

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

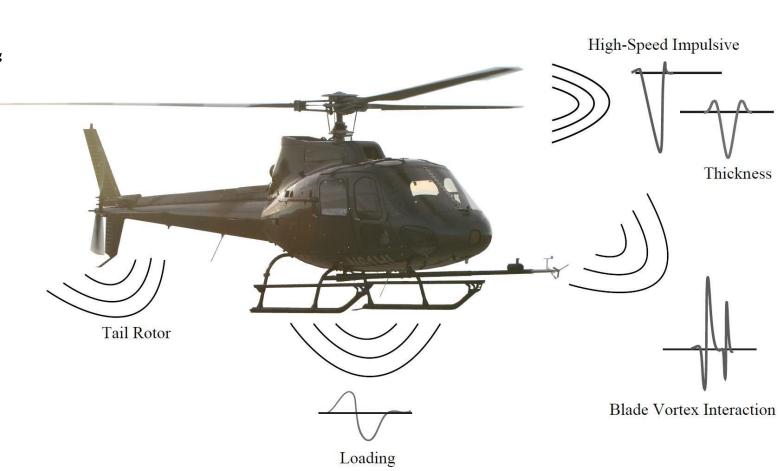
Presented by:

James Stephenson
U.S. Army Aviation and Missile
Research, Development, and
Engineering Center

Motivation

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood


Background Motivation

Analysis Technique

Experiment Description Vehicle Characteristics Flight Conditions

Results

BVI Extraction vs BVISPL Average BVI BVI Standard Deviation

Motivation

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background Motivation

Analysis Technique

Experiment Description Vehicle Characteristics Flight Conditions

Results

BVI Extraction vs BVISPL Average BVI BVI Standard Deviation

Conclusions

Aerodynamics Affecting BVI Noise

- Inflow
- Blade Loading
- Advance Ratio

Flight Test Uncertainties

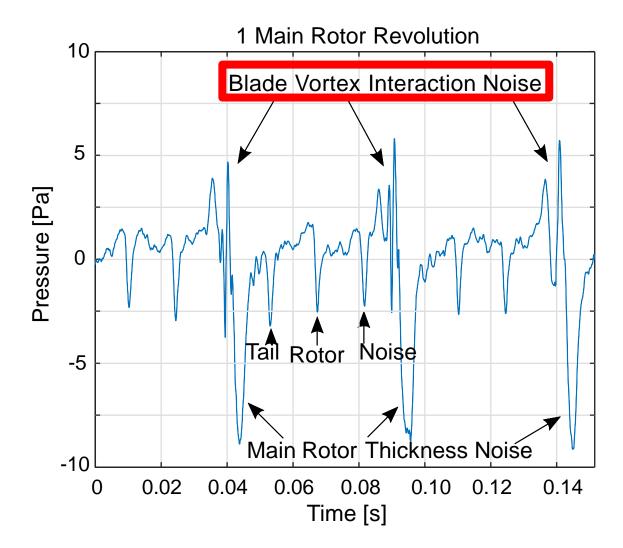
- Inconsistent Vehicle Flight Path
- Inconsistent Vehicle Velocity
- Atmospheric Effects (Wind, Temperature, Etc.)
- Blade-Blade Variations
- Variable Weight (Fuel burn)

Motivation

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background Motivation


Analysis Technique

Experiment Description Vehicle Characteristics

Vehicle Characteris
Flight Conditions

Results

BVI Extraction vs BVISPL Average BVI BVI Standard Deviation

Analysis Technique

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background

Motivation

Analysis Technique

Experiment Description Vehicle Characteristics Flight Conditions

Results

BVI Extraction vs BVISPL Average BVI BVI Standard Deviation

Conclusions

Wavelet Transform

$$\tilde{p}(l,t) = \frac{1}{\sqrt{l}} \int_{-\infty}^{\infty} p(t') \ \psi_w^*(\frac{t'-t}{l}) dt'$$

Morlet Wavelet

$$\hat{\psi}_M(l\ \omega,\omega_{\psi}) = \sqrt{2\pi l\ \frac{f_s}{N}\ \pi^{-1/4}\ H(\omega)\ e^{-(l\omega-\omega_{\psi})^2/2}}$$

Wavelet Energy

$$E(f,t) = \frac{1}{C_{\psi}} \frac{|\tilde{p}(f,t)|^2}{l^2}$$

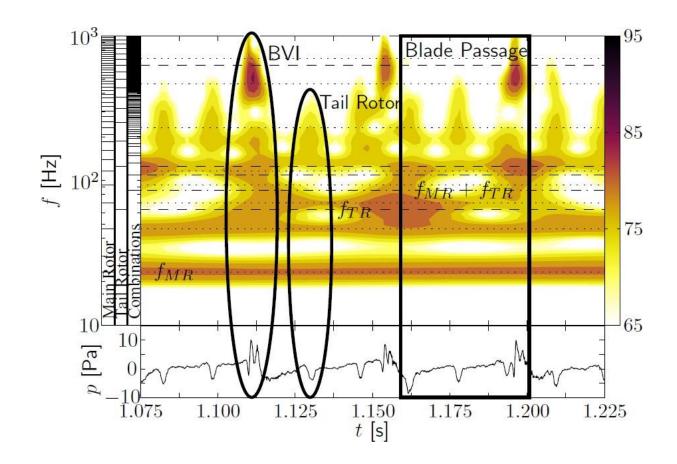
Inverse Wavelet Transform

$$p(t') = \frac{1}{C_{\psi}} \int_{-\infty}^{\infty} \int_{l} \frac{1}{\sqrt{l'}} \, \tilde{p}(l', t) \, \psi_w(\frac{t' - t}{l'}) \frac{dl' \, dt}{l'^2}$$

Analysis Technique

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood


Background

Motivation
Analysis Technique

Experiment Description Vehicle Characteristics Flight Conditions

Results

BVI Extraction vs BVISPL Average BVI BVI Standard Deviation

Analysis Technique

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During **Steady Descending Flight**

Stephenson & Greenwood

Background

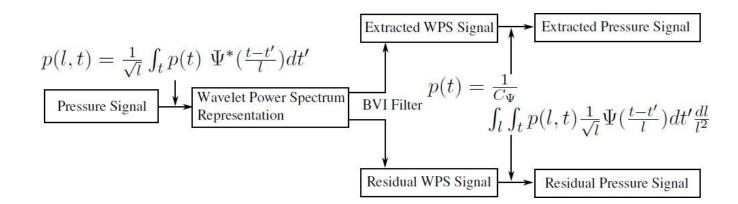
Motivation

Analysis Technique

Experiment Description

Vehicle Characteristics Flight Conditions

Results


BVI Extraction vs BVISPL Average BVI **BVI Standard Deviation**

Conclusions

BVI Filter

$$\tilde{p}(f_j, t_i) = \begin{cases} \tilde{p}(f_j, t_i) \\ 0 \end{cases}$$

$$\tilde{p}(f_j, t_i) = \begin{cases} \tilde{p}(f_j, t_i) & \text{if } f_j > f_{cut} \text{ and} \\ E(f_j, t_i) > E(f_{MR}, t_i) - A_{cut} \\ 0 & \text{otherwise} \end{cases}$$

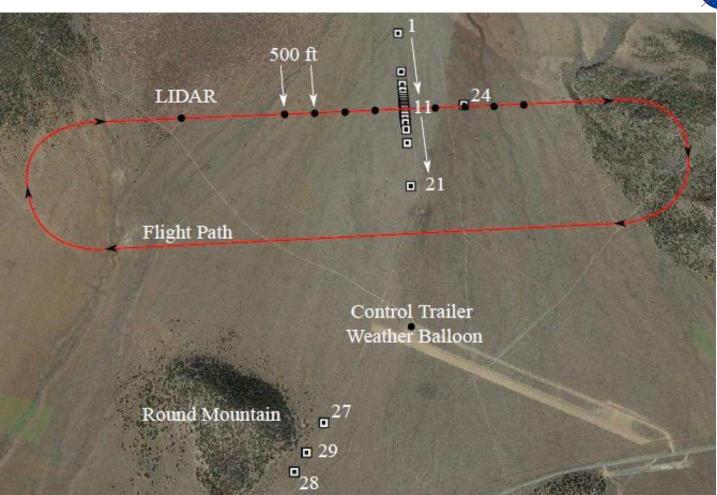
Davis, W., Pezeshki, C., and Mosher, M., "Extracting and Characterizing Blade-Vortex Interaction Noise with Wavelets," Journal of the American Helicopter Society, Vol. 42, (3), 1997, pp. 264-271.

Stephenson, J. H., Tinney, C. E., Greenwood, E., and Watts, M. E., "Extracting Blade Vortex Interactions using Continuous Wavelet Transforms," Journal of Sound and Vibration, Vol. 333, (21), 2014, pp. 5324-5339.

Experiment Description

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood


Background Motivation Analysis Technique

Experiment Description

Vehicle Characteristics Flight Conditions

Results

BVI Extraction vs BVISPL Average BVI BVI Standard Deviation

Experiment Description

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background Motivation Analysis Technique

Experiment Description

Vehicle Characteristics Flight Conditions

Results

BVI Extraction vs BVISPL Average BVI BVI Standard Deviation

Conclusions

(28) Wireless Acoustic Microphone Systems

1/2" B&K 4189 – 25 kHz sampling 15" Diameter ground board GPS Receiver

- Tethered Weather Balloon
 - Weather Sonde (200')
 - (up to 4) Temperature, Humidity, Pressure Sensors (~50')
- ZephIR 300 LIDAR System
 - Wind velocity at 12 altitudes up to 1000'
- (5) Ground Weather Stations
 - Located near Mics 1,11,21,24,27

Vehicle Characteristics

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background Motivation Analysis Technique

Experiment Description Vehicle Characteristics

Flight Conditions

Results

BVI Extraction vs BVISPL Average BVI BVI Standard Deviation

Conclusions

_

	MR	TR	
Number of Blades	3	$\overline{2}$	
Radius (R)	10.69	1.86	[m]
Blade Pass Frequency (f)	19.5	104	[Hz]

 Aircraft Navigation and Tracking System (ANTS) (20 Hz sampling)

GPS Receiver Inertial Navigation Data

Air-Data Boom (5 Hz)

Outside Air Temperature Static and Dynamic Pressures

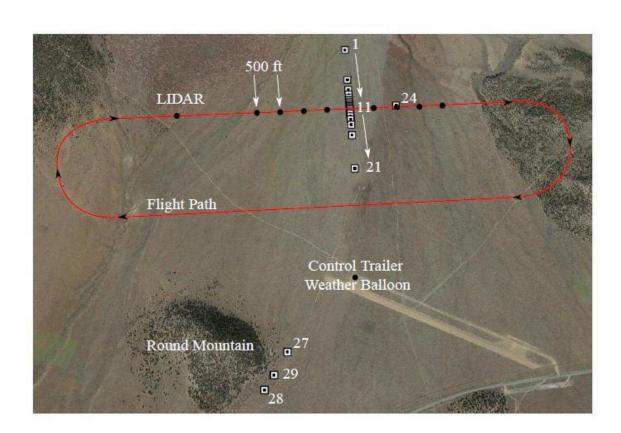
Wind Velocities

Flight Conditions

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background Motivation Analysis Technique


Experiment Description

Vehicle Characteristics **Flight Conditions**

Results

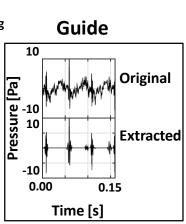
BVI Extraction vs BVISPL Average BVI BVI Standard Deviation

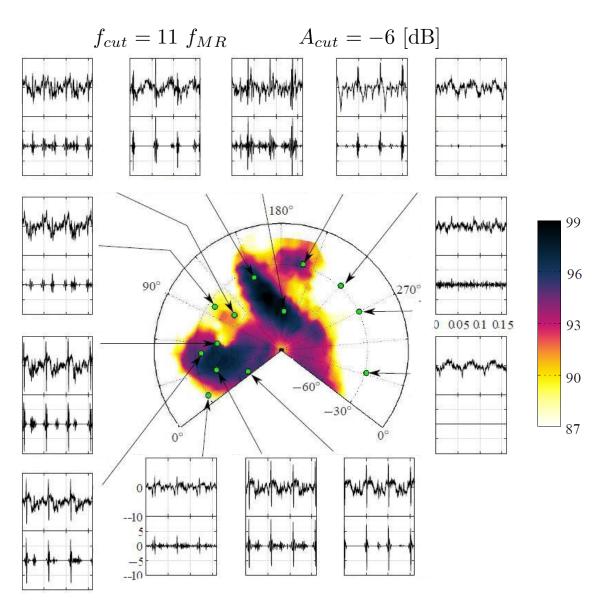
Conclusions

6° Descent Condition

	KIAS	KTAS	Nom. Takeoff Wgt 4400 3915 [lb]
80 KIAS	80	87 (Typ)	11 13
80 KTAS	73 (Typ)	80	12 13

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight


Stephenson & Greenwood

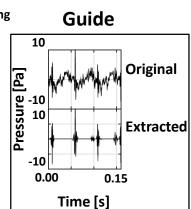

Background Motivation Analysis Technique

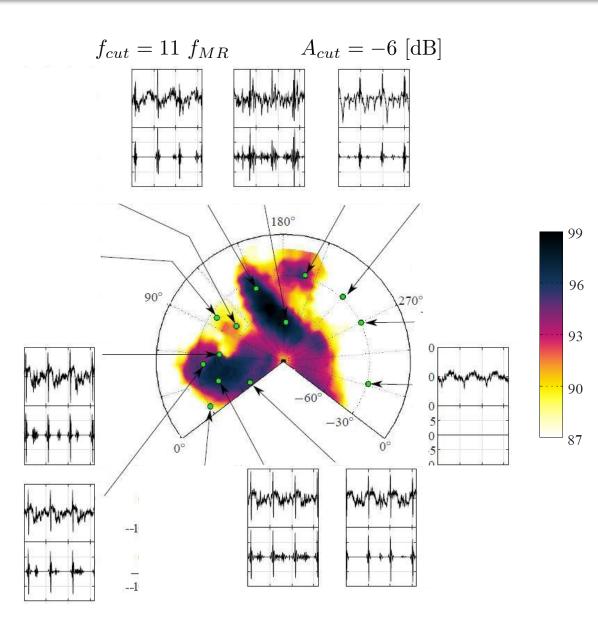
Experiment Description Vehicle Characteristics Flight Conditions

Results

BVI Extraction vs BVISPL Average BVI BVI Standard Deviation

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight


Stephenson & Greenwood

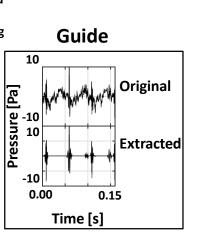

Background Motivation Analysis Technique

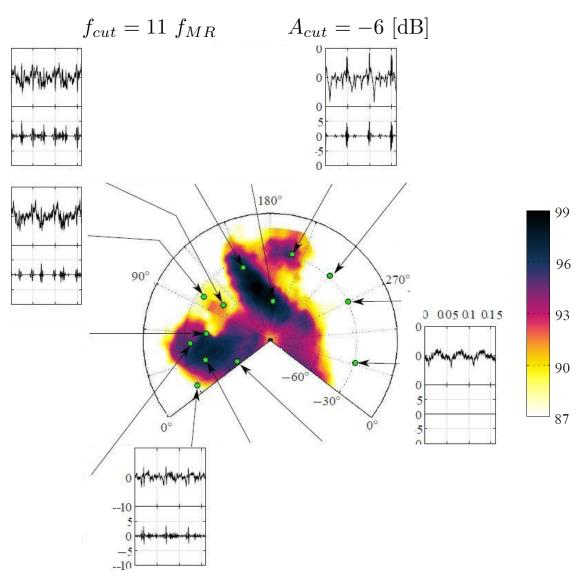
Experiment Description Vehicle Characteristics Flight Conditions

Results

BVI Extraction vs BVISPL Average BVI BVI Standard Deviation

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight


Stephenson & Greenwood


Background Motivation Analysis Technique

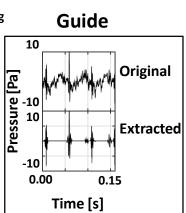
Experiment Description Vehicle Characteristics Flight Conditions

Results

BVI Extraction vs BVISPL Average BVI BVI Standard Deviation

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During **Steady Descending Flight**

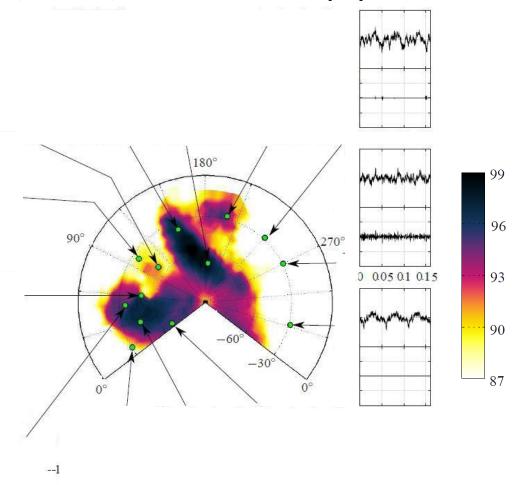
Stephenson & Greenwood


Background Motivation Analysis Technique

Experiment Description Vehicle Characteristics Flight Conditions

Results

BVI Extraction vs BVISPL Average BVI **BVI Standard Deviation**

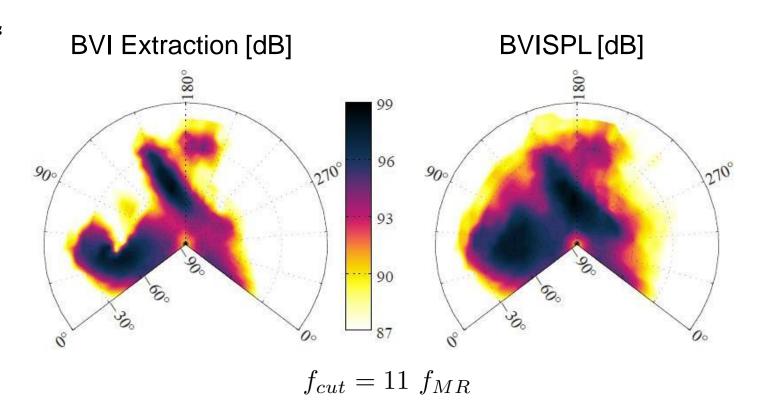

Conclusions

$$f_{cut} = 11 f_{MR}$$

--1

$$f_{cut} = 11 f_{MR}$$
 $A_{cut} = -6 [dB]$

BVI Extraction VS BVISPL AMRDEC


Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background Motivation Analysis Technique

Experiment Description Vehicle Characteristics Flight Conditions

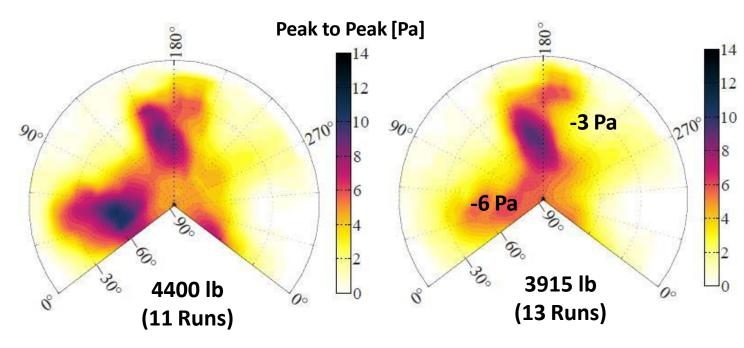
Results BVI Extraction vs BVISPL Average BVI **BVI Standard Deviation**

Average BVI

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background Motivation Analysis Technique


Experiment Description Vehicle Characteristics Flight Conditions

Results

BVI Extraction vs BVISPL **Average BVI** BVI Standard Deviation

Conclusions

80 KIAS

$$\Delta W_{nom} = 11\% \rightarrow -1.5 \ Pa \approx 1.0 \ dB$$

 $\Delta W_{max} = 17\% \rightarrow -2.4 \ Pa \approx 1.3 \ dB$

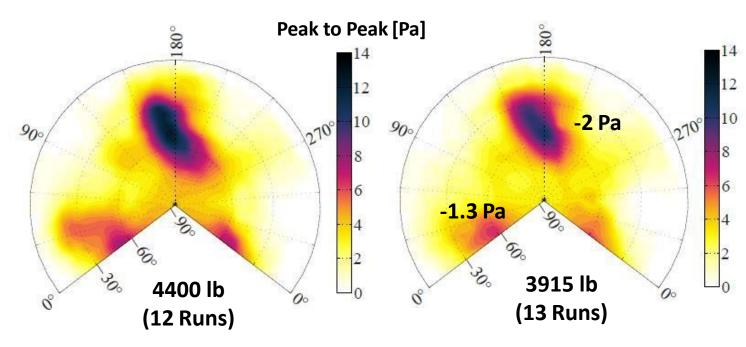
$$\alpha_{TPP} = -\frac{D}{W} - \gamma$$
?

Average BVI

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background Motivation Analysis Technique


Experiment Description Vehicle Characteristics Flight Conditions

Results

BVI Extraction vs BVISPL **Average BVI** BVI Standard Deviation

Conclusions

80 KTAS (~73 KIAS)

$$\Delta W_{nom} = 11\% \rightarrow -1.5 Pa \approx 1.0 dB$$

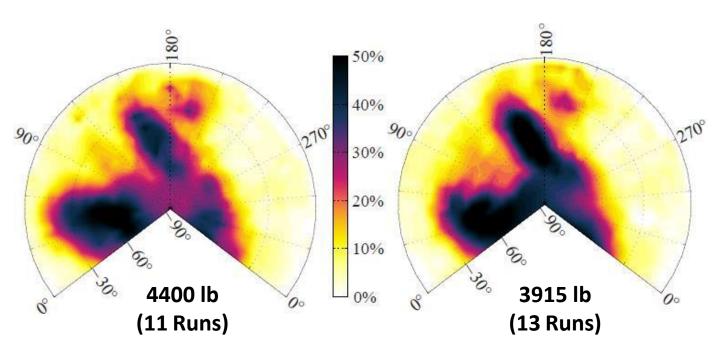
$$\Delta W_{max} = 17\% \rightarrow -2.4 Pa \approx 1.3 dB$$

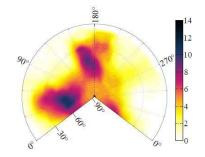
$$\alpha_{TPP} = -\frac{D}{W} - \gamma$$
?

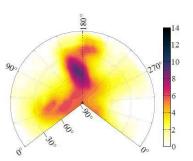
BVI Standard Deviation

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood


Background Motivation Analysis Technique


Experiment Description Vehicle Characteristics Flight Conditions


Results

BVI Extraction vs BVISPL Average BVI BVI Standard Deviation

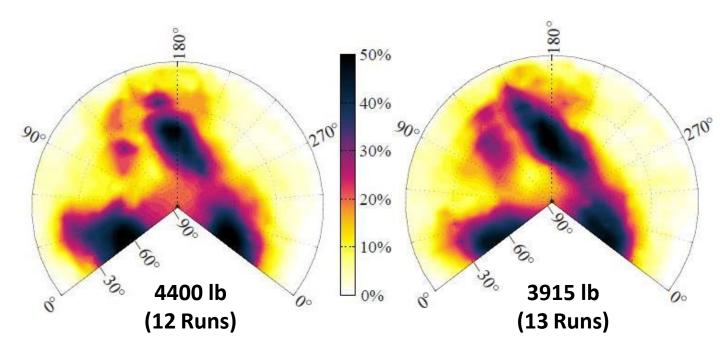
BVI Standard Deviation

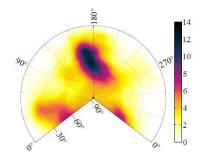
Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

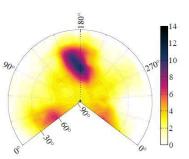
Stephenson & Greenwood

Background Motivation Analysis Technique

Experiment Description Vehicle Characteristics Flight Conditions


Results


BVI Extraction vs BVISPL Average BVI


BVI Standard Deviation

Conclusions

80 KTAS (~73 KIAS)

Conclusions

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background Motivation Analysis Technique

Experiment Description Vehicle Characteristics Flight Conditions

Results

BVI Extraction vs BVISPL Average BVI BVI Standard Deviation

- BVI noise can be strongly affected by weight
 - Vortex Strength + Tip-Path Plane?

- BVI noise highly variable
 - Up to 50% of normalized standard deviation
 - Can be used to identify secondary BVI events

Questions?

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood

Background Motivation Analysis Technique

Experiment Description Vehicle Characteristics Flight Conditions

Results

BVI Extraction vs BVISPL Average BVI BVI Standard Deviation

Conclusions

Acknowledgements

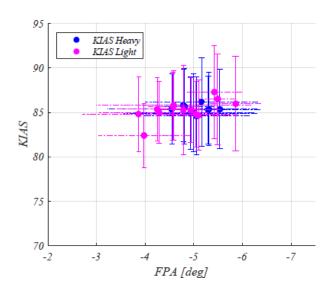
- Mike Watts
- David Conner
- Keith Scudder
- Andrew McCrae
- Nikolas Zawodny
- Aris Helicopters

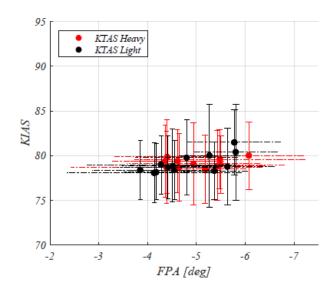
Flight Path and

Speed Consistancy

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

Stephenson & Greenwood


Background Motivation Analysis Technique


Experiment Description

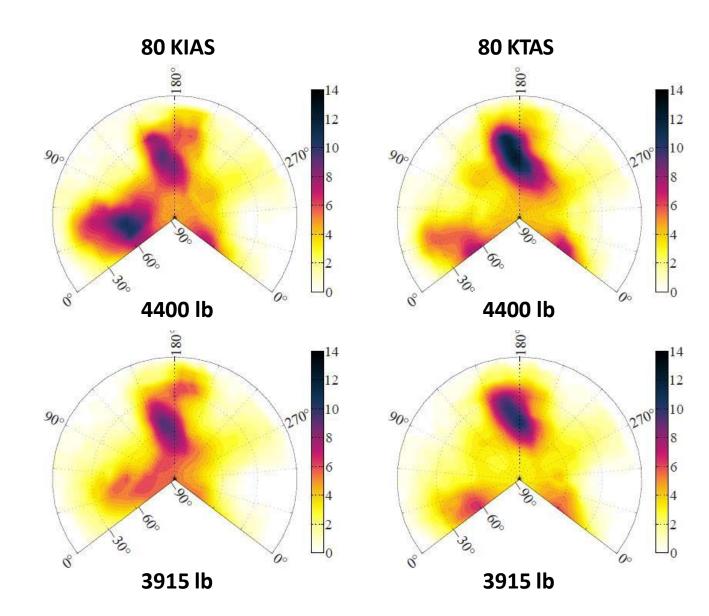
Vehicle Characteristics **Flight Conditions**

Results

BVI Extraction vs BVISPL Average BVI BVI Standard Deviation

Average BVI

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight


Stephenson & Greenwood

Background Motivation Analysis Technique

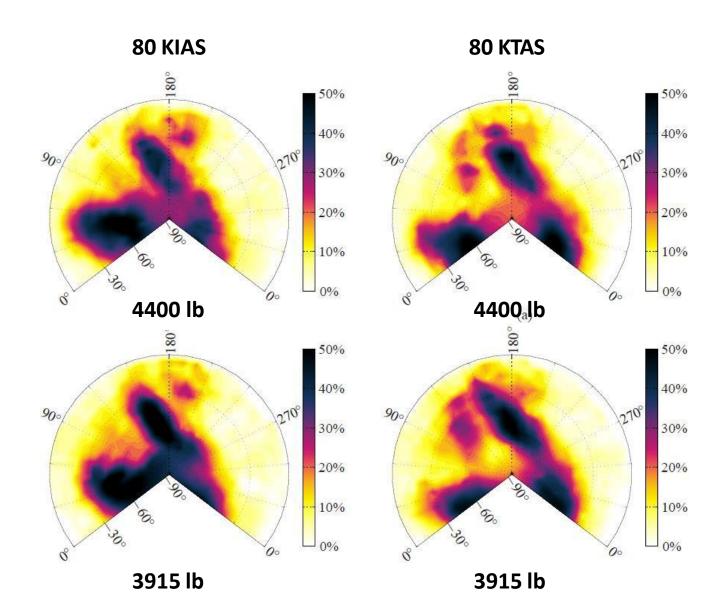
Experiment Description Vehicle Characteristics Flight Conditions

Results

BVI Extraction vs BVISPL **Average BVI** BVI Standard Deviation

BVI Standard Deviation

Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight


Stephenson & Greenwood

Background Motivation Analysis Technique

Experiment Description Vehicle Characteristics Flight Conditions

Results

BVI Extraction vs BVISPL Average BVI BVI Standard Deviation

