Ultrasonic Characterization of Aerospace Composites

Dr. Cara Leckey, Dr. Patrick Johnston, Harold Haldren, Daniel Perey Nondestructive Evaluation Sciences Branch NASA Langley Research Center

Advanced Composites Project

Carbon Laminate Carbon Sandwic Other Composite Aluminum

- 5 Year Project:
 - Reduce timeline for certification of composite structures
 - Currently takes ~20 years from material development to market use
 - Infuse advanced tools to accelerate regulatory acceptance of advanced composites
- Partnership: NASA, FAA, DoD, Industry, University
- NDE of composites will play a key role in all three technical challenge areas:
 - 1. Predictive capabilities (e.g., damage progression)
 - 2. Rapid Inspection
 - 3. Enhanced Manufacturing

Boeing 787 www.boeing.com

Lockheed Martin F-35 www.f35.com

Northrup Grumman Fire Scout www.northropgrumman.com

Airbus A-350 WXB www.a350wxb.com

Sukhoi Superjet 100 (Russia)

Composites for Space

https://www.youtube.com/watch?v=IRutJfOsgII

Nondestructive Evaluation Sciences Branch

ACP NDE Research

- Carbon fiber reinforced polymer composites
- NDE focus areas:
 - Inspection of complex geometry components
 - Rapid large area inspection
 - Defect/damage characterization
 - Validation of detectability
- Of-interest defect/damage types include:
 - Microcracking, fiber waviness, delamination, porosity, manufacturing variability, etc
- Experiment:
 - Thermography, ultrasound
- Simulation:
 - Enables model based inspection prediction/validation
 - Custom code, 3D simulation

Defect samples

Nondestructive Evaluation Sciences Branch

- Delamination
- Cracking
- Overlap
- Gaps
- Waviness
- Misalignment
- Porosity
- Weak bonding

Defect samples

Nondestructive Evaluation Sciences Branch

- Delamination
- Cracking
- Overlap
- Gaps
- Waviness
- Misalingment
- Porosity
- Weak bonding

Overlaps and gaps on order of 1/8" to 1/2"

Defect samples

- Delamination
- Cracking
- Overlap
- Gaps
- Waviness
- Misalignment
- Porosity
- Weak bonding

Ultrasonic approaches

Nondestructive Evaluation Sciences Branch

- Polar scattering
 - Cracking, fiber waviness, fiber misalignment, porosity
- Phase sensitive methods
 - Weak bonding
- Guided waves
 - Delamination, fiber waviness, porosity

Polar Scattering Applications

Nondestructive Evaluation Sciences Branch

Polar Backscatter Geometry

Fixed Polar Angle, Scan Azimuthal Angle Low Volume-Fraction Porosity

(Schematic data, after Bar Cohen and Crane, 1982, and others)

Fixed Polar Angle and Azimuthal Angle Scan X- Y Delaminations and Transverse Cracks In Same Specimen

(Measured data, NASA: Johnston, et al, 2012)

Scan Polar Angle and Azimuthal Angle *Fiber Direction at an X-Y Location*

Quasi-Isotropic Lay-up

Quasi-Isotropic Lay-up with Misaligned Lamina

(Schematic data, after Declercq, et al, 2006)

Array Approaches

Curved Linear Array

Spherical Shell 2-Dim Array

2-Dimensional array can scan polar and azimuthal angles to interrogate a location to obtain data on fiber orientation, and presence of flaws such as porosity, transverse matrix cracks, in addition to delaminations

Goals:

- More quantitative data improves characterization of composite
- Efficiency is gained by gathering multiple scans worth of information during a single scan using one probe

Planned Work: Characterization of Fiber Waviness

- Previous work has demonstrated the principle of polar backscatter and wide-angle scattering measurements
- Work planned under ACP:
 - Understand the interdependence of ultrasonic, measurement, and composite material variables:
 - *Ultrasonic:* F-number, focal length, beam width, center frequency, bandwidth
 - *Measurement*: Polar angle, azimuthal angle, Z-offset, scattering angle, time-gating
 - Composite material:
 - Stacking sequence, lamina thickness, fiber and matrix material
 - Lamina depth, lamina thickness, separation of parallel lamina, surface roughness
 - Fiber waviness, micro-cracking, porosity, delamination, transverse cracks
 - Develop verified design parameters for wide-angle, curved, 2-D array probe to optimize measurement performance
 - Design, fabricate, and demonstrate 2-D array probe
 - Involves theory, experiment, and modeling and simulation

Phase based methods for quantitative adhesive bond strength measurement

- Currently no proven method for measuring absolute bond strength
- Bonded repair currently only approved for certain factory conditions
- Quantitative bond strength measurement could allow:
 - Bond quality to be known at any point in bonded structures life
 - Detection of degraded bonds that have proved undetectable with current NDE
 - Inspection and improvement of bonding processes without needing destructive tests

Adhesive Bond Strength Monitor

- Developing an interferometric, phase-based ultrasonic technique for measuring bond strength
- Quality of adhesive bond will affect the amount of phase shift
- Received wave is compared to reference wave to determine phase shift in bonded specimen
- Much more sensitive than conventional ultrasonic measurement techniques
- Attempting to quantitatively measure adhesive bond strength

- Phase shift due to each layer:
 - $\phi_{layer} = \frac{4\pi L}{\lambda}$
 - L is length of each layer, λ is acoustic wavelength in each layer
- Complex reflection coefficient of imperfect adhesive interface modelled as massless spring system*:

•
$$R = \frac{Z_1 - Z_2 + i\omega \frac{Z_1 Z_2}{K}}{Z_1 + Z_2 + i\omega \frac{Z_1 Z_2}{K}}$$

- Z is acoustic impedance of each interfacing layer, ω is angular frequency of ultrasonic wave, K is effective spring constant of interface
- Perfect interface: $K \to \infty$
- Complete disbond: $K \rightarrow 0$
- Total phase response will be combination of phase shift in each layer and phase shift induced by imperfect interface

*H G Tattersall 1973 J. Phys. D: Appl. Phys. 6 819

Guided waves

Nondestructive Evaluation Sciences Branch

- Laser Doppler Vibrometry measurement
- Later in this session:
 - Characterizing delamination size, shape, and depth with guided wave methods (contactless measurement)

Wavenumber analysis from LDV data

Guided Wave Energy Trapping

- Studied previously by several authors via LDV and simple simulations
 - Prior studies focused on single layer delamination
- Current NDE methods (Cscan etc) allow for single-sided delamination sizing
 - But not single sided multi-layer damage characterization

¹Glushkov, E, Glushkova, N, Golub, M, Moll, J, Fritzen, CP. *Smart Materials and Structures* 21.12 (2012): 125001.

Sohn, Composite, single delam

²Sohn, H., Dutta, D., Yang, J. Y., Park, H. J., DeSimio, M., Olson, S., & Swenson, E. (2011). *Composites science and technology*, *71*(9), 1250-1256.

³Zhenhua Tian ; Lingyu Yu ; Cara A. C. Leckey; Proc. SPIE 9063, (2014), doi:10.1117/12.2044927.

Michaels, Composite, simulated single delam

Michaels , J; Dawson, A ; Michaels, T ; Ruzzene, M. Proc. SPIE 9064, (2014); doi:10.1117/12.2045172.

Tian, Composite, single delam

Nondestructive Evaluation Sciences Branch

Energy Trapping Study

- Can energy trapping be leveraged for multi-ply delamination characterization?
- Simulation based study:
 - 8 ply, IM7/8552 CFRP sample $[(0/90)_2]_s$, 0.92 mm thick
 - 3 simple delamination cases: 1, 2, and 3 delaminations (+ pristine case)
 - 300 kHz, 3 cycle Hann windowed sine wave
 - dx=19 μm, dt analysis = 0.29 μs (dt/200)

Results

•

Results Nondestructive Evaluation Sciences Branch

• Study difference in cumulative energy (KE) between cases, experimental work underway

$$E_i(x, y, z, t) = \int_{t_1}^{t_2} \frac{1}{2} v_i^2 dt$$

Guided waves: Fiber waviness

- Plans to study methods for guided wave based techniques to detect fiber waviness
- Literature reports changes in group velocity^{1,} 15° fiber wave → 4% change velocity (↓)
- Study other processing approaches, use LDV to image wave behavior

From: Kugler and Moon 2002 doi: 10.1177/0021998302036012575

From: ¹Chakrapani, et al. "Detection of in-plane fiber waviness in composite laminates using guided Lamb modes." *Rev Prog QNDE* Vol. 1581. No. 1. AIP Publishing, 2014.

Nondestructive Evaluation Sciences Branch

Fiber waviness (in-plane)

Conclusion

- Characterization of composite defects, degradation, and damage is ofinterest to NASA for aeronautics and space missions
- Advanced composites project currently focused on quantitative methods for aeronautics manufacturing and in-service defects
- LaRC NESB is performing and planning upcoming research into various ultrasonic composite characterization methods

Questions?