profile. Though not presented here, additional tests of both
second- and third-order formulations only produce slightly better than slope 1 (first-order) error reduction
in this problem that is C1 discontinuous.

2. Burgers Equation with Source Term

The method of manufactured solutions9 is used to modify Eq. 47 and verify order-of-accuracy for an unsteady,
non-linear problem. A simple change to the initial condition enables an interesting unsteady problem with
a moving shock with changing direction. Because the explicit method does not require a second derivative
dissipation to close the problem (as with the implicit method), only the inviscid form (ν = 0) in Eq. 47 is
considered.

The manufactured solution for this test is

u(x, t) = 1 + sin(x+ 2t) (84)
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(a) p = 9, second-order, nf = 0, f0ref = 104, ∆t = 0.0018 (b) p = 9, third-order, nf = 2, f0ref = 104, ∆t = 0.0018

(c) p = 9, third-order, nf = 3, f0ref = 104, ∆t = 0.004 (d) p = 9, third-order, nf = 1, f0ref = 4, ∆t = 0.0018

Figure 24. Advected Delta profile after 20 cycles through the domain.

Substitute Eq. 84 into Eq. 47 (with ν = 0) to compute the requisite source term to obtain the manufactured
solution.

∂u

∂t
+

1

2

∂u2

∂x
= s(x, t) (85)

∂(1 + sin(x+ 2t)

∂t
+

1

2

∂ [1 + sin(x+ 2t)]
2

∂x
= s(x, t) (86)

2 cos(x+ 2t) + [1 + sin(x+ 2t)] cos(x+ 2t) = s(x, t) (87)

Two initial conditions are tested. In the first, u(x, 0) = 1 + sin(x) enables verification that the manufactured
solution is recovered by the explicit formulation to the specified order of accuracy. In the second, u(x, 0) = −x
produces a solution that approaches the manufactured solution through a shocked, intermediate state.
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(a) L1 norm, second-order, exact initial
condition

(b) L1 norm, third-order, exact initial
condition

(c) p = 8, t = 2.00, u(x, 0) = −x

(d) p = 10, t = 0.01, u(x, 0) = −x (e) p = 10, t = 0.50, u(x, 0) = −x (f) p = 10, t = 0.75, u(x, 0) = −x

(g) p = 10, t = 1.00, u(x, 0) = −x (h) p = 10, t = 1.50, u(x, 0) = −x (i) p = 10, t = 2.00, u(x, 0) = −x

Figure 25. Burgers equation with source term from Method of Manufactured Solutions.

In the explicit formulation

q̃w,−1/2 =
1

2
(qw + shift(qw, 1,qw,bc,0)) (88)

q̃w,+1/2 =
1

2
(qw + shift(qw,−1,qw,bc,N+1)) (89)

A± =
1

2

(
q̃w,∓1/2 ± |q̃w,∓1/2|

)
(90)

Verification of the convergence rate with the order of accuracy for the first initial condition yielding a
continuous solution for all time is shown in Figs. 25(a and b). The L1 norm at t = 2 is recorded with
the second-order formulation showing a slope of 2 and the third-order formulation showing a slope of 4.
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The third-order results include a single filtering sweep. Fourth-order formulations (not shown) required two
filtering sweeps that prevented a slope 4 convergence rate.

Some simulations with pα = 8 were executed with finer resolution in the time domain (pτ = 1, 2, 3). The
time step was increased by a factor of 2pτ in order that the minimum time step used to compute a CFL was
consistent with the other runs. Note that the error norms for all of the pα = 8 cases are consistent.

Figures 25(c–i) present results for the second initial condition that yields a moving shock as the solution
evolves in time. The red curve in these figures shows the manufactured solution and the black curve shows
the computed solution at the same point in time. All of the computed solutions use the third-order accurate
formulation with a single filtering step (nf = 1) and a clipping parameter (f0ref = 4). Fig. 25(c) can be
contrasted to Fig. 25(i) to see the sharper jump that is enabled by better spatial resolution. In all cases,
there is usually only one segment and never more than two segments in the captured shock. The temporal
evolution of the profile is evident in Figs. 25(d–i). The linear, initial profile is still evident at t = 0.01 in Fig.
25(d). At t = 0.5 (Fig. 25(e)), the computed profile starts to collapse on to the reference profile at the left
boundary. The profile is beginning to steepen at x = 0.6 because of left moving waves (u < 0) associated
with the initial condition. At t = 0.75 (Fig. 25(f)), the discontinuity is being pushed to the right where the
magnitude of u to the left of the jump exceeds the magnitude of u to its right. By t = 1.0 (Fig. 25(g)), the
shock is just starting to move back to the left as the source term is pulling the magnitude of the left side of
the jump condition to lower values. The shock continues to be pulled to the left in Figs. 25(h and i) as the
reference solution approaches a minimum value before beginning to rise again. Though not shown here, the
shock continues to the left until stopping at t = 3.08, x ≈ −0.4, and then sweeping quickly back to the right.
Other reversals of direction occur at t = 4.56 and t = 5.44 until the computed solution collapses completely
on the manufactured solution for t > 6.2. It is observed that the clipping and filtering functions maintain a
very sharp jump condition without oscillation or overshoots.

3. Riemann Problem

The explicit formulation of the Riemann problem follows for all quantities defined in Eqs. 66–69. All of the
operations involve arguments defined by a Walsh series and use operator overloading in their implementation.

[ρ, u,H]ws,+1 = shift([ρ, u,H]w , 1, [ρ, u,H]w,bc,0) (91)
[ρ, u,H]ws,−1 = shift([ρ, u,H]w ,−1, [ρ, u,H]w,bc,N+1) (92)

ρ̃w,∓1/2 =
√

(ρwρws,±1) (93)

φ̃w,1,∓1/2 =
ρw

ρw + ρ̃w,∓1/2
(94)

φ̃w,2,∓1/2 =
ρws,±1

ρws,±1 + ρ̃w,∓1/2
(95)

[u,H]w,∓1/2 = φ̃w,1,∓1/2 [u,H]w + φ̃w,2,∓1/2 [u,H]ws,±1 (96)

αw,∓1/2 =
u2w,∓1/2

2
(97)

cw,∓1/2 =
√
β(Hw,∓1/2 − αw,∓1/2) (98)

R± =
1

2c2w,∓1/2

 2 1 1

2u u+ c u− c
2α H + cu H − cu


w,∓1/2

(99)

Λ± =

 u 0 0

0 u+ c 0

0 0 u− c


w,∓1/2

(100)

R−1,± =

 c2 − βα βu −β
βα− cu c− βu β

βα+ cu −c− βu β


w,∓1/2

(101)
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The Sod test case was discussed previously in Sec. B3, and its solution by the implicit formulation was
presented in Fig. 22. Corresponding results with the explicit formulation are shown in Fig. 26. In this figure,
the computed solution in black is compared to the exact solution in red. The simulations show results with
9 ≤ p ≤ 12 and second- to fourth-order formulations of the derivatives with time step dt = 0.001. The L1

error norm for these cases is dominated by the solution at the moving shock and contact discontinuity and
so error reduction as a function of grid refinement is first-order. In all cases, the shock (x = 0.74) is captured
with fewer mesh points than the contact discontinuity (x = 0.38). The tail of the expansion near x = 0 shows
a sharp change in slope. The head of the expansion near x = −0.45 shows a rounded transition compared
to the exact solution. It is difficult to discern any significant differences between second-, third-, and fourth-
order accurate simulations where the only non-constant state is in the expansion region (−0.45 > x > 0).
Increasing resolution has the most significant effect on solution accuracy as seen by comparing Fig. 26(f) to
any of Figs. 26(a–e). Still, none of the simulations repeat the exceptionally sharp shock captures (only one
interior segment) as achieved with Burgers equation in Figs. 25(f–i). Clipping the high-order correction is
effective in eliminating overshoots in all cases. A single level of filtering the high-order corrections is required
in the third- and fourth-order simulations to suppress instabilities.

(a) p=9, second-order, f0ref =0.5, nf =0 (b) p=9, third-order, f0ref =0.5, nf =1 (c) p=9, fourth-order, f0ref =0.5, nf =1

(d) p=9, fourth-order, f0ref =0.5, nf =2 (e) p=10, fourth-order, f0ref=0.5, nf =2 (f) p=12, second-order, f0ref=0.1, nf=0

Figure 26. Riemann problem with Sod initial conditions at t = 0.4.

The initial conditions across the diaphragm in Fig. 27 correspond to a pressure and density jump
corresponding to a Mach number of 8.5. (Tests up to Mach 50 conditions have been generated with equivalent
results.) These conditions produce a more challenging simulation in that a very narrow domain between the
shock front (x ≈ 0.3) and the contact discontinuity (x ≈ 0.2) in Fig. 27(b) creates a slug of high density gas
that is more than a factor of 2 denser than in the undisturbed state to its right or the post-expansion state
to its left. The domain between the contact discontinuity and the tail of the expansion is slightly supersonic.
The expansion from (−0.3 < x < 0) goes from subsonic to supersonic conditions. A small expansion shock
is evident near x = 0 in Figs. 27(b–c). Numerical tests (not shown) indicate the jump is dissipated by
setting |u ± c| to be greater than c/4 in Eq. 64 – a simple implementation of the entropy fix.10 Note that
the simulation tracks the motion of all critical points (shock front, contact discontinuity, tail, and head of
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the expansion) while running in explicit mode with a CFL = 2.13.

(a) t = 0.05 (b) t = 0.5

(c) t = 1.0 (d) t = 1.5

Figure 27. Riemann problem with pL = 1, ρL = 6, pR =0.01, and ρR = 1 with ∆t = 0.005 and λmax∆t/dxmin =
2.13. Numerical parameters are pα = 10, third-order, f 0

ref = 0.1, nf = 1.

Table 3 compares the time to execute 10 time steps for the Riemann problem using the implicit and
explicit formulations. Times are based on a compilation using a gfortran compiler with a –O0 option on a
2.93 GHz Intel Core 2 Duo processor. No attempt has been made to tune either the implicit or explicit path.

Table 3. CPU time to advance 10 time steps.

pα Implicit time Explicit time Iter/step, implicit Iter/step, explicit
6 12.933 0.485 2 5.2
7 75.421 0.733 2.9 5.2
8 377.712 1.450 3 5.2
9 1691.462 3.438 3 6.1

The average number of relaxation steps per time step to drive the residual below 10−10 are presented in the
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last two columns. The explicit method requires more relaxation steps per time step to achieve the target
residual than the implicit method. However, the approximate Jacobian of the explicit method requires
2p fewer elements than the exact Jacobian of the implicit method thus enabling orders of magnitude of
time-saving for p > 7.

V. Summary

Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature
of square waves make the system well suited for representing functions with discontinuities. A review of
Walsh function fundamentals, starting with their derivation and including descriptions of algorithms to
form their products, reciprocals, integrals, and derivatives is provided. Details of a Fast Walsh Transform
in multi-dimensions is provided, which enables transforms from discrete variable space to wave space and
back in order N log(N) operations. A Fast Walsh Reciprocal is defined that enables the inversion of a Walsh
Symmetric Matrix in order N log(N) operations. This inversion is required in the evaluation of the reciprocal
of a function represented by a Walsh series.

Because Walsh functions can be derived using a fractal partitioning of a domain,1 it is not surprising
(perhaps even expected) that Walsh series representations of functions also exhibit recursive, self-similar
patterns in their wave components. A remapping of Walsh function components is introduced here that
makes it easier to identify these recursive patterns. The resulting figure is defined as a fractal fingerprint
(FFP). The FFP of several functions that are singularity-free in a domain reveal a simple factor 2 scaling
between components in adjacent groups. The FFP of functions that include singularities in the domain also
show recursive patterns but the relation is more complex. These patterns are observed but not proved and
more work is required to understand their potential utility in solving partial differential equations (PDEs).

Three test problems focusing on unsteady simulations documented herein include linear advection, Burg-
ers equation, and a Riemann problem. The first case provides examples of a profile with discontinuities in
slope that are advected across the domain. The other two cases explore shock-capturing and the ability to
accurately track a moving discontinuity. Two algorithms are developed to simulate these test problems. The
first, a purely implicit algorithm, solves for the Walsh series components individually. While excellent con-
vergence is achieved and the Jacobian of the solution is automatically generated through the use of derived
types and operator overloading, the size of the Jacobian rapidly becomes intractable (on a single processor)
for more than 213 degrees of freedom. Consequently, a second, explicit algorithm is derived in which the
solution is focused on an update to the entire series representation of the function as a single entity – and
not on individual wave components as if they were independent variables. Thus, a one-dimensional Riemann
problem with 1024 degrees of freedom would require a linear solve of a (3072x3072) system where each
element of the system is scalar in the implicit formulation. By contrast, the explicit formulation requires a
linear solve of a (3x3) system where each element of the system includes 1024 Walsh series components that
define the dependent variables over the entire domain.

This paper presents the initial exploration of algorithms based on Walsh function series to solve un-
steady, non-linear PDEs. The use of truncation to suppress instabilities and prolongation to serve as the
wave-component counterpart of grid sequencing are demonstrated. Third-order solutions using the explicit
formulation are verified using the method of manufactured solutions for a non-linear Burgers equation and
comparing to the exact solution for advection of a Gaussian profile. Courant numbers (CFL) up to 2 have
yielded accurate results for time dependent problems. Tests involving higher CFL numbers (greater than 5)
are stable with filtering of high-order corrections but deform the solution profile, defeating the purpose of a
time accurate simulation. A longer term goal to gather metrics comparing the evolving algorithms based on
Walsh function series to more traditional approaches will follow from the work presented herein.
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VII. Appendix A: Sequency-Ordered Fast Walsh Transform in
Multi-dimensions

Throughout this paper, Walsh functions are represented by g. Subscripts indicate a component of the
Walsh series as a function of independent variables (x, y, z, t). This representation is maintained to emphasize
the origins of this algorithm as an orthonormal series representation of the solution. However, the mechanics
of Fast Walsh Transforms (FWT) from discrete values of a function to its wave/sequency components and
back makes explicit evaluation of g unnecessary provided that the number of components is a power of
2 and the discrete functional values are uniformly distributed in computational space. The FWT enables
transforms in O(N log(N)) operations as opposed to O(N2) operations as would be required in a conventional
evaluation of the series.

Equation 102 presents the expansion of a function f of four independent variables (three space and one
time) in terms of a Walsh function series.1 In this equation, Nα, Nβ , Nγ , and Nτ are the total number of
Walsh functions used to represent the function in the x, y, z, and t directions, respectively. Fα,β,γ,τ are
the wave number components of the expansion, where α, β, γ, and τ are integers defining the number of
segments in each Walsh function component direction.

f(x, y, z, t) =

Nτ∑
τ=1

Nγ∑
γ=1

Nβ∑
β=1

Nα∑
α=1

Fα,β,γ,τgα(x)gβ(y)gγ(z)gτ (t) (102)

Equation 103 defines the domain over which Eq. 102 is valid. This equation also sets up a uniform
discretization of space based on the smallest segment size of the Walsh function in each respective direction.
Here i, j, k, and n are integers defining the uniform discretization of space in the x, y, z, and t directions,
respectively.

x0 ≤ x ≤ xNα ∆x = (xNα − x0)/Nα xi = x0 + i∆x 1 ≤ i, α ≤ Nα
y0 ≤ y ≤ yNβ ∆y = (yNβ − y0)/Nβ yj = y0 + j∆y 1 ≤ j, β ≤ Nβ
z0 ≤ z ≤ zNγ ∆z = (zNγ − z0)/Nγ zk = z0 + k∆z 1 ≤ k, γ ≤ Nγ
t0 ≤ t ≤ tNτ ∆t = (tNτ − t0)/Nτ tn = t0 + n∆t 1 ≤ n, τ ≤ Nτ

(103)

Equation 104 defines the integral average of f(x, y, z, t) in the discretized element defined by xi−1 ≤ x ≤
xi, yj−1 ≤ y ≤ yj , zk−1 ≤ z ≤ zk, and tn−1 ≤ t ≤ tn. The representation of the discretized function fi,j,k,n
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as a Walsh function series in Eq. 105 follows from Eq. 102.

fi,j,k,n =
1

∆x∆y∆z∆t

∫ tn

tn−1

∫ zk

zk−1

∫ yj

yj−1

∫ xi

xi−1

f(x, y, z, t) dx dy dz dt (104)

=

Nτ∑
τ=1

Nγ∑
γ=1

Nβ∑
β=1

Nα∑
α=1

Fα,β,γ,τgα(xi−1/2)gβ(yj−1/2)gγ(zk−1/2)gτ (tn−1/2) (105)

It is convenient to think of terms like xi−1/2 as the point halfway between xi−1 and xi. Because the
Walsh function gα(x) is piecewise constant over a segment, and all segment lengths are integer multiples (2p)
of the smallest segment size, terms like xi−1/2 may refer to any point between xi−1 and xi.

Equation 106 defines the Walsh function wave number components Fα,β,γ,τ as a function of f(x, y, z, t).
The definition of Fα,β,γ,τ as a function of the discretized values fi,j,k,n in Eq. 107 follows from Eqs. 104 and
106.

Fα,β,γ,τ =

∫ tNτ

t0

∫ zNγ

z0

∫ yNβ

y0

∫ xNα

x0

f(x, y, z, t)gα(x)gβ(y)gγ(z)gτ (t)dxdydzdt (106)

=

Nτ∑
n=1

Nγ∑
k=1

Nβ∑
j=1

Nα∑
i=1

fi,j,k,ngα(xi−1/2)gβ(yj−1/2)gγ(zk−1/2)gτ (tn−1/2)∆x∆y∆z∆t (107)

If one has all of the elements Fα,β,γ,τ in Eq. 105, then any single element of fi,j,k,n can be computed in
4N multiplications and N additions (assuming Walsh functions are pre-computed) where N = NαNβNγNτ .
Consequently, all N elements of fi,j,k,n can be computed in O(N2) operations. In like manner, if one has all
N elements of fi,j,k,n in Eq. 107, then all N elements of Fα,β,γ,τ can be computed in O(N2) operations. In
the special case where each dimension is an integer power of 2 (Nα = 2pα , Nβ = 2pβ , Nγ = 2pγ , Nτ = 2pτ ),
a fast transform from all N of Fα,β,γ,τ to fi,j,k,n or back can be implemented in O(pN) operations where
integer p = pα + pβ + pγ + pτ . Closure under multiplication has this same requirement,1 and so it adds no
extra burden in the solution of differential equations.

Note the similarities between Eq. 105 and its inverse transform in Eq. 107. If one executes a change in
variable from (i, j, k, n) to (α, β, γ, τ) in Eq. 107, then it has the same formulation except for the normalizing
factor ∆x∆y∆z∆t and a transpose of subscripts in the Walsh function factors. Inspection of Fig. 7 of the
preceding paper1 on this topic shows that terms like gα(xi−1/2) are equal to their their transpose, gi(xα−1/2).
Indeed, the matrix gα(xi−1/2) is equal to its own inverse within a normalizing factor.

Sequency-ordered (by increasing number of segments) Fast Walsh transforms are well documented for
a function of a single variable.11,12 A simple extension to multi-dimensions is defined here. A recursive
algorithm12 that does not require bit-reversal is modified here to accommodate multi-dimensional functions.
This algorithm retains the advantage of producing its own inverse to within a normalizing factor.

A schematic of the algorithm is presented in Fig. 28. The fast transform implemented here works
sequentially through the x, y, z, and t dimensions. Scaled discrete functional values of fi,j,k,n (or of Walsh
function component factors Fα,β,γ,τ ) are stored in a one-dimensional array f(ι) where

ι =

i+Nα(j − 1 +Nβ(k − 1 +Nγ(n− 1))) for transform from fi,j,k,n to Fα,β,γ,τ
α+Nα(β − 1 +Nβ(γ − 1 +Nγ(τ − 1))) for transform from Fα,β,γ,τ to fi,j,k,n

(108)

and

f(ι) =

fi,j,k,n∆x/
√
xNα − x0 for transform from fi,j,k,n to Fα,β,γ,τ

Fα,β,γ,τ/
√
xNα − x0 for transform from Fα,β,γ,τ to fi,j,k,n

(109)

First, consider the transform from fi,j,k,n to Fα,β,γ,τ through Loop 1 in the x direction as indicated in
Fig. 28. If pα = 0, there is nothing to be done and the algorithm moves on to Loop 2. If pα > 0, then
the sums and differences defined in Block 1 are implemented for every i line in the domain with origin at
1 ≤ j0 ≤ Nβ , 1 ≤ k0 ≤ Nγ , and 1 ≤ n0 ≤ Nτ . The Block 1 algorithm shown schematically in Fig. 28 is

F1(ι(i1)) = f(ι(i1)) + f(ι(i2)) (110)
F1(ι(i2)) = f(ι(i1))− f(ι(i2)) (111)
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where, for 1 ≤ α ≤ Nα/2

i1 = 2α− 1 (112)
i2 = i1 + 1 (113)

ι(i) = i+Nα(j0 − 1 +Nβ(k0 − 1 +Nγ(n0 − 1))) (114)
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Figure 28. Schematic of sequency-ordered fast-Walsh transform algorithm based on Fig. 2 of Brown.12 Solid
black line indicates addition of quantity at left. Dashed red line indicates subtraction of quantity at left. Each
block may be processed by loops 1 through 4 sequentially before advancing to the next block or the transforms
may be implemented sequentially in the dimensions corresponding to i, j, k, and n.

If pα > 1, then Block 2 through Block pα are implemented sequentially in a loop from pm = 2 to pm = pα.
Note that each Block in Fig. 28 is composed of isolated groups of length 2pm in Block pm. (The figure only
presents an eight element array.) There is no intergroup exchange of information in any block. Note that
all of the rays emanating from left to right on the top half of a group are solid black, indicating addition of
the quantity on the left to the array location on the right. These top half contributions are implemented by
looping over groups with index G of length Npm = 2pm where 1 ≤ G ≤ Nα/Npm .

Fpm(ι(i2)) = Fpm−1(ι(i1)) (115)
Fpm(ι(i3)) = Fpm−1(ι(i1)) (116)

where, for 1 ≤ α ≤ Npm/2

i1 = α+ (G− 1)Npm (117)
i2 = 2α− 1 + (G− 1)Npm (118)
i3 = i2 + 1 (119)

and ι(i) is defined as it was in Eq. 114. Rays emanating from left to right on the bottom half of the group
include one solid black and one dashed red, indicating addition and subtraction, respectively. Starting from
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the bottom left in any group and moving up through the group to the midpoint, it is noted that the ray
types alternate with respect to the order they are projected to the right. These projections are defined

Fpm(ι(i2)) = Fpm(ι(i2)) + σFpm−1(ι(i1)) (120)
Fpm(ι(i3)) = Fpm(ι(i3))− σFpm−1(ι(i1)) (121)

where, for 1 ≤ α ≤ Npm/2

i1 = Npm + 1− α+ (G− 1)Npm (122)
i2 = Npm + 2− 2α+ (G− 1)Npm (123)
i3 = i2 − 1 (124)
σ = (−1)α+1 (125)

and ι(i) is again defined as it was in Eq. 114.
The results for Fpm(ι) in Eqs. 120 and 121 are now entered into Loop 2 (f(ι) in Fig. 28) for the transform

in the y direction. Modifications to Eqs. 109 – 125 for subsequent transforms in each direction are self-
evident. For example, computations for y transforms are made for every j line in the domain with the origin
at 1 ≤ i0 ≤ Nα, 1 ≤ k0 ≤ Nγ , and 1 ≤ n0 ≤ Nτ . The definitions of ι(j1), ι(j2), and ι(j3) replacing ι(i1),
ι(i2), and ι(i3) are modified accordingly. The total operation count for a transform across all four directions
is Nop = O((pα + pβ + pγ + pτ )(NαNβNγNτ )) = O(log2(N)N).

VIII. Appendix B: Fast Walsh Symmetric Matrix Inverse

A. Preliminaries

A Walsh reciprocal matrix, W , has rank 2p and includes 2p distinct elements. The ordering of these elements
in row i and column j is defined using the mapping function P(i, j) where P(i, j) describes the self-mapping
property of Walsh functions under multiplication. That is gi(x)gj(x) = gk(x)/

√
L where 1 ≤ i, j, k ≤ 2p,

k = P(i, j), and L is the length of domain x. Walsh reciprocal matrices are encountered in the solution
of differential equations using Walsh functions. For example, the Jacobian of the product of two functions
represented by a Walsh series yields a Walsh reciprocal matrix and the inverse of W is required in the
evaluation of the reciprocal of a function represented by a Walsh series. It is shown here that W−1 can be
computed in order p × 2p operations. A Walsh reciprocal matrix has rank 2p where p is an integer greater
than 0. It is expressed by

W =



wP(1,1) wP(1,2) wP(1,3) wP(1,4) · · · wP(1,2p)
wP(2,1) wP(2,2) wP(2,3) wP(2,4) · · · wP(2,2p)
wP(3,1) wP(3,2) wP(3,3) wP(3,4) · · · wP(3,2p)
wP(4,1) wP(4,2) wP(4,3) wP(4,4) · · · wP(4,2p)

...
...

...
...

. . .
...

wP(2p,1) wP(2p,2) wP(2p,3) wP(2p,4) · · · wP(2p,2p)


(126)

where P(i, j) is a mapping function used to define the product of two Walsh functions.1 The product of
any two Walsh functions on the domain xa ≤ x ≤ xb is given by gi(x)gj(x) = (xb − xa)−1/2gP(i,j)(x). The
mapping is closed in the sense that if 1 ≤ i ≤ 2p and 1 ≤ j ≤ 2p, then 1 ≤ P(i, j) ≤ 2p. Table 4 provides
the mapping for the product of any two of the first 16 Walsh functions.

Closure under multiplication insures that there are at most 2p distinct elements in the Walsh reciprocal
matrix. The ordering is symmetric because multiplication is commutative (P(i, j) = P(j, i)). Walsh recip-
rocal matrices are encountered in the solution of differential equations using Walsh functions. It is most
obviously encountered in the generation of 1/f(x) from the Walsh series representation of f(x). It is also
encountered in the evaluation of the Jacobian of the product of two functions represented by Walsh series.

The Walsh function gn(x) has n distinct segments spanning the domain xa ≤ x ≤ xb and alternating
between positive and negative values (xb−xa)−1/2. Only two segment lengths are allowed in any function and
their distribution can be derived using a fractal algorithm to partition the domain. This fractal derivation
manifests itself in a Walsh reciprocal matrix of rank 2p through the occurrence of smaller Walsh reciprocal
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matrices that make up the larger matrix. In Table 4, one observes that the mapping function with rank 16
may be divided into four Walsh reciprocal matrices of rank 8. These rank 8 matrices may be divided into
four Walsh reciprocal matrices of rank 4 and so on. Table 4 is partitioned to show the extent of cascading
smaller matrices starting in the upper left corner. Other patterns may be observed such as a cascading set
starting at the center of the matrix (8 ≤ (i, j) ≤ 9).

These cascading symmetries are highlighted here to suggest that the same algorithmic approaches to
deriving a Fast Walsh Transform should work to develop an algorithm to compute a Fast Walsh reciprocal
matrix inverse. To this end, Walsh reciprocal matrix inverses are computed for ranks 2, 4, and 8. The
patterns revealed in this process are used to develop a general algorithm that has been tested through rank
4096 (p = 12).

Table 4. Mapping function P(i,j ) for (1,1) ≤ (i,j ) ≤ (16,16).

ji 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15
3 3 4 1 2 7 8 5 6 11 12 9 10 15 16 13 14
4 4 3 2 1 8 7 6 5 12 11 10 9 16 15 14 13
5 5 6 7 8 1 2 3 4 13 14 15 16 9 10 11 12
6 6 5 8 7 2 1 4 3 14 13 16 15 10 9 12 11
7 7 8 5 6 3 4 1 2 15 16 13 14 11 12 9 10
8 8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9
9 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8
10 10 9 12 11 14 13 16 15 2 1 4 3 6 5 8 7
11 11 12 9 10 15 16 13 14 3 4 1 2 7 8 5 6
12 12 11 10 9 16 15 14 13 4 3 2 1 8 7 6 5
13 13 14 15 16 9 10 11 12 5 6 7 8 1 2 3 4
14 14 13 16 15 10 9 12 11 6 5 8 7 2 1 4 3
15 15 16 13 14 11 12 9 10 7 8 5 6 3 4 1 2
16 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Note that the inverse of a Walsh reciprocal matrix of any rank must also be Walsh reciprocal. This
property of the inverse matrix is confirmed by observing that the dot product of the ith row of W with the
kth column of W−1 involves exactly the same terms as the dot product of the kth row of W with the ith
column of W−1. If mPj,k are the elements W−1 then

2p∑
j=1

wPi,jmPj,k ≡
2p∑
j=1

wPk,jmPj,i ≡ δ(i, k) (127)

Thus, there are only 2p independent equations available to solve for mPj,k as a function of wPi,j .
A Walsh reciprocal matrix of rank 2 (p = 1) and its inverse is presented in Eq. 128. The tilde (˜) is used

to specify a matrix of rank 2.

W̃ =

(
w̃1 w̃2

w̃2 w̃1

)
W̃−1 =

(
m̃1 m̃2

m̃2 m̃1

)
(128)

Using Eq. 127, the relations required to solve for m̃Pj,k as a function of w̃Pi,jare

w̃1m̃1 + w̃2m̃2 = 1 (129)
w̃1m̃2 + w̃2m̃1 = 0 (130)
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and their solution is given by

m̃1 =
w̃1

w̃2
1 − w̃2

2

(131)

m̃2 =
−w̃2

w̃2
1 − w̃2

2

(132)

The next highest rank Walsh reciprocal matrix has rank 4 (p = 2). Both Ŵ and its inverse are presented
in Eq. 133. The hat (ˆ) is used to specify a matrix of rank 4.

Ŵ =


ŵ1 ŵ2 ŵ3 ŵ4

ŵ2 ŵ1 ŵ4 ŵ3

ŵ3 ŵ4 ŵ1 ŵ2

ŵ4 ŵ3 ŵ2 ŵ1

 Ŵ−1 =


m̂1 m̂2 m̂3 m̂4

m̂2 m̂1 m̂4 m̂3

m̂3 m̂4 m̂1 m̂2

m̂4 m̂3 m̂2 m̂1

 (133)

Using Eq. 127, the relations required to solve for m̂Pj,k as a function of ŵPi,jare

ŵ1m̂1 + ŵ2m̂2 + ŵ3m̂3 + ŵ4m̂4 = 1 (134)
ŵ1m̂2 + ŵ2m̂1 + ŵ3m̂4 + ŵ4m̂3 = 0 (135)
ŵ1m̂3 + ŵ2m̂4 + ŵ3m̂1 + ŵ4m̂2 = 0 (136)
ŵ1m̂4 + ŵ2m̂3 + ŵ3m̂2 + ŵ4m̂1 = 0 (137)

Note that the sum and difference of Eqs. 134 and 135 yield Eq. 138, and the sum and difference of Eqs. 136
and 137 yield Eq. 139.

(ŵ1 ± ŵ2)(m̂1 ± m̂2) + (ŵ3 ± ŵ4)(m̂3 ± m̂4) = 1 (138)
(ŵ1 ± ŵ2)(m̂3 ± m̂4) + (ŵ3 ± ŵ4)(m̂1 ± m̂2) = 0 (139)

Following the example set by derivation of a Fast Walsh Transform11 note that a formulation using adjacent
sums and differences (Eqs. 140 and 141) simplifies the algorithm.

ŝ1,2 = ŵ1 + ŵ2 d̂1,2 = ŵ1 − ŵ2 (140)

ŝ3,4 = ŵ3 + ŵ4 d̂3,4 = ŵ3 − ŵ4 (141)

The solution of a (4x4) system is now converted to the solution of two (2x2) systems involving (ŝ1,2, ŝ3,4)
and (d̂1,2, d̂3,4) using Eqs. 131 and 132. The elements of Ŵ−1 are now presented by taking the appropriate
averages of sums and differences of like terms.

m̂1 =
1

2

[
ŝ1,2

(ŝ21,2 − ŝ23,4)
+

d̂1,2

(d̂ 2
1,2 − d̂ 2

3,4)

]
(142)

m̂2 =
1

2

[
ŝ1,2

(ŝ21,2 − ŝ23,4)
− d̂1,2

(d̂ 2
1,2 − d̂ 2

3,4)

]
(143)

m̂3 = −1

2

[
ŝ3,4

(ŝ21,2 − ŝ23,4)
+

d̂3,4

(d̂ 2
1,2 − d̂ 2

3,4)

]
(144)

m̂4 = −1

2

[
ŝ3,4

(ŝ21,2 − ŝ23,4)
− d̂3,4

(d̂ 2
1,2 − d̂ 2

3,4)

]
(145)

The next highest rank Walsh reciprocal matrix has rank 8 (p = 3). Both W and its inverse are presented
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in Eq. 146.

W =



w1 w2 w3 w4 w5 w6 w7 w8

w2 w1 w4 w3 w6 w5 w8 w7

w3 w4 w1 w2 w7 w8 w5 w6

w4 w3 w2 w1 w8 w7 w6 w5

w5 w6 w7 w8 w1 w2 w3 w4

w6 w5 w8 w7 w2 w1 w4 w3

w7 w8 w5 w6 w3 w4 w1 w2

w8 w7 w6 w5 w4 w3 w2 w1



W−1 =



m1 m2 m3 m4 m5 m6 m7 m8

m2 m1 m4 m3 m6 m5 m8 m7

m3 m4 m1 m2 m7 m8 m5 m6

m4 m3 m2 m1 m8 m7 m6 m5

m5 m6 m7 m8 m1 m2 m3 m4

m6 m5 m8 m7 m2 m1 m4 m3

m7 m8 m5 m6 m3 m4 m1 m2

m8 m7 m6 m5 m4 m3 m2 m1


(146)

Using Eq. 127, the relations required to solve for mPj,k as a function of wPi,jare

w1m1 + w2m2 + w3m3 + w4m4 + w5m5 + w6m6 + w7m7 + w8m8 = 1 (147)
w1m2 + w2m1 + w3m4 + w4m3 + w5m6 + w6m5 + w7m8 + w8m7 = 0 (148)
w1m3 + w2m4 + w3m1 + w4m2 + w5m7 + w6m8 + w7m5 + w8m6 = 0 (149)
w1m4 + w2m3 + w3m2 + w4m1 + w5m8 + w6m7 + w7m6 + w8m5 = 0 (150)
w1m5 + w2m6 + w3m7 + w4m8 + w5m1 + w6m2 + w7m3 + w8m4 = 0 (151)
w1m6 + w2m5 + w3m8 + w4m7 + w5m2 + w6m1 + w7m4 + w8m3 = 0 (152)
w1m7 + w2m8 + w3m5 + w4m6 + w5m3 + w6m4 + w7m1 + w8m2 = 0 (153)
w1m8 + w2m7 + w3m6 + w4m5 + w5m4 + w6m3 + w7m2 + w8m1 = 0 (154)

Following the example above, note that the sum and difference of Eqs. 147 and 148 yield Eq. 155, the sum
and difference of Eqs. 149 and 150 yield Eq. 156, the sum and difference of Eqs. 151 and 152 yield Eq. 157,
and the sum and difference of Eqs. 153 and 154 yield Eq. 158.

(w1 ± w2)(m1 ±m2) + (w3 ± w4)(m3 ±m4) +

(w5 ± w6)(m5 ±m6) + (w7 ± w8)(m7 ±m8) = 1 (155)
(w1 ± w2)(m3 ±m4) + (w3 ± w4)(m1 ±m2) +

(w5 ± w6)(m7 ±m8) + (w7 ± w8)(m5 ±m6) = 0 (156)
(w1 ± w2)(m5 ±m6) + (w3 ± w4)(m7 ±m8) +

(w5 ± w6)(m1 ±m2) + (w7 ± w8)(m3 ±m4) = 0 (157)
(w1 ± w2)(m7 ±m8) + (w3 ± w4)(m5 ±m6) +

(w5 ± w6)(m3 ±m4) + (w7 ± w8)(m1 ±m2) = 0 (158)

Adjacent sums and differences are again formed.

s1,2 = w1 + w2 d1,2 = w1 − w2 (159)
s3,4 = w3 + w4 d3,4 = w3 − w4 (160)
s5,6 = w5 + w6 d5,6 = w5 − w6 (161)
s7,8 = w7 + w8 d7,8 = w7 − w8 (162)
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The solution of an (8x8) system is now converted to the solution of two (4x4) systems. The elements of
W−1 are again presented by taking the appropriate averages of sums and differences of like terms.

m1 =
1

4

[
s1,2 + s3,4

(s1,2 + s3,4)2 − (s5,6 + s7,8)2
+

d1,2 + d3,4
(d1,2 + d3,4)2 − (d5,6 + d7,8)2

+
s1,2 − s3,4

(s1,2 − s3,4)2 − (s5,6 − s7,8)2
+

d1,2 − d3,4
(d1,2 − d3,4)2 − (d5,6 − d7,8)2

]
(163)

m2 =
1

4

[
s1,2 + s3,4

(s1,2 + s3,4)2 − (s5,6 + s7,8)2
− d1,2 + d3,4

(d1,2 + d3,4)2 − (d5,6 + d7,8)2

+
s1,2 − s3,4

(s1,2 − s3,4)2 − (s5,6 − s7,8)2
− d1,2 − d3,4

(d1,2 − d3,4)2 − (d5,6 − d7,8)2

]
(164)

m3 =
1

4

[
s1,2 + s3,4

(s1,2 + s3,4)2 − (s5,6 + s7,8)2
+

d1,2 + d3,4
(d1,2 + d3,4)2 − (d5,6 + d7,8)2

− s1,2 − s3,4
(s1,2 − s3,4)2 − (s5,6 − s7,8)2

− d1,2 − d3,4
(d1,2 − d3,4)2 − (d5,6 − d7,8)2

]
(165)

m4 =
1

4

[
s1,2 + s3,4

(s1,2 + s3,4)2 − (s5,6 + s7,8)2
− d1,2 + d3,4

(d1,2 + d3,4)2 − (d5,6 + d7,8)2

− s1,2 − s3,4
(s1,2 − s3,4)2 − (s5,6 − s7,8)2

+
d1,2 − d3,4

(d1,2 − d3,4)2 − (d5,6 − d7,8)2

]
(166)

m5 = −1

4

[
s5,6 + s7,8

(s1,2 + s3,4)2 − (s5,6 + s7,8)2
+

d5,6 + d7,8
(d1,2 + d3,4)2 − (d5,6 + d7,8)2

+
s5,6 − s7,8

(s1,2 − s3,4)2 − (s5,6 − s7,8)2
+

d5,6 − d7,8
(d1,2 − d3,4)2 − (d5,6 − d7,8)2

]
(167)

m6 = −1

4

[
s5,6 + s7,8

(s1,2 + s3,4)2 − (s5,6 + s7,8)2
− d5,6 + d7,8

(d1,2 + d3,4)2 − (d5,6 + d7,8)2

+
s5,6 − s7,8

(s1,2 − s3,4)2 − (s5,6 − s7,8)2
− d5,6 − d7,8

(d1,2 − d3,4)2 − (d5,6 − d7,8)2

]
(168)

m7 = −1

4

[
s5,6 + s7,8

(s1,2 + s3,4)2 − (s5,6 + s7,8)2
+

d5,6 + d7,8
(d1,2 + d3,4)2 − (d5,6 + d7,8)2

− s5,6 − s7,8
(s1,2 − s3,4)2 − (s5,6 − s7,8)2

− d5,6 − d7,8
(d1,2 − d3,4)2 − (d5,6 − d7,8)2

]
(169)

m8 = −1

4

[
s5,6 + s7,8

(s1,2 + s3,4)2 − (s5,6 + s7,8)2
− d5,6 + d7,8

(d1,2 + d3,4)2 − (d5,6 + d7,8)2

− s5,6 − s7,8
(s1,2 − s3,4)2 − (s5,6 − s7,8)2

+
d5,6 − d7,8

(d1,2 − d3,4)2 − (d5,6 − d7,8)2

]
(170)

A pattern becomes evident as the process continues. The algorithm for defining the Walsh reciprocal
matrix inverse for arbitrary rank 2p with p > 1 is now defined. A work vector σi is initialized in Eq. 171
with the first row of matrix W. Note that only two levels of storage are required for σ, but it is convenient
to define the algorithm below without the necessity of toggling current and previous iterates.

σ0
i = wi for 1 ≤ i ≤ 2p (171)

Following the example used first in Eqs. 140 and 141, adjacent sums are gathered in the first half of vector
σ and adjacent differences are gathered in the last half of vector σ. A loop through the algorithm forming
adjacent sums and differences using entries from the previous loop is implemented p − 1 times in Eq. 173.
Equation 173 involves (p− 1)2p additions.

σn+1
i = σn2i−1 + σn2i for 1 ≤ i ≤ 2p−1 and 0 < n ≤ p− 1 (172)

σn+1
i+2p−1 = σn2i−1 − σn2i for 1 ≤ i ≤ 2p−1 and 0 < n ≤ p− 1 (173)

A single loop through Eqs. 174–176 forms elemental ratios involving adjacent pairs as in Eqs. 142–145. These
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equations involve an additional 2p+1 multiplies and 2p−1 additions.

ζ2i−1 = (σp2i−1)2 − (σp2i)
2 (174)

σp+1
2i−1 =

σp2i−1
ζ2i−1

for 1 ≤ i ≤ 2p−1 and p > 0 (175)

σp+1
2i =

σp2i
ζ2i−1

(176)

Sums and differences of elemental ratios are once again reordered by placing sums of odd numbered pairs
in the first quarter of σ, placing differences of odd numbered pairs in the second quarter of σ, placing sums
of even numbered pairs in the third quarter of σ, and placing differences of even numbered pairs in the last
quarter of σ. This single loop through Eqs. 177–180 involves 2p more additions.

σp+2
i = σp+1

4i−3 + σp+1
4i−1 for 1 ≤ i ≤ 2p−2 and p > 1 (177)

σp+2
i+2p−2 = σp+1

4i−3 − σ
p+1
4i−1 for 1 ≤ i ≤ 2p−2 and p > 1 (178)

σp+2
i+2p−1 = σp+1

4i−2 + σp+1
4i for 1 ≤ i ≤ 2p−2 and p > 1 (179)

σp+2
i+2p−1+2p−2 = σp+1

4i−2 − σ
p+1
4i for 1 ≤ i ≤ 2p−2 and p > 1 (180)

At this point, all of the pairings of elemental ratios are organized to complete a fast evaluation of the inverse
matrix. Use Eq. 181 to initialize storage level 1 in vector σ with the result of Eqs. 177–180.

σ1
i = σp+2

i for 1 ≤ i ≤ 2p (181)

Now execute p − 2 loops through Eqs. 182–185 to complete the assembly of sums and differences of pairs
of elemental ratios as previously observed in Eqs. 163–170. These loops introduce an additional (p − 2)2p

additions.

σn+1
i = σn2i−1 + σn2i for 1 ≤ i ≤ 2p−2 and 1 ≤ n ≤ p− 2 (182)

σn+1
i+2p−2 = σn2i−1 − σn2i for 1 ≤ i ≤ 2p−2 and 1 ≤ n ≤ p− 2 (183)

σn+1
i+2p−1 = σn2i−1+2p−1 + σn2i+2p−1 for 1 ≤ i ≤ 2p−2 and 1 ≤ n ≤ p− 2 (184)

σn+1
i+2p−1+2p−2 = σn2i−1+2p−1 − σn2i+2p−1 for 1 ≤ i ≤ 2p−2 and 1 ≤ n ≤ p− 2 (185)

Finally, the leading coefficient observed in Eqs. 142–145 and in Eqs. 163–170 is applied in a single loop
through Eqs. 186 and 187. This final step to evaluate the elements mi of W−1 introduces 2p additional
multiplies.

mi =
1

2p−1
σp+3
i for 1 ≤ i ≤ 2p−1 (186)

mi+2p−1 =
−1

2p−1
σp+3
i+2p−1 for 1 ≤ i ≤ 2p−1 (187)

The total operation count for computing the inverse of a Walsh reciprocal matrix is

Nop = (2p− 3

2
)2p additions + 2p+1 multiplications (188)

The operation count as a function of matrix rank N is

Nop = O(N logN) (189)

No proof is provided that the algorithm is valid for all p. It has been tested on various problems for 1 < p ≤ 12
(2 < N ≤ 4096) and found to yield at least 15 digits of accuracy in the evaluation of Eq. 127.
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