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Advanced Composites Project

* 5 Year Project:
— Reduce timeline for certification of
composite structures
e Currently takes ~20 years from
material development to market use
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Lockheed Martin F-35 Northrup Grumman
www.f35.com Fire Scout
www.northropgrumman.com

— Infuse advanced tools to accelerate Airbus
Boeing 787 A-350 WXB
regulatory acceptance of advanced composites www.boeing.com www.a350wxb.com
e Partnership: NASA, FAA, DoD, Industry, University
Bombardier
C-Series

 NDE of composites will play a key role in all three technical challenge
areas:
1. Predictive capabilities (e.g., damage progression)
2. Rapid Inspection Comac €919 (China)
3. Enhanced Manufacturing

wwaw.cseries.com

Sukhoi Superjet 100
(Russia)




Composites for Space

SLS Architecture Reference Configuration
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omposite Damage/Defect Types

Nondestructive Evaluation Sciences Branch

X-ray CT of PRSEUS Joint

Fiber waviness (in-plane), From NASA TM-2013-217799 by Patrick Johnston
From Kugler and Moon 2002 '
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ACP NDE Research

e Carbon fiber reinforced polymer composites

* NDE focus areas:
* Inspection of complex geometry components
* Rapid large area inspection
* Defect/damage characterization
 Validation of detectability

» Of-interest defect/damage types include:

* Microcracking, fiber waviness, delamination,
porosity, manufacturing variability, etc

* Experiment: | | gRd—y | D'}.I‘.t
* Thermography, ultrasound e B
 Simulation:

* Enables model based inspection
prediction/validation

e Custom code, 3D simulation

~2m



Defect samples
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Defect samples
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Defect samples
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* Delamination

* Cracking

* Overlap

* Gaps

* Waviness ACC Partners
* Misalignment

* Porosity

* Weak bonding



Ultrasonic approaches

Nondestructive Evaluation Sciences Branch

* Polar scattering
* Cracking, fiber waviness, fiber misalignment, porosity

* Phase sensitive methods
* Weak bonding

* Guided waves
* Delamination, fiber waviness, porosity



Polar Scattering Applications
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Polar Backscatter Geometry Fixed Polar Angle and Azimuthal Angle Scan Polar Angle and Azimuthal Angle
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Array Approaches

Curved Linear Array
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Nondesitructive Evaluation Sciences Branch

Spherical Shell 2-Dim Array

2-Dimensional array can scan polar and azimuthal angles to
interrogate a location to obtain data on fiber orientation, and
presence of flaws such as porosity, transverse matrix cracks, in
addition to delaminations

* More guantitative data improves characterization of composite
 Efficiency is gained by gathering multiple scans worth of
information during a single scan using one probe




Planned Work:
Characterization of Fiber Waviness
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* Previous work has demonstrated the principle of polar backscatter and
wide-angle scattering measurements

* Work planned under ACP:

* Understand the interdependence of ultrasonic, measurement, and composite
material variables:

e Ultrasonic: F-number, focal length, beam width, center frequency, bandwidth
* Measurement: Polar angle, azimuthal angle, Z-offset, scattering angle, time-gating
* Composite material:

» Stacking sequence, lamina thickness, fiber and matrix material

* Lamina depth, lamina thickness, separation of parallel lamina, surface roughness

* Fiber waviness, micro-cracking, porosity, delamination, transverse cracks

* Develop verified design parameters for wide-angle, curved, 2-D array probe to
optimize measurement performance

* Design, fabricate, and demonstrate 2-D array probe
* Involves theory, experiment, and modeling and simulation



Phase based methods for quantitative
adhesive bond strength measurement

Nondesitructive Evaluation Sciences Branch

* Important method of joining composite
parts is through adhesive bonding

* Currently no proven method for measuring
absolute bond strength

* Bonded repair currently only approved for
certain factory conditions

* Quantitative bond strength measurement
could allow:

* Bond quality to be known at any point in
bonded structures life

e Detection of degraded bonds that have proved
undetectable with current NDE

* Inspection and improvement of bonding
processes without needing destructive tests




Adhesive Bond Strength Monitor
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* Developing an interferometric, phase-based * Phase shift due to each layer:
ultrasonic technique for measuring bond strength P 4mL
* Quality of adhesive bond will affect the amount of rayer = 3

phase shift * Lislength of each layer, A is acoustic

* Received wave is compared to reference wave to Wavelength in each ,Ia,yer , .
determine phase shift in bonded specimen * Complex reflection coefficient of imperfect adhesive

i . . interface modelled as massless spring system*:
* Much more sensitive than conventional ultrasonic pring sy

measurement techniques . R— 212 +iw 2
- . Z1Z
» Attempting to quantitatively measure adhesive Zy+Zy =
bond strength « 7 is acoustic impedance of each interfacing
Ultrasonic -— i layer, w is angular frequency of ultrasonic
Wave ./ Ultrasonic Transducer wave, K is effective spring constant of interface

e Perfectinterface: K = o
Bond_ed * Complete disbond: K — 0
Material 1 * Total phase response will be combination of phase
Adhesive shift in each layer and phase shift induced by
Bonded imperfect interface

Material 2 *H G Tattersall 1973 J. Phys. D: Appl. Phys. 6 819



Guided waves

* Laser Doppler Vibrometry measurement

* Later in this session:
e Characterizing delamination size, shape, and depth with guided wave

methods (contactless measurement) _
Wavenumber analysis
from LDV data
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Guided Wave Energy Trapping

* Studied previously by several authors via LDV and simple

simulations

* Prior studies focused on single layer delamination

* Current NDE methods (Cscan etc) allow for single-sided

delamination sizing

e But not single sided multi-layer damage characterization

Glushkov, Two layer aluminum
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1Glushkov, E, Glushkova, N, Golub, M, Moll, J,
Fritzen, CP. Smart Materials and Structures 21.12
(2012): 125001.
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Energy Trapping Study
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e Can energy trapping be leveraged for multi-ply
delamination characterization?
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e Simulation based study:

« 8 ply, IM7/8552 CFRP sample [(0/90),], , 0.92 mm thick a |
* 3simple delamination cases: 1, 2, and 3 delaminations (+ pristine case)
* 300 kHz, 3 cycle Hann windowed sine wave

e dx=19 um, dt analysis = 0.29 us (dt/200)
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Results

[ ] Result for CaseS 2 and 3: 0 Delaminations, Ii)ul-ol-;::lanewawe«‘rield,\»‘z 0 Delaminations, In—planewavevield,vy
wavefields visually appear the :
same from top surface o
Pristine

E n e rgy iuength ‘(lr[:"lm) . 2I’_uengm ‘(lr[:"lm) . iuengm ‘Eﬁm) "
trapping

Delaminations, Out-of plane wavevield, v, 1 Delaminations, In-plane wavevield, v, 1 Delaminations, In-plane wavevield, v,
60 60

I I . 50 - 50
clear y E E 4
£ £ 3
observable 5 5
S S 20
— —
10 10
20 40 60 20 40 50 20 40 60
Length (mm) Length (mm) Length (mm)
2 Delaminations, Out-of-plane wavevield, v, 2 Delaminations, In-plane wavevield, vy 2 Delaminations, In-plane wavevield, v,

Case 2

20 40 60 20 40 60 20 40 60
Length (mm) Length (mm) Length (mm)
3 Delaminations, Out-of-plane wavevield, v, 3 Delaminations, In-plane wavevield, vy 3 Delaminations, In-plane wavevield, v,
60 60
50 50
E E
Case 3 Ew g
£ 3 £ 3
o
S 20 S 20
i} |
10§

2 40 60 20 40 60 20 40 60
Length (mm) Length (mm) Length (mm)




Results

Nondestructive Evaluation Sciences Branch

 Study difference in cumulative energy (KE) between cases, experimental work underway
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Guided waves: Fiber waviness

* Plans to study methods for guided wave based techniques to detect fiber
waviness

* Literature reports changes in group velocity! 15° fiber wave =2 4% change
velocity ({)

Nondestructive Evaluation Sciences Branch

» Study other processing approaches, use LDV to image wave behavior

B-Scan of Ay mode in 2-3 plane

Fiber waviness (in-plane)

Marcel start

Marcel end

From: Kugler and Moon 2002 From:1Chakrapani, et al. "Detection of in-plane

doi: 10.1177/0021998302036012575 fiber waviness in composite laminates using guided
Lamb modes." Rev Prog QNDE Vol. 1581. No. 1. AIP

Publishing, 2014.



Conclusion

Nondestructive Evaluation Sciences Branch

* Characterization of composite defects, degradation, and damage is of-
interest to NASA for aeronautics and space missions

* Advanced composites project currently focused on quantitative
methods for aeronautics manufacturing and in-service defects

* LaRC NESB is performing and planning upcoming research into various
ultrasonic composite characterization methods



Questions?



