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The Spaceport Command and Control System will be the National Aeronautics and 

Space Administration’s newest system for launching commercial and government owned 

spacecraft. It’s a large system with many parts all in need of testing. To improve upon testing 

already done by NASA engineers, the Engineering Directorate, Electrical Division (NE-E) of 

Kennedy Space Center has hired a group of interns each of the last few semesters to develop 

novel ways of improving the testing process. 

 

Nomenclature 

IDE = Integrated Development Environment is a program that enhances the programming process 

Java = General purpose programming language designed to have as few implementation   

  dependencies as possible 

Jenkins1 = Automation server used for building and testing software projects 

Jython = Java implementation of Python 

KSC  = Kennedy Space Center is the NASA center tasked with the assembly and launch of rockets, in 

  addition to numerous research activities 

LCC  =  Launch Control Center is the building in KSC utilized for controlling launches 

LCS = Launch Control System is the KSC software system used for remotely controlling launches 

NASA  = National Aeronautics and Space Administration 

OpenCV2 = Open source image recognition library 

Portal Workstation =  Computer located in firing room used for accessing SCCS 

Python = High level, interpreted programming language 

Robot Framework3 = Generic test automation framework used for running tests and generating test reports 

SikuliX4 = Software package used for automating keyboard strokes and mouse clicks 

SCCS = Spaceport Command and Control System consists of the Launch Control System and the 

Kennedy Ground Control System, which together are the launch system for the SLS 

SLS = Space Launch System is NASA’s newest launch vehicle 

Tesseract5 = Open source optical character recognition tool 

Workstation = Computer used for developing software 

User Interface = The portion of a computer application that interacts with the user 

I. Introduction 

 This internship focused on the development of automated user interface testing tools in collaboration with other 

interns and full time engineers. Normally, in order to test a user interface, an engineer would sit at a computer and click 

through or type in very specific test steps. The engineer would then verify that the software under test behaved as the 

test steps indicate it should. Automating the test steps has the potential to free up time on the part of the engineer and 

help eliminate human error by ensuring the test steps are performed consistently. 

II. Objectives 

 The primary goal of the internship was to figure out how to integrate SikuliX and Robot Framework into a 

standalone package that could be placed on any Portal Workstation in the Launch Control Center Firing Room to test 

the Launch Control System User Interface. There were also several secondary goals that had the potential to improve 

the functionality of the SikuliX Robot Framework package. SikuliX has an experimental feature that allows for the use 

of text recognition in place of the default recognition process, which is image recognition4. Enabling and configuring 

that feature, which became a secondary goal, had the potential to drastically reduce the size of the SikuliX Robot 

Framework test packages by reducing the number of images that had to be included in the package. The text recognition 

feature also had the potential of improving the reliability of the package by reducing the error introduced by manually 

taking a snapshot of a user’s display and cropping out the portion to be clicked on. An additional goal was to make the 

package deployable through the Jenkins build and deployment server. This would allow for hands free testing of the 

user interfaces.  
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III. Approach 

 To begin, we were given the work of the interns from last semester. They had primarily worked on researching 

existing test frameworks that could be used to satisfy the project objectives. They had come to the conclusion that Robot 

Framework with a SikuliX library would be the best fit. Robot Framework has a unique keyword based syntax that 

allows for near natural language programming. In addition it generates reports that are easy to read and scalable for 

large test sets. SikuliX allows for the automation of mouse clicks and keyboard strokes through the use of OpenCV 

image recognition4. Combining the two into a standalone package would be ideal for the automation of user interface 

tests. 

 We had several requirements that needed to be satisfied for the standalone package. The package itself and its 

dependencies can be visualized using Figure I, located in the Appendix. First, it had to be independent of the workstation. 

The process for getting software installed on Portal Workstations is quite extensive. Our mentors wanted to avoid the 

extra work if at all possible. This meant that we could not do the default installs of Robot Framework and SikuliX. The 

software had to be installed in a separate folder, or package, with no dependencies on the local machine that couldn’t 

be expected to be satisfied by any Portal Workstation or SCCS Red Hat Workstation. Secondly, the packages had to 

work on the Red Hat Enterprise Linux operating system installed on all workstations. Robot Framework and SikuliX, 

being open source, are normally developed and tested on the most recent version of the Ubuntu Linux operating system; 

therefore the software wasn’t tested on operating systems that place an emphasis on package stability, like Red Hat. 

This slightly complicated the installation as additional dependencies needed to be compiled and installed before Robot 

Framework and SikuliX could be installed. Third the package needed to include the SikuliX and Robot Framework 

IDEs. The Robot Framework IDE unfortunately was dependent upon a newer version of Python than what was installed 

by default on the workstations. Unlike the other dependencies, an updated version of Python could not be installed in a 

machine independent way. The solution we came up with was to create two separate packages. One would be machine 

independent, containing SikuliX and Robot Framework, which would be able to run the user interface tests.  The other 

would contain the IDEs for developing the tests, but would have a dependency that required the local workstation to 

have an updated version of Python installed. Lastly, the entire process had to be documented so as to allow for future 

developers to be able to easily reproduce and update the package. This was implemented by placing a README file in 

the base directory of each package. 

 During the installation process, problems/bugs were discovered and fixed. Soon after installation we found that 

the Robot Framework IDE could not start up when running SikuliX based tests. The Robot Framework IDE, written in 

Python, was calling a method, os.getpid(). This method worked fine for Python based tests, however our tests, due to 

SikuliX requirements, were written in Jython. Unfortunately, os.getpid() currently has several bugs in its Jython 

implementation. Another intern, Nicole Maguire, wrote a patch in Java that could be used as an alternative to the method 

call causing trouble. The Robot Framework library that was to be used for integrating SikuliX and Robot Framework 

contained some code duplication that caused the library to fail to run. We fixed this by removing the duplicate code and 

then suggesting the fix to the library author through GitHub6. The library additionally didn’t have a license readily 

available. This created an implicit default copyright on the code, meaning that the author retained all rights to the source 

code and that nobody else could reproduce, distribute, or create a derivative work of the library7. Without a more open 

license, we would have needed to refrain from using the library and develop our own. Developing our own library would 

have been by no means impossible, but it would also not have been ideal knowing that there was one already in existence. 

The author of the library was contacted and agreed to open up the software under the MIT License. Once the license 

was opened up, the library was expanded to include some previously missing SikuliX functionality. 

 After the two SikuliX/Robot Framework packages were set up and their functionality verified, we moved on 

to creating working examples of package functionality. This was done by writing a series of Robot Framework test 

cases following a real set of test instructions used to test the Launch Control System User Interface. Margaret Dube and 

I introduced two competing approaches in the interest of figuring out the best way of writing test cases. Margaret 

approached writing the test cases using syntax consisting mostly of default Robot Framework keywords. By doing so 

she maintained a certain level of simplicity, easily readable by those familiar with the Robot Framework syntax. Trying 

to take things a step further, I attempted to write generic keywords that matched the syntax currently contained in the 

test cases used by NASA engineers. My approach ended up generating a lot of underlying complexity in the generic 

keywords, so we decided to go with Margaret’s approach for the remainder of the test cases. Several generic keywords 

were useful enough to be kept for future test cases.  
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 The next step was to get text recognition to work. SikuliX uses a program called Tesseract for image 

recognition4. On our first attempt to utilize the feature, the results were very poor. Tesseract was recognizing the 

character G as C, L as I, and was also inserting random spaces. There was a process available to “train” Tesseract, so 

we attempted that as well. The training improved the accuracy of the text recognition, but it still wasn’t recognizing the 

text accurately enough to be considered as an alternative to the image recognition. This was mostly due to Tesseract 

having been designed for high resolution images (the developers suggest around 300 DPI5); our screenshots were far 

lower resolution.  Jason Kapusta, one of our mentors, suggested that since we know the font, size, and color of the 

background being used by the dashboard, we might be able to generate an image that could be used by SikuliX for 

interacting with the User Interface. This technique would allow us to save space in the test folders by not having to store 

a large number of screenshots and it would allow us to sidestep the Tesseract text recognition process entirely. While 

Margaret and I were working on Tesseract, Nicole developed a Java program to generate the image. After addressing 

some font issues, it worked perfectly. The solution Nicole developed worked significantly better than the screenshot 

based approach and the Tesseract based approach. We therefore accepted it as the solution of choice, with image 

recognition being used as a backup.  

IV. Results 

 Our team successfully managed to get a user interface testing framework up and running. The package 

containing the framework can be run on any SCCS Red Hat workstation. Looking to improve the functionality, our team 

developed custom keywords and applications that sped up the process of developing automated User Interface tests. We 

created extensive documentation and examples that can be used by future interns and engineers for both improving the 

package and developing tests. At the time of this writing, there is one remaining task, which is getting the test packages 

to deploy automatically using the Jenkins deployment server. With five weeks left in the internship, I expect we’ll get 

it up and running.  
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Appendix 
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