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ABSTRACT 

A method is presented to represent the large-deformation kinematics of intraply matrix cracks and 

delaminations in continuum damage mechanics (CDM) constitutive material models. The method 

involves the additive decomposition of the deformation gradient tensor into ‘crack’ and ‘bulk material’ 

components. The response of the intact bulk material is represented by a reduced deformation gradient 

tensor, and the opening of an embedded cohesive interface is represented by a normalized cohesive 

displacement-jump vector. The rotation of the embedded interface is tracked as the material deforms 

and as the crack opens. The distribution of the total local deformation between the bulk material and the 

cohesive interface components is determined by minimizing the difference between the cohesive stress 

and the bulk material stress projected onto the cohesive interface. 

 

The improvements to the accuracy of CDM models that incorporate the presented method over 

existing approaches are demonstrated for a single element subjected to simple shear deformation and 

for a finite element model of a unidirectional open-hole tension specimen. The material model is 

implemented as a VUMAT user subroutine for the Abaqus/Explicit finite element software. The 

presented deformation gradient decomposition method reduces the artificial load transfer across matrix 

cracks subjected to large shearing deformations, and avoids the spurious secondary failure modes that 

often occur in analyses based on conventional progressive damage models. 

1 INTRODUCTION 

The National Aeronautics and Space Administration (NASA) Advanced Composites Project (ACP) 

has the goal to reduce current 5–10 year product development and certification timelines by 30 percent 

for composite material aerospace applications. The first technical challenge of ACP involves the 

assessment and improvement of computational tools capable of predicting the strength and life of 

composite aerospace structures. A wide range of computational tools exist for the modeling of 

progressive damage in composite materials, including cohesive zone modeling, continuum damage 

mechanics, peridynamics, the extended finite element method, etc. In continuum damage mechanics 

(CDM) models, the presence of a crack is accounted for by modifying select terms of the material 

stiffness tensor 𝑪. The terms of the damaged material stiffness tensor 𝑪𝒅 are set so that the stress 𝝈 

calculated from the current strain 𝜺 accounts for the opening of the crack without explicitly modeling 

the crack itself (i.e., without changing the original mesh or introducing additional degrees of freedom to 

the model): 

 𝝈 = 𝑪𝒅: 𝜺 (1) 

The terms of the material stiffness tensor that are modified are often selected based on the assumption 

that crack normals are aligned with the principal material directions, e.g., softening the fiber-direction 

Young’s modulus for fiber failure, or softening the matrix-direction Young’s modulus and shear 

modulus for matrix failure. Several such ply-level, strain-based CDM models have been developed for 

fiber-reinforced materials with varying degrees of sophistication (e.g., [1–4]) and the models generally 

mailto:frank.a.leone@nasa.gov
http://www.nasa.gov/


Frank A. Leone, Jr. 

perform well for representing the formation and development of damage, especially when applied in 

cases where the loading is primarily planar and failure is quasi-brittle. 

 

Camanho et al. [5] developed a three-dimensional CDM material model that embeds a cohesive 

interface in a continuum to represent a matrix crack. The use of a cohesive interface to represent matrix 

damage allows for consistent intraply and interply mixed-mode matrix damage predictions and better 

represents the kinematics of a softened interface that is not necessarily aligned with the principal 

material directions. The orientation of the cohesive interface within the material is defined based on the 

predictions of a three-dimensional matrix failure criterion. Camanho’s model is a smeared-crack 

approach that utilizes additive strain decomposition to separate the strain tensor supplied by the finite 

element (FE) solver into linear elastic and cracking strain components: 

 𝜺 = 𝜺el + 𝜺cr (2) 

where 𝜺el represents the linear elastic deformation of the bulk material and 𝜺cr represents the embedded 

cohesive displacement-jump. The distribution between the elastic and cracking strain components is 

determined by solving for the cohesive displacement-jump vector that minimizes the difference between 

the cohesive stress vector and the bulk material stress tensor projected onto the cohesive interface. The 

Camanho model is implemented as a VUMAT user material subroutine for use with three-dimensional 

solid elements in Abaqus/Explicit [6]. Model results were shown to correlate well with experimental 

load-displacement results for unidirectional off-axis compression, laminated center-cracked tension, and 

laminated open-hole tension specimens. 

 

However, CDM material models based on strain measures suffer from inherent difficulties regarding 

the definition of the orientation of a crack with respect to the orientation of a continuum for problems 

involving large shear deformation. In geometrically nonlinear models, elements are formulated in the 

current configuration using current nodal positions, and the strain 𝜺 is derived from the current 

configuration of the material [6]. The use of the FE solver-supplied strain as the input to CDM material 

models in geometrically nonlinear models can cause the current crack orientation to be erroneously 

defined, with the magnitude of the error scaling up with shear deformation. Consider a two-dimensional 

continuum that contains a crack with a normal in the reference 2-direction. When subjected to simple 

shear deformation, the orientation of the continuum rotates. If the orientation of an open crack is defined 

in terms of the FE solver-supplied strains in the current configuration, the orientation of the crack normal 

also rotates. For a cracked continuum subjected to simple shear, however, the orientations of the bulk 

material and the crack should not rotate. An incorrectly defined matrix crack orientation can cause load 

transfer across matrix cracks and the prediction of spurious secondary failure mechanisms (e.g., fiber 

failure). In order to address these issues, CDM material models must better account for the kinematics 

of a cracked continuum under geometrically nonlinear conditions. 

 

As in the smeared-crack CDM material model of Camanho et al. [5], the continuum-decohesive finite 

element (CDFE) of Prabhakar and Waas [7] utilizes an embedded cohesive law to represent the 

formation and growth of intraply cracks in fiber-reinforced materials. The CDFE method is a finite 

element formulation that involves applying the principle of virtual work to a cracked continuum, 

deriving an enriched set of displacements for real and internal dummy nodes, and generating an 

equivalent element stiffness for the cracked element through static condensation. The CDFE method has 

been implemented as a two-dimensional triangular element for use with an in-house code at the 

University of Michigan. Results of open-hole tension specimen models with various fiber orientations 

were solved, yielding good correlation with experimental strain and displacement fields measured by 

digital image correlation. 

 

Finite element techniques that are specially developed for modeling cracks within solid materials, 

such as the extended finite element method (e.g., [8–10]) and the CDFE method [7], do not exhibit the 

geometrically nonlinear crack orientation issues of conventional strain-based CDM methods. However, 

the implementation of these specialized finite elements for use with commercial finite element solvers 

is difficult and precludes the use of existing finite element libraries. To take advantage of all of the 
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existing built-in capabilities of commercial FE programs, it is desirable to use constitutive material 

models to model damage, while achieving a predictive capability similar to those of specialized finite 

elements. 

 

The goal of this paper is to present an improved approach for representing the kinematics of the 

formation, opening, and closure of matrix cracks in CDM material models for fiber-reinforced materials. 

The present method, which was originally outlined in reference [11] and detailed in reference [12], is 

an extension of the smeared-crack CDM material model of Camanho et al. [5] with improved predictive 

capability for geometrically nonlinear problems, especially in the presence of large shear deformations. 

In section 2 of this paper, the details of the deformation gradient decomposition (DGD) method are 

presented. In section 3, finite element model results for two case studies are presented and discussed 

with a comparison of results generated with a conventional strain-based CDM material model and with 

a CDM material model based on the DGD method. 

2 DEFORMATION GRADIENT DECOMPOSITION CDM METHOD 

The DGD method is based on the separation of the deformation gradient tensor 𝑭 into two parts by 

additive decomposition, in a manner analogous to the additive strain decomposition of the smeared-

crack model defined by equation (2). The two decomposed parts of 𝑭 are (i) the deformation gradient 

tensor 𝑭B, which represents the bulk material deformation, and (ii) the cohesive displacement-jump 

vector 𝜹, which represents the deformation of an embedded cohesive crack. The derivation of the 

presented method is carried out at the constitutive material level so as to be compatible with any 

commercial finite element code with user-defined material subroutines. The presented method is herein 

presented in the context of being implemented as a VUMAT user material subroutine for use with three-

dimensional solid elements in Abaqus/Explicit. 

 

In section 2.1, the coordinate systems for the continuum, the bulk material, and the embedded 

cohesive crack are defined in the reference and current configurations. In section 2.2, the decomposition 

of the deformation gradient tensor is performed so as to provide consistent definitions for the bulk 

material and cohesive crack deformations. In section 2.3, local equilibrium is established between the 

bulk material and cohesive crack components, which allows the bulk material strain and stress to be 

calculated and the cohesive damage variable to be determined. 

2.1 Bulk Material and Crack Coordinate Systems 

A rectangular cuboidal continuum of fiber-reinforced material with the fiber direction initially 

aligned with the reference 𝑥1-direction is considered. The undeformed continuum may contain a matrix 

crack with a crack normal 𝒆̂N oriented at an angle 𝛼 from the 𝑥2-direction in the 𝑥2–𝑥3 plane, as shown 

in Figure 1. The angle 𝛼 is defined in the reference configuration and does not change once determined. 

The angle 𝛼 is dependent on the local stress state and can be determined by using a failure criterion for 

fiber-reinforced materials that accounts for the stress state on the angle of the fracture plane (e.g., [13, 

14]). For the present method, 𝛼 may take on values from − tan−1(𝑙2 𝑙3⁄ ) to 𝜋 − tan−1(𝑙2 𝑙3⁄ ). 

 

The initial, undeformed reference configuration of the continuum is described by 𝑿R. The three 

columns of 𝑿R are orthogonal vectors designated 𝑿R
(1)

, 𝑿R
(2)

, and 𝑿R
(3)

, with lengths equal to the 

undeformed dimensions of the continuum, 𝑙1, 𝑙2, and 𝑙3, respectively, such that: 

 𝑿R = [

𝑙1 0 0
0 𝑙2 0
0 0 𝑙3

] (3) 

The current configuration of the continuum, 𝒙, is a function of 𝑿R and the deformation gradient tensor 𝑭: 

 𝒙 = 𝑭𝑿R (4) 
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Figure 1: Schematic showing the orientation of the crack and dimensions of the continuum in the 

reference configuration. 

The deformation gradient tensor 𝑭 maps the coordinates defined in the reference configuration to 

their relative locations in the current configuration. 𝑭 is easily computed from nodal displacements and 

is a known quantity that is generally provided by a finite element solver as an input for user-defined 

material models. 

 

The reference configuration of the bulk material is equal to the reference configuration of the 

continuum. The current configuration of the bulk material, 𝒙B, is a function of 𝑿R and bulk material 

deformation gradient tensor 𝑭B: 

 𝒙B = 𝑭B𝑿R (5) 

Prior to the initiation of damage, 𝑭B and 𝑭 are equal. The method for solving for 𝑭B after the initiation 

of damage is presented in sections 2.2 and 2.3. 

 

The orientation of the crack within the continuum can be described in terms of orthogonal unit vectors 

in the fiber, crack-normal, and transverse directions, 𝒆̂F, 𝒆̂N, and 𝒆̂T, respectively, as shown in Figure 1. 

These three unit vectors form the basis of the coordinate system 𝑹cr: 

 𝑹cr = [𝒆̂F 𝒆̂N 𝒆̂T] (6) 

In the reference configuration, the basis vectors of 𝑹cr depend only on 𝛼. In the current configuration, 

however, the deformation of the bulk material must be considered. For cases in which the crack is open, 

𝑹cr is a function of 𝑭B and 𝛼: 

 𝒆F = 𝑭B [
1
0
0

] (7a) 

 𝒆N = 𝑭𝐁
−T  [

0
cos 𝛼
sin 𝛼

] (7b) 

 𝒆T = 𝒆F × 𝒆N (7c) 

where 𝒆F, 𝒆N, and 𝒆T are the non-normalized basis vectors of 𝑹cr. 

x2

x3

x1
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2.2 Decomposition of the Deformation Gradient Tensor 

The bulk material deformation gradient tensor 𝑭B can be derived as a function of 𝑭 and 𝜹. Once a 

converged solution for 𝑭B is found, the stress and strain of the bulk material can be defined for any 

arbitrary deformation and any arbitrary angle 𝛼. 

 

A schematic relationship is shown in Figure 2 between the deformation of the continuum (𝒙) and the 

deformations of its bulk material (𝒙B) and cohesive crack (𝜹) components in the 𝑥1–𝑥2 plane for 𝛼 =
0°. In the figure, the crack is shown as being located along the top surface of the continuum, for clarity. 

However, the exact location of the crack within the continuum is ambiguous in CDM methods. As a 

result, it is necessary to make an assumption regarding the path of the crack through the continuum. In 

the present model, it is assumed that the crack crosses the continuum so as to intersect opposite pairs of 

surfaces of the continuum, i.e., the crack plane always intersects the surfaces whose normals are aligned 

with the 𝑥1-direction in the reference configuration, and it intersects the surfaces whose normals are 

aligned with either the 𝑥2- or 𝑥3-directions in the reference configuration. 

 

 

 

Figure 2: Decomposition of 𝑥2-direction deformation for a partially opened crack with a crack normal 

𝒆̂𝐍 oriented at α = 0°. 

The first column of 𝑭B can be obtained from 𝑭 by considering that the fiber-direction deformation 

does not depend on the presence, opening, or orientation of any matrix cracks. Because the crack-normal 

direction is always normal to the fiber-direction, the current configurations of 𝑿R
(1)

 calculated using 𝑭 

and 𝑭B, 𝒙(1) and 𝒙B
(1)

, respectively, are always equal: 

 𝒙(1) = 𝒙B
(1)

 (8a) 

 𝑭𝑿R
(1)

= 𝑭B𝑿R
(1)

 (8b) 

Because only the first component of 𝑿R
(1)

 is nonzero, equation (8b) yields: 

 𝑭B
(1) = 𝑭(1) (8c) 

where 𝑭(1) is the first column of 𝑭 and 𝑭B
(1)

 is the first column of 𝑭B. 

 

For the crack shown in Figure 2, 𝑿R
(2)

 is intersected by the crack plane. As a result, the current 

configuration 𝒙(2) is equal to the vector sum of the bulk material response 𝒙B
(2)

 and the cohesive 

displacement-jump vector 𝜹 transformed into the reference configuration:  

,
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 𝒙(2) = 𝒙B
(2)

+ 𝑹cr𝜹 (9a) 

 𝑭𝑿R
(2)

= 𝑭B𝑿R
(2)

+ 𝑹cr𝜹 (9b) 

Because only the second component of 𝑿R
(2)

 is nonzero, equation (9b) yields: 

 𝑭B
(2)

= 𝑭(2) −
1

𝑙2
𝑹cr𝜹 (9c) 

where 𝑭(2) is the second column of 𝑭 and 𝑭B
(2)

 is the second column of 𝑭B. 

 

For the crack shown in Figure 2, 𝑿R
(3)

 is not intersected by the crack. As a result, 𝑭B
(3)

 can be derived 

using logic similar to the derivation of 𝑭B
(1)

, yielding: 

 𝑭B
(3) = 𝑭(3) (10) 

where 𝑭(3) is the third column of 𝑭 and 𝑭B
(3)

 is the third column of 𝑭B. For cases in which the crack 

intersects 𝑿R
(3)

 instead of 𝑿R
(2)

, the derivations for the second and third columns of 𝑭B are swapped. 

 

In order to write a generalized equation for 𝑭B, it is necessary to account for whether the crack plane 

intersects 𝑿R
(2)

 or 𝑿R
(3)

, which depends on 𝛼, 𝑙2, and 𝑙3. The integer 𝑞 can be used to define whether the 

crack intersects 𝑿R
(2)

 or 𝑿R
(3)

. When 𝛼 ≤ tan−1(𝑙2 𝑙3⁄ ), the crack plane intersects 𝑿R
(2)

 and 𝑞 = 2. When 

𝛼 > tan−1(𝑙2 𝑙3⁄ ), the cohesive crack intersects 𝑿R
(3)

 and 𝑞 = 3. A generalized equation for the 

deformation gradient tensor decomposition can then be written: 

 𝑭(𝑞)𝑙𝑞 = 𝑭B
(𝑞)𝑙𝑞 + 𝑹cr𝜹 (11) 

where 𝑭(𝑞) is the 𝑞-th column of 𝑭, 𝑭B
(𝑞)

 is the 𝑞-th column of 𝑭B, and 𝑙𝑞 is the length of the 𝑞-th 

column of 𝑿R. Using equation (11) with any 𝑭 provided by the finite element solver, the cohesive 

displacement-jump vector 𝜹 can be solved for in terms of 𝑭B
(𝑞)

. 

2.3 Equilibrium between the Bulk Material and Cohesive Crack 

The sum of the bulk material deformation and the cohesive displacement-jump is shown in equation 

(11) to be equal to the deformation described by the deformation gradient tensor. However, it remains 

necessary to ensure that the tractions resulting from the deformations of the bulk material and cohesive 

crack are in equilibrium. In the present method, equilibrium is enforced on the cohesive crack plane with 

the normal 𝒆̂N. The solution for the current bulk deformation gradient is found by minimizing the 

difference between the cohesive stress vector 𝝉 and the bulk material stress 𝝈B projected onto the 

cohesive crack. 

 

The cohesive stress vector 𝝉 is determined using the cohesive damage model of González et al. [15] 

is used. The cohesive stress vector 𝝉 is defined as: 

 𝝉 = [

𝑘F(1 − 𝑑𝑚)𝛿F

𝑘N(1 − 𝑑𝑚)𝛿N − 𝑘N𝑑𝑚〈−𝛿N〉

𝑘T(1 − 𝑑𝑚)𝛿T

] (12) 

where 𝛿N is the opening displacement-jump, and 𝛿F and 𝛿T are the shear displacement-jumps along the 

fiber and transverse directions, respectively; 𝑘F, 𝑘N, and 𝑘T are the cohesive penalty stiffnesses in the 

fiber, crack-normal, and transverse directions, respectively; 𝑑𝑚 is the scalar cohesive damage variable; 

and the operator 〈𝑥〉 is defined as 〈𝑥〉 = (𝑥 + |𝑥|) 2⁄ . 

 

The bulk material stress is determined from the bulk material deformation gradient tensor 𝑭B using 

standard finite stress and strain definitions and Hooke’s Law: 
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 𝑬 = (𝑭B
T 𝑭B − 𝑰) 2⁄  (13) 

 𝑺 = 𝑪𝒅: 𝑬 (14) 

where 𝑬 is the Green-Lagrange strain, 𝑺 is the 2nd Piola-Kirchhoff stress, and 𝑰 is the identity tensor. 

Tensile fiber failure initiation is predicted using an uncoupled maximum strain failure criterion with the 

fiber-direction Green-Lagrange strain. Fiber damage is represented using the CDM approach of Maimí 

et al. [2]. Cauchy’s stress theorem is used to find the corresponding stress vector 𝒕 acting on the cohesive 

interface: 

 𝒕 = 𝝈B ∙ 𝒆̂N (15) 

where 𝝈B is the bulk material Cauchy stress in the reference coordinate system, determined using: 

 𝝈B = 𝑭B 𝑺 𝑭B
T|𝑭B|−1 (16) 

To solve for the stress state at equilibrium, a residual stress vector 𝝈Res can be defined in terms of 

the components of the stress vectors in equations (12) and (15) in the current crack coordinate system: 

 𝝈Res = [

𝑘F(1 − 𝑑𝑚)𝛿F −  𝒕 ∙ 𝒆̂F

𝑘N(1 − 𝑑𝑚)𝛿N − 𝑘N𝑑𝑚〈−𝛿N〉 −  𝒕 ∙ 𝒆̂N

𝑘T(1 − 𝑑𝑚)𝛿T −  𝒕 ∙ 𝒆̂T

] (17) 

Because 𝑭 is known and 𝜹 is a function of 𝑭 and 𝑭B, the three components of 𝑭B
(𝑞)

 are used as the 

unknown variables that must be found in order to minimize the residual. The multivariate Newton-

Raphson method is used to find a converged solution for 𝑭B
(𝑞)

: 

 𝑭B,new
(𝑞) = 𝑭B

(𝑞) − (
𝜕𝝈Res

𝜕𝑭B
(𝑞))

−1

𝝈Res (18) 

A solution is sought until the norm of 𝝈Res is less than a user-defined tolerance value, set by default to 

0.01% of the mode I cohesive strength. After a converged solution is found, the cohesive damage model 

is evaluated for the current 𝜹. If the cohesive damage variable 𝑑𝑚 is predicted to increase, a new 

converged deformation state is sought for the updated 𝑑𝑚 using equation (18). If 𝑑𝑚 is not predicted to 

increase, a solution for the current material state has been found, and the results are reported to the FE 

solver. 

3 CASE STUDIES 

Two case studies are presented to demonstrate the performance of the DGD method for geometrically 

nonlinear problems involving large shear deformations. The first case is a single element subjected to 

simple shear deformation. The second case is a unidirectional open-hole tension (OHT) specimen based 

on a previous experimental and analytical investigation by Iarve et al. [16]. For both cases, FE models 

were developed and solved using Abaqus/Explicit 6.13-1 under quasi-static loading conditions with 

geometric nonlinearity considered [6]. 

 

To demonstrate the advantages of incorporating DGD into current CDM modeling approaches, the 

two case study models were solved using: (i) the presented DGD CDM method, and (ii) an 

implementation of the smeared-crack model of Camanho et al. [5] to represent the predictions of a strain-

based CDM method. Additional strain-based CDM methods were evaluated, and similar results were 

found for all strain-based CDM methods evaluated for the two case study models. Predictions obtained 

using the two material models are evaluated and compared in terms of how the local stresses are affected 

by predicted matrix cracks and in terms of the details of the predicted overall failure processes. 

3.1 Single Element Simple Shear 

A single three-dimensional element is deformed in simple shear in the 𝑥1–𝑥2 plane. The element 

measures 0.1 mm on each side and is composed of IM7/8552 carbon/epoxy material. The 0° fiber 
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direction is aligned with the 𝑥1-direction. The relevant material properties for IM7/8552 are provided in 

Table 1. An eight-node C3D8R solid element with reduced integration is used. The four nodes on the 

surface at 𝑥2 = 0 mm are constrained in the 𝑥1- and 𝑥2-directions. The four nodes on the surface at 𝑥2 =
0.1 mm are constrained in the 𝑥2-direction and displaced 0.05 mm in the positive 𝑥1-direction. The four 

nodes on the surface at 𝑥3 = 0 mm are constrained in the 𝑥3-direction. 

 

 

Property Description Value Ref. 

𝐸1 Young’s modulus, fiber-direction 171,420 MPa [17] 

𝐸2 Young’s modulus, matrix-direction 9,080 MPa [17] 

𝐺12 Shear modulus 5,290 MPa [17] 

𝜈12 Poisson ratio, 1–2 0.32 – [17] 

𝜈23 Poisson ratio, 2–3 0.52 – [5] 

𝑌𝑇 Mode I matrix strength 62.3 MPa [17] 

𝑆𝐿 Mode II matrix strength 92.3 MPa [17] 

𝑋𝑓𝑇 Fiber tensile strength 2,326 MPa [17] 

𝐺𝐼𝑐 Mode I matrix fracture toughness 0.277 kJ/m2 [17] 

𝐺𝐼𝐼𝑐 Mode II matrix fracture toughness 0.788 kJ/m2 [17] 

𝜂 Benzeggagh-Kenane coefficient 1.634 – [5] 

𝐺𝑓𝑇 Fiber tensile fracture toughness 134. kJ/m2 [18] 

Table 1: IM7/8552 material properties. 

The expected response to simple shear deformation is an initially linear-elastic response leading up 

to the formation of a matrix crack (i.e., 𝑑𝑚 > 0) with a crack normal in the 𝑥2-direction, followed by 

mode II dominant linear softening until the crack is fully formed (i.e., 𝑑𝑚 = 1). After 𝑑𝑚 = 1, all stress 

components should be equal to zero, as any further simple shear deformation should then represent the 

sliding of two separated, undeformed volumes of material. 

 

The model using the DGD CDM method predicts a nearly perfect mode II response to simple shear 

deformation, as is evident by the shear stress-displacement results shown in Figure 3. Even at large shear 

displacements, no load transfer across the crack is observed. The model with the strain-based CDM 

method accurately predicts the initiation of matrix damage and the initial rate of energy dissipation, as 

expected. With increasingly large shear deformation, however, increasingly large load transfer across 

the matrix crack is observed. 

 

 

 

Figure 3: Shear stress-displacement FE results for the single element simple shear model. Shear stress 

is calculated as the sum of the 𝑥1-direction nodal forces of the nodes on the +𝑥2-direction surface of 

the element, divided by 0.01 mm2. [12] 
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The use of incorrectly defined coordinate systems for the crack and the bulk material can also lead 

to the prediction of spurious, secondary failure modes. For instance, the simple shear model with the 

strain-based CDM method predicts increasing compressive fiber stresses with increasing simple shear 

deformation after the formation of the matrix crack. With increasing shear deformation, these 

nonphysical compressive fiber stresses in the model with the strain-based CDM method eventually 

satisfy the compressive fiber failure criterion, causing spurious fiber damage initiation (not shown in 

Figure 3). 

3.2 Unidirectional Open-Hole Tension 

A model of a unidirectional [08] open-hole tension specimen is shown in Figure 4. The specimen has 

a length 𝑙 equal to 50.8 mm, a width 𝑤 equal to 12.7 mm, and a thickness 𝑡 equal to 1.0 mm. The 

specimen contains a hole at its center with a diameter 𝑑 equal to 3.175 mm. The fiber-direction is aligned 

with the specimen length. The nodes on the surface at 𝑥1 = 0 are constrained in the 𝑥1-direction. The 

nodes along the edge at 𝑥1 = 0 and 𝑥2 = 0 and the edge at 𝑥1 = 𝑙 and 𝑥2 = 0 are constrained in the 𝑥2-

direction. The nodes on the surfaces at 𝑥1 = 0 and 𝑥1 = 𝑙 are constrained in the 𝑥3-direction. Load is 

introduced by uniformly displacing the nodes on the surface at 𝑥1 = 𝑙 in the positive 𝑥1-direction. 

 

Three-dimensional, eight-node C3D8R solid elements with reduced integration are used throughout 

the model. A fiber-aligned mesh is used to avoid shear stress transfer due to element shear locking, 

based on the recommendations of Song et al. [19] for similar laminated OHT models. All of the elements 

along the expected matrix splitting path are cuboids and have an element length equal to 0.127 mm in 

the 𝑥2-direction. Four layers of elements of equal thickness are used through the thickness of the 

laminate. 

 

 

 

Figure 4: Mesh and geometry for the unidirectional OHT FE model. [12] 

Based on the experimental work of Iarve et al. presented in reference [15], the expected failure 

process for the unidirectional OHT specimen is as follows: (i) matrix splitting cracks form tangent to 

the hole and extend along the 𝑥1-direction toward the model edges; (ii) as the matrix cracks extend, the 

fiber stress concentration at the hole diminishes until a uniform 𝜎11 stress state is established in the 

remaining ligaments on either side of the hole; (iii) the specimen fails when 𝜎11 in the ligaments reaches 

𝑋𝑓𝑇 at a load of approximately: 

 22.2 kN = 𝑋𝑓𝑇 × (𝑤 − 𝑑) × 𝑡 (19) 

Because no compressive matrix or fiber damage should occur in the model, and to better isolate the 

effects of defining the material stress state via the DGD method, the compressive matrix and fiber 

strength and fracture toughness properties for the strain-based CDM model were artificially increased 

to avoid their activation in the unidirectional OHT model. 

 

Analysis predictions obtained with the model using the DGD CDM method are shown by the black 

curve in Figure 5, and the predictions are as expected. Matrix damage initiation occurs at four locations 

that are tangent to the hole at an applied tensile load of 2.4 kN. At a tensile load of 4.2 kN, the four 
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matrix splitting cracks rapidly extend along the length of the specimen to an average length of 17 mm. 

Cracks of this length reduce the stiffness of the specimen, as can be seen in Figure 5 with a shift in the 

curve. The matrix splitting cracks then propagate slowly toward the model edges with continued loading. 

A peak load of 22.3 kN is reached just prior to tensile fiber failure originating at the edge of the hole in 

the intact ligaments. The extent of predicted matrix damage is shown by the red elements just prior to 

failure in Figure 6a. 

 

The OHT model with the strain-based CDM method predicts matrix crack initiation and the initial 

growth of the matrix cracks at loads that are in close agreement with the DGD model predictions. 

However, when the cracked elements undergo large shear deformation, load transfer across the cracked 

elements occurs and further matrix crack growth is slowed. The slower rate of matrix splitting crack 

growth predicted by the strain-based CDM model is apparent in the slower rate of change in the slope 

of the load-displacement response, as shown by the gray curve in Figure 5. Load transfer across the first 

set of four matrix splitting cracks causes secondary and tertiary rows of matrix cracks to develop, as 

shown in in Figure 6b. Regions of the mesh where multiple adjacent matrix cracks develop (i.e., rows 

of softened elements without any intact elements remaining between them) undergo severe distortion. 

The distortion of the mesh leads to premature failure of the model at a load of 9.6 kN. 

 

 

 

Figure 5: Load-displacement results of the unidirectional OHT models. [12] 

 

 

Figure 6: Predicted matrix damage state at peak load for the unidirectional OHT models. Blue 

represents intact material and red represents a fully developed matrix crack. [12] 
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Iarve et al. [15] and Song et al. [19] demonstrated that CDM modeling approaches are unable to 

eliminate the stress concentration at the hole that should follow the formation of the splitting cracks and 

the present results confirm those observations. Stress concentration factors equal to approximately 1.5 

are predicted by the model with the strain-based CDM method after the formation of the matrix splitting 

cracks, as shown in Figure 7a. The analysis conducted with the DGD CDM method predicts a more 

uniform 𝜎11 distribution after the extension of the matrix splitting cracks, as shown in Figure 7b. 

 

 

 

Figure 7: Normalized fiber-direction stress versus normalized distance from the hole along the mid-

section of the unidirectional OHT model. The fiber-direction stress is normalized by 𝐸1𝛥 𝐿⁄ , where 𝛥 

is the applied 𝑥1-direction displacement and 𝐿 is the specimen length. 

4 CONCLUSIONS 

A method is presented which improves the predictive capability of continuum damage mechanics 

(CDM) methods for fiber-reinforced materials in geometrically nonlinear finite element models. The 

method involves the additive decomposition of the deformation gradient tensor into ‘crack’ and ‘bulk 

material’ components and determining the current crack opening displacement by assuming stress 

equivalence on the crack plane. The presented approach allows for accurate representation of crack 

kinematics in CDM progressive damage analyses. The implementation of the presented method as a 

constitutive material model allows for the method to be applied to existing two- or three-dimensional 

solid or shell finite elements. The potential improvements to the accuracy of progressive damage finite 

element models have been demonstrated for a single element subjected to simple shear deformation and 

for a tension-loaded unidirectional open-hole specimen model. In both cases, the presented method 

performs better than existing approaches in terms of reducing the transfer of load across open matrix 

cracks and avoiding the prediction of spurious secondary failure modes when subjected to large shear 

deformations. 

 

REFERENCES 

[1] Matzenmiller A, Lubliner J, Tayler RL. A constitutive model for anisotropic damage in fiber-

composites. Mechanics of Materials 1995; 20:125–52. 

[2] Maimí P, Camanho PP, Mayugo JA, Dávila CG. A continuum damage model for composite 

laminates: Part I – Constitutive model. Mechanics of Materials 2007; 39:897–908. 

[3] Lapcyzyk I, Hurtado JA. Progressive damage modeling in fiber-reinforced materials. Composites 

Part A: Applied Science and Manufacturing 2007; 38:2333–41. 

(a) Strain-based CDM method (b) DGD CDM method

0.5

1.0

1.5

2.0

2.5

3.0

0 0.2 0.4 0.6 0.8 1

N
o
rm

a
liz

e
d
 S

tr
e
s
s

Normalized Distance

2 kN

4 kN

6 kN

8 kN

0.5

1.0

1.5

2.0

2.5

3.0

0 0.2 0.4 0.6 0.8 1

N
o
rm

a
liz

e
d
 S

tr
e
s
s

Normalized Distance

2 kN

4 kN

6 kN

8 kN



Frank A. Leone, Jr. 

[4] Van Der Meer FP, Sluys LJ. Continuum models for the analysis of progressive failure in 

composite laminates. Journal of Composite Materials 2009; 43(20):2131–56. 

[5] Camanho PP, Bessa MA, Catalanotti G, Vogler M, Rolfes R. Modeling the inelastic deformation 

and fracture of polymer composites – Part II: Smeared crack model. Mechanics of Materials 2013; 

59:36–49. 

[6] ABAQUS (2013). Abaqus 6.13 Online Documentation. Dassault Systèmes, Providence, RI, USA. 

[7] Prabhakar P, Waas AM. A novel continuum-decohesive finite element for modeling in-plane 

fracture in fiber reinforced composites. Composites Science and Technology 2013; 83:1–10. 

[8] Ling D, Yang Q, Cox B. An augmented finite element method for modeling arbitrary 

discontinuities in composite materials. International Journal of Fracture 2009; 156:53–73. 

[9] Iarve EV, Gurvich MR, Mollenhauer DH, Rose CA, Dávila CG. Mesh-independent matrix 

cracking and delamination modeling in laminated composites. International Journal for 

Numerical Methods in Engineering 2011; 88(8):749–73. 

[10] Chen BY, Pinho ST, De Carvalho NV, Baiz PM, Tay TE. A floating node method for the 

modeling of discontinuities in composites. Engineering Fracture Mechanics 2014; 127:104–34. 

[11] Rose CA, Dávila CG, Leone FA. Analysis methods for progressive damage of composite 

structures. NASA/TM–2013-218024. 

[12] Leone FA. Deformation gradient tensor decomposition for representing matrix cracks in fiber-

reinforced materials. Composites Part A: Applied Science and Manufacturing (submitted). 

[13] Pinho ST, Dávila CG, Camanho PP, Iannucci L, Robinson P. Failure models and criteria for FRP 

under in-plane or three-dimensional stress states including shear nonlinearity. NASA/TM–2005-

213530. 

[14] Catalanotti G, Camanho PP, Marques AT. Three-dimensional failure criteria for fiber-reinforced 

laminates. Composite Structures 2013; 95:63–79. 

[15] González EV, Maimí P, Turon A, Camanho PP, Renart J. Simulation of delamination by means 

of cohesive elements using an explicit finite element code. Computers, Materials and Continua 

2009; 9(1):51–92. 

[16] Iarve EV, Mollenhauer D, Kim R. Theoretical and experimental investigation of stress 

redistribution in open hole composite laminates due to damage accumulation. Composites Part 

A: Applied Science and Manufacturing 2005; 36(2):163–71. 

[17] Camanho PP, Maimí P, Dávila CG. Prediction of size effects in notched laminates using 

continuum damage mechanics. Composites Science and Technology 2007; 67:2715–27. 

[18] Catalanotti G, Camanho PP, Xavier J, Dávila CG, Marques AT. Measurement of resistance curves 

in the longitudinal failure of composites using digital image correlation. Composites Science and 

Technology 2010; 70:1986–93. 

[19] Song K, Li Y, Rose CA. Continuum damage mechanics models for the analysis of progressive 

failure in open-hole tension laminates. 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural 

Dynamics and Materials Conference. 4–7 April 2011. Denver, Colorado. 


