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Abstract—A fundamental requirement for the integration of
unmanned aircraft into civil airspace is the capability of aircraft
to remain well clear of each other and avoid collisions. This
requirement has led to a broad recognition of the need for
an unambiguous, formal definition of well clear. It is further
recognized that any such definition must be interoperable with
existing airborne collision avoidance systems (ACAS). A particu-
lar class of well-clear definitions uses logic checks of independent
distance thresholds as well as independent time thresholds in
the vertical and horizontal dimensions to determine if a well-
clear violation is predicted to occur within a given time interval.
Existing ACAS systems also use independent distance thresholds,
however a common time threshold is used for the vertical and
horizontal logic checks. The main contribution of this paper is
the characterization of the effects of the decoupled vertical time
threshold on a well-clear definition in terms of (1) time to well-
clear violation, and (2) interoperability with existing ACAS. The
paper provides governing equations for both metrics and includes
simulation results to illustrate the relationships. In this paper,
interoperability implies that the time of well-clear violation is
strictly less than the time a resolution advisory is issued by ACAS.
The encounter geometries under consideration in this paper are
initially well clear and consist of constant-velocity trajectories
resulting in near-mid-air collisions.
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ability

I. INTRODUCTION

A widely accepted requirement for the safe integration of
unmanned aircraft into civil airspace is the need for adequate
detect-and-avoid (D&A) or sense-and-avoid (SAA)1 systems
[1,3–5]. The FAA-sponsored SAA Workshop for unmanned
aircraft systems (UAS) defines sense and avoid as “the capa-
bility to remain well clear from and avoid collisions with other
airborne traffic” [6]. In the context of remotely-piloted UAS,
both EUROCONTROL [7] and ICAO [2] have also made
reference to the well-clear and collision-avoidance functional
aspects of SAA. This terminology is also paralleled in the
existing regulatory framework governing manned aircraft.

Under visual flight rules (VFR) for manned aircraft op-
erations, onboard pilots are required to remain well clear
of other aircraft when complying with the particular rules

1As in [1,2], this paper uses the terms detect and avoid and sense and avoid
interchangeably.

addressing right-of-way [8,9]. Furthermore, the pilot always
has the responsibility for avoiding collisions by not “operating
an aircraft so close to another aircraft as to create a collision
hazard” [10,11]. In this context, the ability to remain well clear
and avoid collisions depends, in part, upon the perception and
judgement of a human pilot.

In the absence of an onboard pilot to make a determination
of being well clear, the need for an unambiguous, quantitative
definition has been identified [12–18]. Additionally, the need
for compatibility/interoperability between existing airborne
collision avoidance systems (ACAS) and future UAS SAA
functionality is a well-established problem concerning the
integration of UAS into civil airspace [1,14–16,19–22]. In
general, maneuvers to maintain well clear are made much
earlier than collision avoidance maneuvers [14–16,19]. Hence,
a well clear determination should be large enough to avoid
collision advisories, yet not so large as to cause undue concern
for traffic aircraft [20].

The particular ACAS considered in this paper is Traffic alert
and Collision Avoidance System (TCAS) II [23]. In the US,
TCAS II is mandated for use in aircraft having greater than
30 seats or maximum takeoff weight (MTOW) greater than
33,000 lbs. In the EU, ACAS II2 is mandated for use by aircraft
authorized to carry more than 19 passengers or MTOW greater
than 5700 kg [24]. The high-level logic of TCAS II is based
on checks of time and distance variables against predefined
thresholds in the horizontal and vertical dimensions, which
vary as a function of the sensitivity level (SL) at which the
aircraft is operating, where the SL is determined by the altitude
of the aircraft. The time threshold, Tau, and the respective
relative horizontal and vertical distance thresholds, DMOD and
ZTHR, jointly characterize a Collision Avoidance Threshold
(CAT), whereby simultaneous violations in the vertical and
horizontal dimensions triggers a TCAS II traffic advisory (TA)
or resolution advisory (RA) [25]. Different sets of threshold
values are used to determine which of these two types of
advisories is issued. This paper restricts attention to the more
serious case of TCAS II RAs, which are intended to provide
guidance to pilots to maintain or increase vertical separation
from other aircraft. A listing of the time and distance thresh-

2At the time of this paper, ACAS II is realized as TCAS II.



olds used by TCAS II for RAs at each SL is given in Table I
[23]. As shown in Table I, the horizontal and vertical time
variables are compared to a single time threshold, Tau. It
should be noted that there are two types of TCAS II RA:
preventive and corrective, where the particular type of RA to
be issued is determined by further logic checks. Preventive
RAs do not require a change in the aircraft’s vertical speed,
and corrective RAs do require such a change [25]. This paper
considers interoperability with respect to both types of RA,
although the corrective RA is of particular practical concern
[20].

The necessity for interoperability with TCAS II has led to
proposals that a formal definition for well clear be explic-
itly based on time and distance thresholds [15,17,18]. Such
thresholds then characterize a well-clear boundary (WCB).
That is, crossing the WCB signifies a loss of well clear, i.e.,
a well-clear violation (WCV) has occurred. The mathematical
definitions for such a class of WCB models have been sum-
marized in [18]. An important feature of these WCB models
is the explicit decoupling of the time threshold into horizontal
and vertical components, TTHR and TCOA, respectively.
This decoupling represents a high-level distinction from the
TCAS II logic. A primary motivation for this paper is to
present the resulting effects of this decoupling in terms of
time to WCV and TCAS II interoperability.

The models in [18] also allow for predictions of future
WCVs, assuming constant velocities. Furthermore, a high-
level specification of the TCAS II RA logic is given in [26],
where it is possible to predict the time at which a TCAS II
RA will be issued. A key property maintained by a subset of
the WCB models in [18] is that there exists some choice of
time and distance thresholds such that the resulting WCB is
guaranteed to lie outside of the CAT defined by TCAS II for
any sensitivity level. For the analysis in this paper, TCAS II
interoperability implies that a WCV occurs prior to a TCAS
II RA. However, it should be noted that the selection of
thresholds which guarantee such TCAS II interoperability may
not always be practical from an operational standpoint. Thus,
there are perhaps situations where it is operationally acceptable
for a TCAS II RA to be issued prior to a WCV. Furthermore,
there may also exist practical mitigating factors (e.g., air traffic
control) which could act to prevent such scenarios. This paper
does not address these last two considerations, thus the scope
of the paper is limited to mathematical interoperability of

TABLE I
TCAS II SENSITIVITY LEVEL (SL) VERSUS RESOLUTION ADVISORY

(RA) THRESHOLDS

Own Altitude (ft) SL Tau (s) DMOD (nmi) ZTHR (ft)
< 1000 (AGL) 2 N/A N/A N/A

1000 - 2350 (AGL) 3 15 0.20 600
2350 - 5000 4 20 0.35 600
5000 - 10000 5 25 0.55 600

10000 - 20000 6 30 0.80 600
20000 - 42000 7 35 1.10 700

> 42000 7 35 1.10 800

unmitigated aircraft-pair encounters. This choice is partially
motivated by the absence of a history of operational experience
with UAS in civil airspace to substantiate the exact extent to
which such mitigations may be relied upon [19].

This paper characterizes the effects of decoupling the ver-
tical time threshold from the horizontal time threshold in
terms of time to WCV and mathematical interoperability with
TCAS II, both for unmitigated, constant-velocity, near-mid-
air collision (NMAC) encounters. Because existing aircraft
encounter models do not sufficiently model UAS flight profiles
[21], such encounters were intended to represent a base case
of particular interest. The main contribution of this paper is
the provision of both analytical and Monte Carlo simulation
results, which together give a closed-form representation and
an intuitive visualization of the effects of selecting different
values for TCOA for a particular WCB definition with respect
to the time to WCV and the mathematical interoperability with
TCAS II, for the given encounter model.

The remainder of the paper is organized as follows. Sec-
tion II gives a summary of the WCB models under considera-
tion [18]. Section III derives a set of closed-form expressions
and relationships for understanding the effects of a vertical
time threshold on time to WCV. Section IV provides a set
of closed-form expressions conjectured to define a worst case
TCAS II RA interoperability metric for arbitrary values of a
vertical time threshold. Section V discusses the design and
results of the Monte Carlo simulation, which quantifies the
analytical results presented in Sections III and IV. Finally,
Section VI provides concluding remarks.

II. A CLASS OF WELL-CLEAR BOUNDARY DEFINITIONS

In the subsequent mathematical development, letters in
bold-face denote two-dimensional (2-D) vectors. Vector op-
erations such as addition, subtraction, scalar multiplication,
dot product, i.e., s · v ≡ sxvx + syvy , the square of a vector,
i.e., s2 ≡ s · s, and the norm of a vector, i.e., ‖s‖ ≡

√
s2,

are defined in a 2-D Euclidean geometry. Furthermore, all
development presented in this paper and marked as a Lemma,
Corollary, or Theorem has been formally specified and verified
in the Prototype Verification System (PVS) [27]. In particular,
a formal proof in PVS provides a mathematical guarantee that
a stated relationship, equation, algorithm, etc, holds exactly as
specified. Such formal methods are routinely used in math-
ematics, engineering, computer science, and particularly in
areas demanding a high degree of certainty in the results, such
as safety-critical systems. However, to make the following
presentation accessible to non-PVS users, this paper uses
mathematical notation instead of PVS concrete syntax.

The class of WCB models considered in this paper are
related by their dependence on time and distance thresholds in
the horizontal and vertical dimensions. The models in this class
differ only in the particular horizontal time variable, denoted
tvar, used to check against a horizontal time threshold TTHR.
Henceforth, WCBtvar denotes the particular WCB model for the
time variable tvar. As in [18], this paper considers two aircraft,
called ownship and intruder aircraft, whose states are given



by position and velocity vectors in a Euclidean coordinate
system. Thus, a pairwise WCBtvar violation is then completely
characterized by the Boolean formula

WCVtvar(s, sz,v, vz) ≡ HWCVtvar(s,v) and
VWCV(sz, vz),

(1)

where s,v ∈ R2 are the respective ownship-intruder relative
horizontal position and velocity vectors, and sz, vz ∈ R are
the respective ownship-intruder relative vertical position and
velocities. The horizontal and vertical checks given in (1) are
respectively defined as

HWCVtvar(s,v) ≡ ‖s‖ ≤ DTHR or
(dcpa(s,v) ≤ DTHR and 0 ≤ tvar(s,v) ≤ TTHR),

(2)

VWCV(sz, vz) ≡ |sz| ≤ ZTHR or
0 ≤ tcoa(sz, vz) ≤ TCOA,

(3)

where TTHR and DTHR are the respective time and distance
thresholds in the horizontal dimension, and TCOA and ZTHR
are the respective time and distance thresholds in the vertical
dimension. The function dcpa in (2) computes the projected dis-
tance between the ownship and intruder at their closest point
of approach, assuming constant relative horizontal velocity, v,
and is formally defined as

dcpa(s,v) ≡ ‖s + tcpa(s,v)v‖, (4)

where tcpa is the time at closest point of approach, which is
defined as

tcpa(s,v) ≡

{
− s·v

v2 if ‖v‖ 6= 0,

0 otherwise.
(5)

Note that tcpa(s,v) > 0 when the aircraft are horizontally
converging, tcpa(s,v) < 0 when the aircraft are horizontally
diverging, and tcpa(s,v) = 0 when the aircraft are at the closest
point of approach. The function tcoa in (3) computes the time
to co-altitude assuming constant relative vertical speed vz and
is defined as

tcoa(sz, vz) ≡

{
− szvz if szvz < 0,

−1 otherwise.
(6)

Similar to the horizontal case, the product szvz characterizes
whether the aircraft are vertically diverging, i.e., szvz > 0, or
vertically converging, i.e., szvz < 0. For completeness, this
paper defines time to co-altitude as −1 when the aircraft are
not vertically converging.

The function tvar in (1) is a horizontal time variable de-
termined by the particular WCB model being used. Possible
choices for the time variable tvar are tau (τ ), defined as range
over closure rate, modified tau [28] (τmod), which is a variant
of tau used in the TCAS II alerting logic, time to closest point
of approach (tcpa), and time to violation of DTHR (tep). The
time variable tcpa is as defined in (5), and formal definitions
of τ and tep are found in [18]. Modified tau is a time variable

particularly relevant to this paper, and in vector notation, is
defined as

τmod(s,v) ≡

{
DTHR2−s2

s·v if s · v < 0,

−1 otherwise.
(7)

As is the case for the other time variables, τmod is defined as −1
when the aircraft are not converging. For a given sensitivity
level, the TCAS II RA logic corresponds to the Boolean
formula WCVτmod , as defined in (1), where tvar is instantiated
with τmod. Furthermore, the thresholds DTHR, TTHR, ZTHR,
and TCOA appearing in (2) and (3) are respectively equal to
the TCAS II RA threshold values DMOD, Tau, ZTHR, and
Tau in Table I.

The family of WCB models resulting from the time vari-
ables listed above is formally studied in [18]. For example,
it is proved that for the same choice of threshold values, the
following containment relationships hold:

WCBτ ⊆WCBtcpa ⊆WCBτmod ⊆WCBtep . (8)

These relationships guarantee that for the models WCBτmod

and WCBtep , there exists a choice of parameters that makes
the boundaries larger than the TCAS II RA boundary.

Another property studied in [18] is local convexity. A
boundary model is locally convex if for nonmaneuvering, i.e.,
constant-velocity, encounters there exists at most one time
interval of well-clear violation. It is formally proved in [18]
that, with the notable exception of WCBτ , all the other models
in (8) are locally convex. The lack of the local-convexity
property in WCBτ is related to well-known problems with the
definition of tau [28], which makes it impractical to use this
particular model as a basis for a SAA concept. Henceforth,
this paper only considers the WCB models that are locally
convex.

For locally convex models, it is possible to define a detec-
tion algorithm which computes a time interval of well-clear
violation for nonmaneuvering pairwise encounters; the generic
algorithm WCDtvar in (9) has as inputs a relative state and a
lookahead time interval [B, T ]. This algorithm returns a time
interval when a violation of WCBtvar will occur and is defined
as
WCDtvar(s, sz,v, vz, B, T ) ≡

let [t1, t2] = VWCD(sz, vz, B, T ) in
if t1 > t2 then ∅
elsif t1 = t2 and HWCVtvar(s + t1v,v)

then [t1, t1]

elsif t1 = t2 then ∅
else

let [tin, tout] = HWCDtvar(s + t1v,v, t2 − t1) in
[tin + t1, tout + t1]

endif,

(9)

where HWCDtvar and VWCD are functions that compute time in-
tervals of violation for the horizontal and vertical dimensions,
respectively. Precise definitions of VWCD and HWCDtvar , for



tvar ∈ {τmod, tcpa, tep}, are provided in [18], and these definitions
are assumed in this paper. Furthermore, ∅ denotes that no well-
clear violation is predicted to occur.

Since the vertical check VWCV is independent of tvar, the
function VWCD that computes the time interval for a vertical
well-clear violation is the same for any WCBtvar model. On
the other hand, the horizontal check HWCVtvar depends on
the definition of the time variable tvar. Hence, a horizontal
detection function HWCDtvar for each particular definition of tvar

is necessary. The following theorem, which has been formally
proved in [18], states that WCDtvar completely characterizes the
time interval of WCBtvar violation within the lookahead time
interval [B, T ], for nonmaneuvering pairwise encounters.

Theorem 1. Let tvar be one of τmod, tcpa, or tep. For all relative
states denoted by s, sz,v, vz , time interval [B, T ], with 0 ≤
B < T , and t ∈ [B, T ], WCVtvar(s+tv, sz+tvz,v, vz) is equal
to true if and only if t ∈ [tin, tout], where

[tin, tout] = WCDtvar(s, sz,v, vz, B, T ). (10)

If tin ≤ tout in (10), tin and tout denote the first and last
times within [B, T ] when a violation of WCBtvar occurs in a
nonmaneuvering encounter. Henceforth, these times to WCV
will be denoted tMin and tMout , where M is a particular locally
convex, well-clear boundary model.

III. EFFECTS OF TCOA ON TIME TO WELL-CLEAR
VIOLATION

Consider a model WCBtvar as defined in Section II, and let
this model have two instantiations that coincide in their thresh-
old values DTHR, TTHR, and ZTHR but differ in the partic-
ular choice of the vertical time threshold, TCOA. Let these
instantiations be denoted by M0 and M1, having TCOA0

and TCOA1, respectively, such that TCOA0 < TCOA1. The
metric ∆tin ≡ tM0

in − tM1
in then characterizes the difference in

time to well-clear violation between two models, based ex-
clusively on the particular choices of TCOA. In the following
development, a closed-form expression for an upper bound on
∆tin is derived for the case of unmitigated, nonmaneuvering
encounters resulting in a near mid-air collision.

As discussed in Section II, a well-clear violation results
from simultaneous violations in the vertical and horizontal
dimensions. In particular, if a violation is predicted to occur
in the vertical dimension within the given lookahead time,
the horizontal dimension is checked. If a violation is also
predicted to occur within the given lookahead in the horizontal
dimension, a time interval for the well-clear violation is
computed by the function WCDtvar . The following lemma gives
a closed-form expression for the difference in time to a vertical
well-clear violation between M0 and M1, denoted ∆tzin.

Lemma 1. For any relative vertical state denoted by sz and
vz such that the vertical time interval of violations for M0

and M1 in the lookahead time interval [B, T ] are nonempty,

the vertical metric ∆tzin satisfies the following equalities.

∆tzin =


0 if vz = 0 or Θ0 ≤ B,
Θ0 −Θ1 if Θ1 > B,

Θ0 −B otherwise,
(11)

where, for i = 0, 1,

Θi ≡
−sign(vz)Hi − sz

vz
, (12)

Hi ≡max(ZTHR,TCOAi|vz|). (13)

The proof of Lemma 1 proceeds by case analysis according
to the definition of VWCD provided in [18]. The following
lemma, which is a consequence of Lemma 1, states that the
initial time to well-clear violation for the vertical dimension
computed for M1 is less than or equal to that computed for
M0, i.e., ∆tzin ≥ 0. It also gives the maximum value that ∆tzin
can take, given two arbitrary values of TCOA.

Lemma 2. For any relative vertical state denoted by sz and
vz such that the vertical time interval of violations for M0

and M1 in the lookahead time interval [B, T ] are nonempty,
the vertical metric ∆tzin satisfies the following relations:

0 ≤ ∆tzin ≤

{
0 if vz = 0,
H1−H0

|vz| otherwise,
(14)

where Hi, for i = 0, 1, is defined as in (13).

The specification of WCDtvar in Section II uses the ver-
tical time interval of violation in the computation of the
horizontal time interval of violation. In particular, the time
interval [t1, t2] in (9), which denotes the time interval of
violation in the vertical dimension, appears in the expression
HWCDtvar(s+t1v,v, t2−t1), which computes a time interval of
violation in the horizontal dimension. In that expression, the
first and second parameters represent relative 2-dimensional
position and velocity vectors, respectively. The last param-
eter represents a horizontal lookahead time. The following
lemma gives a relationship between HWCDtvar(s,v, T ) and
HWCDtvar(s + t1v,v, t2 − t1) for an arbitrary definition of a
locally convex WCBtvar .

Lemma 3. Consider the definition of WCDtvar in Section II
for a locally convex WCBtvar . For any relative horizontal state
denoted by s,v, lookahead time T , and times 0 ≤ t1 < t2 ≤
T , let [α0, β0] = HWCDtvar(s,v, T ) and [α1, β1] = HWCDtvar(s+
t1v,v, t2 − t1) be such that α0 ≤ β0, α1 ≤ β1, and t1 ≤ α0.
Then, the following equation holds:

α0 = t1 + α1. (15)

The proof of Lemma 3 uses the fact that the function WCDtvar

in (9) completely characterizes the time interval of violation
for any locally convex WCBtvar . This lemma provides sufficient
conditions under which the time to horizontal well-clear
violation linearly shifts at the same rate as time progresses
in a nonmaneuvering pairwise encounter.



Now, the following theorem combines the results of
Lemma 2 and Lemma 3 to give an overall upper bound for
∆tin for the three-dimensional case.

Theorem 2. Consider the definition of WCDtvar in Section II
for a WCBtvar , where tvar ∈ {tcpa, τmod, tep}, i.e., locally convex.
For any relative state denoted by s, v, sz , and vz such that
B ≤ tM0

in ≤ tM0
out ≤ T , the metric ∆tin satisfies the following

relations.

0 ≤ ∆tin ≤

{
0 if vz = 0,
H1−H0

|vz| otherwise,
(16)

where Hi, for i = 0, 1, is defined as in (13).

The proof of Theorem 2 proceeds by case analysis on
the definition of WCDtvar in (9). In each case, Lemma 2 and
Lemma 3 are used as appropriate.

The following corollary addresses the special case when
TCOA0 = 0.

Corollary 1. Let M0,M1 be such that TCOA0 = 0 and
TCOA1 ≥ 0. In this case, the upper bound in (16) reduces to

∆tin ≤

{
TCOA1|vz|−ZTHR

|vz| , if TCOA1|vz| > ZTHR,

0, otherwise.
(17)

A consequence of Corollary 1 is that the smallest vertical
closure rate, µ, such that a particular choice of TCOA1 for
M1 is able to provide any earlier time to well-clear violation
over M0 is

µ >
ZTHR

TCOA1
. (18)

Fig. 1 illustrates the theoretical upper bound on ∆tin given
by Corollary 1 for WCBτmod when B = 0 and T = 1201 s. The
particular threshold values for TTHR, DTHR, and ZTHR are
35 s, 1.5 nmi, and 450 ft, respectively. Furthermore, TCOA0 =
0, and TCOA1 is allowed to vary as indicated by the legend.
By inspection of (17), for given values TCOA1 and ZTHR,

Fig. 1. Theoretical upper bound on ∆tin for WCBτmod .

the maximum value for ∆tin is

lim
|vz|→∞

∆tin = TCOA1. (19)

Although values beyond |vz| = 10, 000 ft/min are not pre-
sented in Fig. 1, this limiting behavior can still be seen in
the figure. Furthermore, Fig. 1 can be used to compare M0

and M1 when both models use nonzero TCOA. In particular,
when |vz| > ZTHR

TCOA0
, it can be verified that

∆tin = TCOA1 − TCOA0. (20)

For |vz| satisfying ZTHR
TCOA1

< |vz| < ZTHR
TCOA0

, it can be shown
that

∆tin =
TCOA1|vz| − ZTHR

|vz|
, (21)

and for |vz| < ZTHR
TCOA1

, ∆tin is identically zero.

IV. INTEROPERABILITY WITH TCAS II

The subsequent development presents the mathematical in-
teroperability of a WCB model with the TCAS II RA logic. In
particular, interoperability in the context of this paper implies
that if a well-clear violation is predicted to occur within a
given lookahead interval then the resulting time to WCV will
precede the time to TCAS II RA, regardless of whether the
RA is preventive or corrective.

As discussed in Section II, the high-level TCAS II RA
logic for a given sensitivity level can be represented by a
model R = WCBτmod , where the threshold values of R,
denoted DTHRR, TTHRR, ZTHRR, and TCOAR, are set to
the TCAS II threshold values from Table I, i.e., DTHRR =
DMOD, ZTHRR = ZTHR, and TTHRR = TCOAR = Tau.
Now, for any model M = WCBtvar , where tvar ∈ {τmod, tep},
there exists a choice of threshold values of M, denoted
DTHRM, TTHRM, ZTHRM, and TCOAM, that makes M
compatible with R. To provide a measure of interoperability
of M with the TCAS II RA logic, the time to WCV in
the model M, i.e., tMin , is computed and subtracted from
the time to TCAS II RA, i.e., tRin , for a given encounter
geometry. The resulting metric of interoperability is given as
∆tRin ≡ tRin − tMin . Interoperability requires that ∆tRin > 0. This
definition motivates investigation of interoperability in terms
of worst-case, i.e., minimum, bounds on ∆tRin .

Because TCAS II uses aircraft altitude to determine the
sensitivity level, which in turn specifies the thresholds used
to trigger an RA, there are a large number of interoperability
cases to consider. However, the following conjecture is a
preliminary result, which gives a general minimum bound on
∆tRin for any sensitivity level, assuming unmitigated, constant-
velocity NMAC trajectories, absent any TCAS II RA suppres-
sion logic. In particular, it is conjectured that the following
four inequalities govern the minimum value ∆tRin :

• If |vz| ≤ min( ZTHRM

TCOAM , ZTHR
Tau ),

∆tRin ≥
ZTHRM − ZTHR

|vz|
. (22)



• If ZTHRM

TCOAM ≤ |vz| ≤ ZTHR
Tau ,

∆tRin ≥
TCOAM|vz| − ZTHR

|vz|
. (23)

• If ZTHR
Tau ≤ |vz| ≤

ZTHRM

TCOAM ,

∆tRin ≥
ZTHRM − Tau|vz|

|vz|
. (24)

• If |vz| ≥ max( ZTHRM

TCOAM , ZTHR
Tau ),

∆tRin ≥ TCOAM − Tau. (25)

A key assumption in this conjecture is that the horizontal
thresholds for M are larger than those for R, and thus, lack
of interoperability is due to artifacts in the vertical dimension,
i.e., DTHRM ≥ DMOD and TTHRM ≥ Tau.

Fig. 2 shows the theoretical minimum values for ∆tRin and
WCBτmod as a function of |vz| for the particular case of TCAS
II sensitivity level 4 and threshold values for M as indicated
in the legend. Note that the plots for TCOA = 0 s and
TCOA = 5 s coincide for the displayed range. Inspection
of Fig. 2 illustrates that there are vertical closure rates where
interoperability is not mathematically guaranteed for certain
choices of TCOA. In particular, choosing TCOAM ≤ Tau =
20 s results in the situation that mathematical interoperability
is never guaranteed. Conversely, for TCOAM > Tau, mathe-
matical interoperability is guaranteed beyond certain vertical
closure rates. Furthermore, inspection of (22)-(25) shows that
there are threshold values for M such that mathematical
interoperability is always guaranteed. However, the fact that a
choice of thresholds guarantees mathematical interoperability
with the TCAS II RA logic does not necessarily lead to an
operationally desirable definition for well clear.

V. SIMULATION

A. Design Approach

The Monte Carlo simulation design approach was primarily
motivated by the lack of aircraft encounter models in civil

Fig. 2. Minimal vertical TCAS II RA interoperability.

airspace that sufficiently incorporate UAS flight characteristics
[21] and the lack of broad operational experience with UAS
in an integrated civil airspace [19]. While the encounter
space was limited to unmitigated, constant-velocity NMAC
trajectories as the base case of interest, the overall goal was to
otherwise not overly constrain the simulation with assumptions
beyond maintaining feasibility in the encounters. In particular,
parameters were chosen from uniform distributions, where
the upper and lower bounds were selected such that the
full trade space of possible encounters could be explored.
Furthermore, the simulation results afford a means to visually
convey the formally verified effects of TCOA on ∆tin given
in Section III and the conjectured effects of TCOA on ∆tRin
given in Section IV. In the absence of established operational
experience with such encounters in the context of UAS in
the civil airspace, these results may provide some basis for
selecting a particular value for TCOA in a formal definition of
well clear, or perhaps for omitting the vertical time threshold,
entirely.

The simulation was composed of eight independent Monte
Carlo runs, where each of the eight runs considered a different
value for TCOA. The first run set TCOA to zero, subsequent
runs incremented TCOA by 5 seconds, and the final run set
TCOA = 35 s. Each of the eight runs consisted of 5000
randomly generated aircraft-pair encounters determined by
sampling from several characterizing uniform random vari-
ables as follows:

1) encounter duration, te ∈ (0, 1200] s,
2) the two-dimensional relative horizontal speed, v ∈

(0, 1185] kn,
3) a point inside a collision volume, centered on the origin,

and having parameters (r, φ, z), where r ∈ [0, 500] ft,
φ ∈ [0, 360]◦, z ∈ [−100, 100] ft,

4) an angle, θ, with respect to the horizontal plane such
that θ ∈ [−90, 90]◦,

5) the relative vertical speed, vz ∈ (0, 10000] ft/min,
where the choice to limit |vz| to 10,000 ft/min was based on
the design of TCAS II, which is capable of detecting vertical
closure rates up to 10,000 ft/min [23].

The parameters r,φ,z and θ were together used to determine
the relative velocity vector and terminating point inside the
collision volume, and the parameter te was used to set the
initial relative position such that at time te, the final relative
position was −(r, φ, z), i.e., the intruder position was the
terminating point inside the collision volume. The lookahead
interval for WCBτmod was set to [0, te + 1]. Furthermore, only
cases of future WCVs were considered, so that if the randomly
generated scenario placed the aircraft into an immediate WCV,
the scenario was discarded. The process was repeated until a
given trial accumulated 5000 WCVs.

For each randomly generated encounter scenario, three mod-
els were considered: (1) the WCBτmod model having TCOA ≥
0, i.e., M1, (2) the WCBτmod model having TCOA = 0, i.e.,
M0, and (3) the WCBτmod model having the TCAS II RA
threshold values, i.e., R. The metric ∆tin was determined by
subtracting tM1

in from tM0
in , and metric ∆tRin was determined



by subtracting tM1
in from tRin . The parameters for WCBτmod

were set as: DTHRM = 1.5 nmi; ZTHRM = 450 ft; and
TTHRM = 35 s. The TCAS II parameters used in the simu-
lation corresponded to sensitivity level 4, i.e., DMOD = 0.35
nmi; ZTHR = 600 ft; and Tau = 20 s. The greater TCAS II
ZTHR value allows for TCAS II RAs to be issued prior to
a WCV for certain vertical closure rates, however, a 500 ft
vertical miss distance is generally acceptable for safe air traffic
procedures flying under VFR [29]. This tradeoff in selecting
ZTHR was made in order to provide a practical visualization
of the implications associated with selecting particular values
for TCOA.

B. Simulation Results and Discussion

Fig. 3 illustrates the simulation results for ∆tin, as derived
in Section V-A, for several values of TCOA. In particular,M0

has TCOA = 0 andM1 has TCOA as indicated in the legend.
The results provide a means to compare how different models
M1 compare to a nominal model, M0, which does not use
a vertical time threshold. The simulated encounters obey the
theoretical upper bounds illustrated in Fig. 1.

It can be verified that for any TCOA1 satisfying 0 <
TCOA1 < TTHRM there is some vertical closure rate, µ,
such that an earlier time to WCV is possible. In Section III,
it was shown that for any TCOA, it is the case that µ >
ZTHRM/TCOA1. When TCOA1 = 0, ∆tin is identically zero,
and no earlier time to WCV is possible. For the case when
TCOA1 = TTHRM, the simulation results in occasions when
the upper bound earlier time to WCV is not achieved. This case
illustrates the subtractive effect of the horizontal component
on ∆tin, a consequence of Lemma 3. However, Fig. 3 also
shows that ∆tin closely follows the theoretical upper bound.
Some key results illustrated in Fig. 3 follow.

For the case when TCOA1 = 25 s, the smallest vertical
closure rate such that M1 can provide an earlier time to
WCV is greater than 1080 ft/min. Furthermore, forM1 a 16 s
earlier time to WCV over M0 is not only possible, but is the

Fig. 3. Sensitivity of ∆tin to TCOA for the WCBτmod Model.

case for vertical closure rates of 3000 ft/min. Moreover, for a
3000 ft/min vertical closure rate, M0 gives a time to WCV
7 s prior to NMAC, while M1 gives a time to WCV 23 s
prior to NMAC.

Now, for the same threshold values, if the vertical closure
rate increases to 6000 ft/min then M0 gives a time to WCV
3.5 s before NMAC, and M1 gives a time to WCV 24 s
before NMAC. Although pilot or automation reaction time
is beyond the scope of this paper, it is assumed that there is
some need to account for such latencies in threshold selection,
and that an earlier time to WCV can provide some means of
mitigation. Conversely, too large a vertical time threshold may
have undesirable operational implications.

Next, Fig. 4 shows the results of the Monte Carlo simulation
with respect to ∆tRin . In particular, the results depicted in
Fig. 4 correspond to the same encouter set used to gener-
ate Fig. 3. At higher vertical closure rates, the value ∆tRin
is dominated by TCOA − Tau and thus exhibits somewhat
constant behavior. This limiting behavior first occurs when
|vz| > max(ZTHR/Tau,ZTHRM/TCOA), or 1800 ft/min.

To better illustrate the critical points determined by TCOA,
a restricted set of data is presented in Fig. 5. Now, comparing
Fig. 5 with the conjectured theoretical minima shown in Fig. 2,
it can be verified that the conjectured minima are satisfied.
Furthermore, at lower vertical closure rates the overall inter-
operability picture is similar for all values of TCOA. Further
note that for |vz| ≥ 1800 ft/min, the conjectured minima in
the limit not only hold but are also useful approximations of
the simulation results for ∆tRin . Finally, the particular threshold
values used for TCAS II also illustrate that there exist some
mathematical interoperability implications for any choice of
TCOA.

Fig. 6 further restricts the plotted data set from the same
Monte Carlo simulation to two particular TCOA values of
interest, i.e., TCOA0 = 0 s and TCOA1 = 25 s. Fig. 6 also
reinforces the general picture of similar TCAS II interoperabil-
ity for both models at lower vertical closure rates. However, as

Fig. 4. Interoperability of the WCBτmod Model with TCAS II.



Fig. 5. Selected Range for the Interoperability of the WCBτmod Model with
TCAS II.

the vertical closure rate increases, the dissimilarity of the two
models becomes pronounced. For TCOA1 = 25 s, guaranteed
TCAS II interoperability first occurs at |vz| > 1440 ft/min and
is maintained for all higher vertical closure rates, while for
TCOA0 = 0 s, TCAS II interoperability is never guaranteed.
Indeed, the simulation results illustrate that TCOA0 = 0 s
is closely approximated by the theoretical minimum where
TCAS II RAs will be issued prior to a WCV.

At higher vertical closure rates, the interoperability differ-
ences associated with TCOA0 and TCOA1 become clear. For
example, at 3000 ft/min vertical closure rate, TCOA1 provides,
at a minimum, a time to WCV 5 s prior to TCAS II RA,
whereas TCOA0 provides, at a minimum, a time to WCV 11 s
after a TCAS II RA has been issued. Furthermore, consider
the case of a 6000 ft/min vertical closure rate. In this case,
TCOA1 still generally provides a 5 s earlier time to WCV than

Fig. 6. Selected Range and Thresholds for the Interoperability of the
WCBτmod Model with TCAS II.

TCAS II RA, however, the situation for TCOA0 worsens to
∆tRin = −17.75 s.

Attempting to alleviate such interoperability concerns for
M0 by adjusting other threshold parameters, e.g., ZTHRM,
is problematic. For example, consider the case of raising
ZTHRM forM0 andM1 to 700 ft. to be above the TCAS II
ZTHR at sensitivity level 4. Fig. 7 illustrates the results. These
results indicate that while positive interoperability is offered
for both models at modest vertical closure rates, M0 again
faces interoperability problems at vertical closure rates of
approximately 2000 ft/min. Mitigating feasible vertical closure
rate encounters in such a way may also be operationally
prohibitive. The picture for M1 improves to guaranteeing
interoperability over all vertical closure rates.

The simulation results demonstrate that for unmitigated,
constant-velocity NMAC trajectories, a well-clear definition
using horizontal and vertical time and distance thresholds,
such that TCOA < Tau, generally does not offer a protective
barrier outside of the TCAS II collsion avoidance logic. That
is, in such encounter geometries, the well-clear boundary
collapses to the TCAS II RA threshold. Thus, under these
circumstances, the formal definition of well clear does not
serve as a mitigation to the collision avoidance function.
These results may provide some basis in exploring tradeoffs
between desireable, verifiable safety properties and practical
operational considerations in the selection of an appropriate
vertical time threshold in a formal definition of well clear.

VI. CONCLUSION

The safe integration of UAS into civil airspace will require
that unmanned aircraft be capable of detecting and avoiding
other aircraft in a way that is compatible with existing manned
aircraft operations. That is, unmanned aircraft should behave
in a way that is relatively predictable to other aircraft, par-
ticularly manned aircraft, in terms of well clear and collision
avoidance functionality. The class of WCB models considered

Fig. 7. Selected Range and Thresholds for the Interoperability of the
WCBτmod Model with TCAS II, new ZTHRM.



in this paper were investigated for their suitability for meeting
such interoperability requirements with respect to a vertical
time threshold. The primary motivation for the investigation
resulted from the observation that the well-clear definitions
explicitly allowed for decoupling of the horizontal and vertical
time thresholds. This decoupling makes it possible to eliminate
either or both of the time thresholds. Since elimination of a
horizontal time threshold was not considered to be a likely
characteristic in any practical definition of well clear, the
investigation took the approach of directly analyzing the role
of the vertical time threshold in the formal definition. A
primary goal of the paper was to provide suitable intuition to
the separation community and designers of detect and avoid
systems on the interoperability consequences associated with
particular choices of vertical time thresholds.

A closed-form, upper-bound relationship for earlier time to
WCV was given as a function of vertical-closure rate for dif-
ferent choices of vertical time thresholds. This relationship was
formally verified to hold for unmitigated, constant-velocity
NMAC trajectories, and simulation results were shown to
illustrate the consistency of the theory with the randomly
generated encounters. The simulation reveals some important
operational tradeoff considerations in terms of interoperability
with manned aircraft expectations of what is well clear,
particularly for higher vertical time thresholds. For example,
at a vertical closure rate of 3000 ft/min, a UAS relying on
the formal definition can still be well clear 7 s before NMAC,
well after a human pilot has likely initiated collision avoidance
maneuvers, absent intent information, i.e., unmitigated. The
closed-form expressions provided in this paper may serve as
tools for further assessment of the implications of particular
choices of vertical time thresholds on a formal well-clear
definition.

Furthermore, a preliminary result was given, in which a set
of closed-form relationships was conjectured to govern the
mathematical interoperability with existing TCAS II issuance
of RAs for unmitigated, constant-velocity NMAC trajectories.
While corrective RAs are of particular concern, this paper
investigated interoperability for both cases of corrective and
preventative RAs at TCAS II sensitivity level 4. However,
further analysis is possible at sensitivity levels of interest
through the conjectured theoretical minima for the TCAS II
interoperability metric. It was demonstrated that these minima
are satisfied by all of the simulated encounters and that
they were reasonably approximated by ∆tRin at higher vertical
closure rates. At TCAS II sensitivity level 4, all choices of
TCOA result in roughly the same mathematical interoperabil-
ity characteristics at lower vertical closure rates. For these
higher vertical closure rates, mathematical interoperability
for the particular thresholds considered is guaranteed when
TCOA > Tau. It was also shown that increasing ZTHR may
offer some improvement for interoperability, however these
gains are lost at higher vertical closure rates.

The mathematical development presented in this paper,
including definitions and theorems, has been specified and
verified in the interactive theorem prover, PVS. A theorem

prover is a computer program that provides a specification
language and a logic engine that checks every deduction
step of a mathematical proof. This verification process is
particularly time consuming, but justified by the safety-critical
nature of sense and avoid in the future integration of UAS into
civil airspace.
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