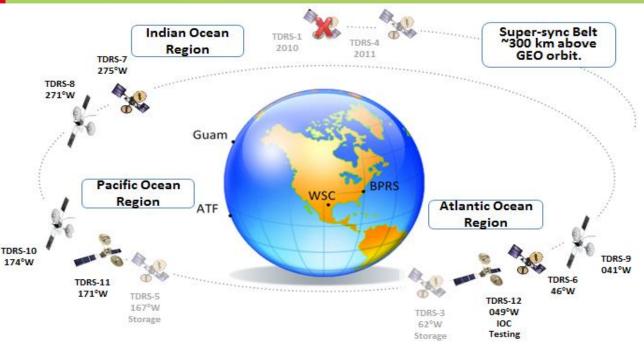

TDRSS Augmentation Service for Satellites (TASS)

Gregory W. Heckler **Cheryl Gramling**

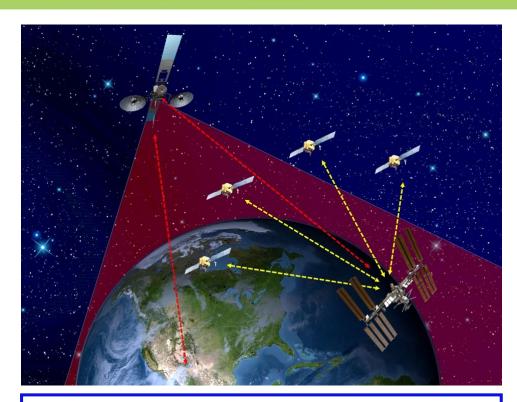
Jennifer Valdez Philip Baldwin NASA Goddard Space Flight Center

www.nasa.gov



NEXT GENERATION BROADCAST SERVICE (NGBS)

Objectives


- Current: space communications achieved through the Near Earth Network (NEN) ground terminals and the Space Network (SN)
 - The SN is composed of the Tracking and Data Relay Satellites (TDRS)
 - Requires service scheduling by Mission Operations Centers (MOCs) days in advance
 - Few spacecraft perform autonomous, on-board navigation
- Improved, future network
 - Enables user-hailed services that are autonomously scheduled by the network
 - Provides spacecraft with radiometrics and data to support autonomous, on-board navigation
 - Expands service volume

Service Description

- NGBS provides unique signals and data to enhance user operations and enable autonomous onboard navigation
- NGBS service consists of:
 - Global coverage via TDRSS S-band multiple access forward (MAF) service
 - Unscheduled, on-demand user commanding
 - Space environment/weather: ionosphere, Kp index for drag, alerts, effects of Solar Flares/CMEs
 - Earth orientation parameters
 - TDRS ephemerides and maneuver windows
 - PN ranging code synchronized with GPS time for time transfer, one-way forward Doppler and ranging
 - Global differential GPS corrections
 - GPS integrity

NGBS has direct benefits in the following areas:

- Science/payload missions
- SCaN/Network operations
- TDRSS performance
- GPS and TDRSS onboard navigation users
- Conjunction Assessment Risk Analysis
- Capabilities consistent with the modern GNSS architecture

NGBS and the Space Mobile Network

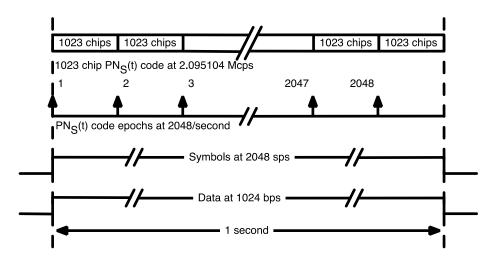
Proposed Space Mobile Network (SMN)

- Similar to the architectural concepts that enable today's terrestrial wireless networks
- Provides automated delivery of communication services and always available positioning and navigation capability
- User-hailing paradigm:
 - Spacecraft ("users") autonomously request a communications link from the network
 - Network autonomously schedules comm. link, considering relative locations of user and network nodes

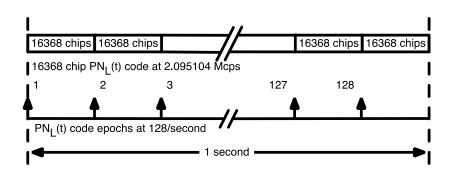
NGBS support of user-hailing

- Beacon concept allows access to any spacecraft within the service volume
- Signal structure allows radiometrics (range and Doppler measurements)
- TDRS Ephemerides and Maneuver Windows provide relay location and integrity

Additional benefits of NGBS


- Data to supplement and improve on-board navigation (e.g., EOPs, TEC, Kp index, DGPS)
- Forward commanding
- Space weather

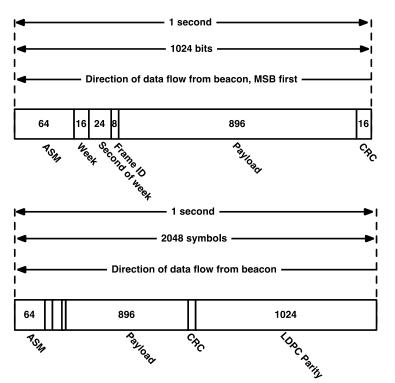
Signal Structure



Inphase Channel (Data)

- PN_s 1023 chips; PN_L 16368 chips
- 2048 PN_S sequences/second, 128 PN_L sequences/second
- 2.095104 Mcps (1023x2048) spreading rate
- Rational timebase, 2105.579520 MHz (1023x2048x1005) carrier frequency

Quadrature Channel (Pilot)


- 10:1 power ratio on I and Q channels (Q is a dataless pilot)
- 1024 bps, CCSDS LDPC (2048, 1024)
 rate ½ encoded
- Designed for acquisition with zero apriori information (lost in space)
- Designed for weak signal tracking

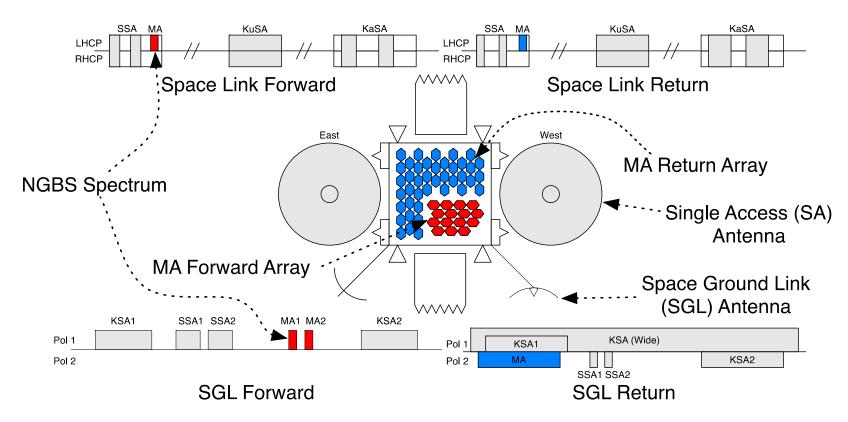
Data Message

Frame Structure

Data Message Allocations

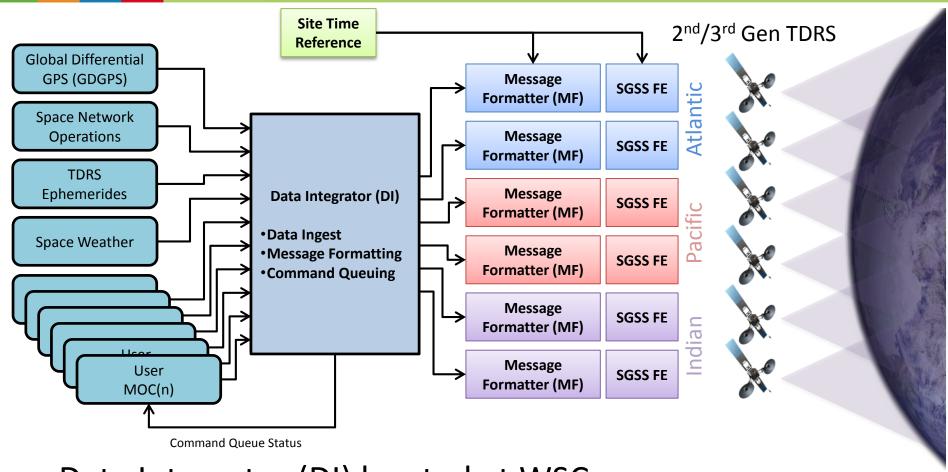
	ı			1	- I	
Message	Label	Size (bits)	Quantity	Refresh Interval (s)	Data Volume	
ASM	ASM	64	1	1	640	
Week	WK	16	1	1	160	
Second of Week	sow	24	1	1	240	
Frame ID	FID	8	1	1	80	
GPS Integrity	Α	184	10	10	1840	
GPS Differential Corrections	В	72	32	10	2304	
TDRS Ephemerides	С	200	10	10	2000	
User Commands	D	200	4	10	800	
Spares	Е	200	4	10	800	
Space Environment	F	152	3	10	456	
lonsphere	G	200	1	10	200	
Solar flux	Н	128	1	10	128	
Earth Orientation	I	48	1	10	48	
TDRS Health & Safety	J	200	1	10	184	
Unused	U	200	1	10	200	
CRC	CRC	16	1	1	160	
				Totals	10240	

- Data message in a framed structure, 10 seconds to broadcast entire message.
- ~80 bps on average allocated to user command. With spares & unused, 180 bps.
- Goal to achieve 2048 bps data rate. If achieved, 1024 bps will be allocated for user commands.



SYSTEM ARCHITECTURE

Space Element

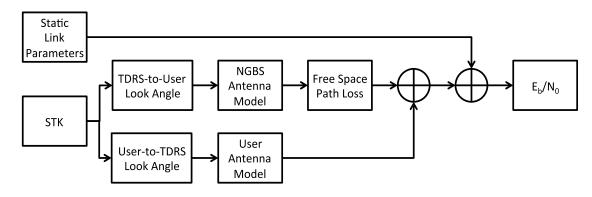


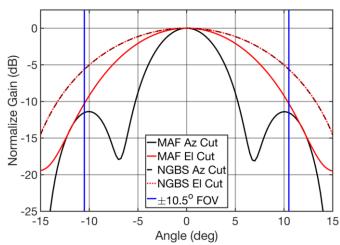
- 2nd/3rd gen TDRS used to broadcast NGBS beacon
- MA forward (MAF) array can be split to provide two simultaneous MAF services
 - Current Space Network ground system does not support this capability
- MA return (MAR) array supports Demand Access Service (DAS)
- In concert with DAS, NGBS will provide a unique anytime/anywhere two-way communications
 channel

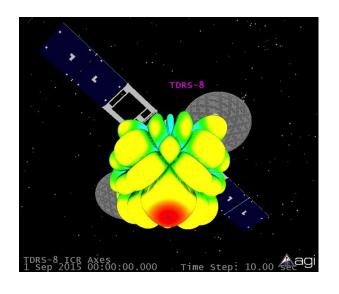
Ground Element

- Data Integrator (DI) located at WSC
- Message Formatters (MF) located in each NGBS enabled ground system

User Element

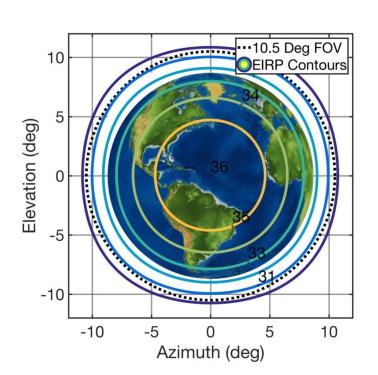

CURRENT STATUS


Coverage Analysis

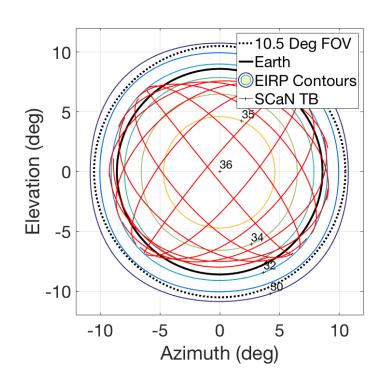


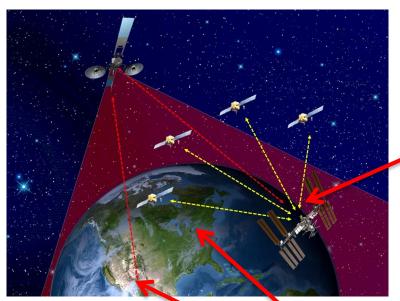
Simulation Parameter	Options			
User Orbit	Low inc LEO, SSO LEO			
User Antenna	-3 dB ISO, GPS, MMS, LADEE			
MAF Configuration	4 Element			
NGBS Constellation	3 nodes, 5 nodes			

- Static link parameters combined with dynamic STK/MATLAB analysis
 - NGBS & user antenna models
 - Slant range
- Analyzed all combinations of NGBS constellation, user orbit, and user antenna models



Coverage Analysis

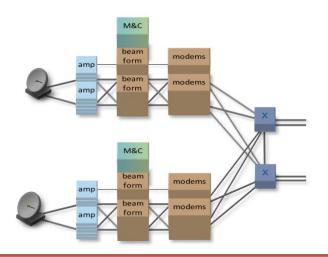

	NGBS ² Configuration	3 B eacon	5 B eacon	3 B eacon	5 B eacon
Orbit	User Antenna Model	% © Availability		Outage Duration 2 (Minutes) 390% Bound	
ISS	GPM	98.46	99.80	0.45	0.45
ISS	-32dB3SO	100.00	100.00	0.00	0.00
ISS	MMS	99.97	99.97	0.00	0.00
ISS	LADEE	100.00	100.00	0.00	0.00
SSOILEO	GPM	92.16	97.94	0.67	0.45
SSOILEO	-32dB3SO	100.00	100.00	0.00	0.00
SSOILEO	MMS	100.00	100.00	0.00	0.00
SSOILEO	LADEE	100.00	100.00	0.00	0.00

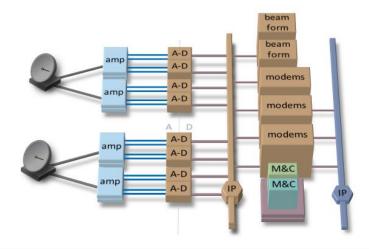

- Analysis incorporates 36 dBW peak EIRP, conservative user terminal G/T
- 3 TDRS constellation can provide global coverage with a 1024 bps data rate
- 1024 bps link is robust, 2048 has positive (slight) margin

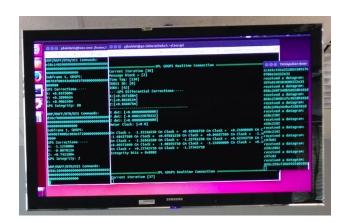
NGBS Demo #1 – Global Beam

SCaN TestBed used to validate EIRP contours

- Objective 1: validate 4 element array beam pattern and peak EIRP
- Objective 2: quantify 2nd gen TDRS
 MAF EIRP margin


Ground measurements taken at WSC & GRC

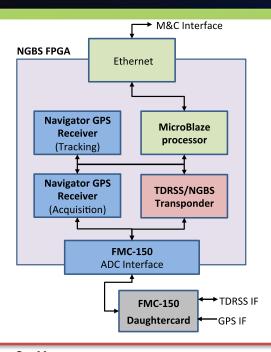

Ground Element

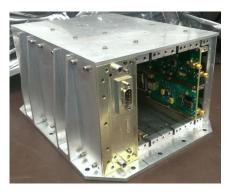

Legacy SN Ground System

SGSS Architecture

- SN Ground Sustainment System (SGSS) architecture will:
 - Enable dual MAF capability built into 2nd and 3rd generation TDRS
 - Allow for low cost insertion of NGBS ground system hardware
 - Reduce one-way forward ranging errors
- Data Integrator (DI) and Message Formatter (MF) software under development
- User commands transmitted through the system
- TDRS ephemeris and space weather data sources were streamed from recorded data
- Data ingest of real time GDGPS data from JPL
- Data was modulated on a S-band carrier, demodulated, and decoded

Real time data connection from JPL




User Element

ML605 breadboard development platform

NavCube Engineering Test Unit with GPS + SpaceCube flight components

- NGBS terminal combines following mature technologies:
 - Navigator GPS
 - TDRSS transponder waveform
 - NGBS receiver waveform
 - Goddard Enhanced Onboard Navigation System (GEONS) flight software
 - SpaceCube 2.0 hardware

- STP-H6 provides a low-cost opportunity to flight qualify NGBS terminal
 - Launches in Dec 2018
- NBGS terminal intellectual property:
 - Deployable on lower SWAP hardware platform
 - Opportunity for smallsat/cubesat community

Potential for Initial Operational Capability

<u> </u>	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
		SN Ground Sustainment System (SGSS)								
		TDRS KLM Development				_		DRS-M		
							tegic iing		N	GBS IOC
				•					4 th Gei	n TDRS
			! !	· · · · · · · · · · · · · · · · · · ·	NO	BS Develo	pment	I&T	STP-H6 Fli	ght
		MM	IS (Navigato	or GPS)					:	· ·
		: :	•	•				• •	:	

- Strategic opportunity exists:
 - Launch of TDRS-M in Oct 2017 will provide 6 NGBS capable spacecraft
 - SGSS necessary for NGBS ground implementation
 - STP-H6 provides a low cost opportunity to fly NGBS user element and demonstrate NGBS on orbit
 - NGBS user element is built on mature Navigator GPS receiver technology
- NGBS is a first step in advancing the next generation network paradigm as laid out in Space Mobile Network
 - Lessons learned from NGBS will inform beacon service on 4th gen TDRS

Closing Thoughts...

NGBS:

- With DAS, enables user-hailed services that are autonomously scheduled by the network
- Provides spacecraft with radiometrics and data to support autonomous, on-board navigation and operations
- Provides capabilities fundamental to the Space Mobile Network concept
- A fully operational beacon service will go beyond current implementation of NGBS:
 - Specifically designed service on "4th gen" TDRS could provide increased data rate and also a greater service volume
 - Earth based beacons could offer much higher EIRP for users in HEO or cis-Lunar space
- Engagement from the user community is key