

Monitoring Atmospheric CO₂ from Space: Challenge & approach

Bing Lin¹, F. Wallace Harrison¹, Amin Nehrir¹, Edward Browell², Jeremy Dobler³, Joel Campbell¹, Byron Meadows¹, Michael Obland¹, Susan Kooi⁴, Tai-Fang Fan⁴, Syed Ismail¹, and LaRC ASCENDS team

¹NASA Langley Research Center, Hampton, VA, USA
 ²NASA Langley/STARSS II Affiliate, Hampton, VA, USA
 ³Exelis Inc., Ft. Wayne, IN, USA
 ⁴Science System and Application, Inc, Hampton, VA, USA

The 4th International Symposium on Atmospheric Light Scattering and Remote Sensing 1-5 June 2015, Wuhan, China

Outline

Introduction

- Carbon sciences and challenges
- Lidar CO₂ measurement approach
- Instrumentation
- Lidar Measurements
 - CO₂ column measurements
 - Accuracy and precision
 - CO₂ column measurements with clouds
 - Ranging measurements
 - Space application

Grand Challenge: small changes (**GEOS-5 Simulated XCO₂ : Day vs Night**) July 30, 21 Z July 30, 9 Z

upper: surface XCO₂; lower: column averaged XCO₂

CO₂ Measurement Architecture IM-CW Laser Absorption Lidar

Line-

Center

40 km

Off-Line-1

(+50 pm)

1571.1610

Side-Line

(+3 pm)

1571.1110

 λ (nm)

Side-Line

(+10 pm)

8×10⁻²²

4×10⁻²²

2×10-22

1571.0610

Off-Line-2

(-50 pm)

(c² [∞] [∞] 6×10⁻²²

- Simultaneously transmits λ_{on} and λ_{off} reducing noise from the atmosphere and eliminating surface reflectance variations.
- Approach is independent of the system wavelength and allows simultaneous CO₂ & O₂ (1.26 μm) measurements for deriving XCO₂ measurement.

Weighting Functions

IM-CW Laser Absorption Lidar 1.57-μm CO₂ Measurement Technique

Progression of Transmitted/Received Intensity-Modulated Waveforms

Simultaneously transmitted Intensity modulated range encoded waveforms

Simultaneously received Online and Offline IPDA returns Measurement: Output of correlation between transmitted and received waveforms

Range encoded approach for detection and ranging is analogous to mature CW Radar and GPS measurement techniques

$$DAOD = \frac{1}{2} ln \left(\frac{P_{off} * E_{on}}{P_{on} * E_{off}} \right)$$

Instrument Development (Langley and Exelis; 14 MFLL + 1 ACES campaigns)

ASCENDS CarbonHawk Experiment Simulator (ACES; developed at Langley with support from Exelis)

Multifunctional Fiber Laser Lidar (MFLL) (developed by Exelis in 2004 Exelis and Langley since 2005)

SCENDS

advancing key technologies for spaceborne measurements of CO₂ column mixing ratio

23

- In-situ derived (or modeled) DAOD
- In-situ derived (or modeled) XCO₂

difference (ppm): 0.18

Winter 2013 Flight Campaign (22 Feb. 2013 Flight: Blythe, CA)

2011 ASCENDS DC-8 Flight Campaign ASCENDS (MFLL during 28 July – 11 August)

Differential Absorption Optical Depth (DAOD) Comparisons

Avg:

SNR Comparisons

	Start		Delta	Nadir	Optical	CO2,		1-s!,		10-s!,
Flight #	Hour	End Hour	Time, sec	Range, m	Depth	ppmv	1-s SNR	ppmv	10-s SNR	ppmv
1	20.07	20.08	198.0	6406	0.708	389.7	433	0.90	1264	0.31
3	20.03	20.06	211.0	6593	0.755	394.5	517	0.76	1510	0.26
4	15.63	15.70	396.0	6360	0.704	387.1	460	0.84	1325	0.29
5	20.00	20.02	180.0	8063	0.924	391.8	418	0.94	1274	0.31
7	17.21	17.23	79.2	5805	0.632	379.2	396	0.96	1237	0.31
			Avg:	6645	0.745	388.5	445	0.88	1322	0.29

Modeled DAOD: in-situ XCO2 measurements + radiative transfer model to calculate CO2 absorption optical depth

MFLL CO₂ Column Measurements Through Thin Cirrus (22 Feb 2013)

Time (UT, hr)

0.84

Time (UT, hr)

0.88

0.80

ata

0.92

Comparison of Range Determination from PN Altimeter and Off-line CO₂ Signal

Range estimates obtained from the off-line CO_2 return and time coincident returns from the onboard PN altimeter over the region of Four Corners, NM from the DC-8 flight on 7 August 2011.

Chesapeake Bay Bridge

ASCENDS Mission Development

Today: MFLL and ACES instruments in DC-8 racks Size = 100" x 43" x 24" Size = 44" x 34" x 24" Mass = 787.2 lb. Mass = 317.1 lb

Global Hawk

Future

TBD: ISS Tech Demo?

TBD: ASCENDS mission

Space CO₂ Lidar Modeling and Measurement

same instrument architecture: increased power and telescope

cloud height: 9 km 0.1-s integration time high SNR & small bias (< 0.1%) Cloud OD < ~0.4

dawn/dusk orbit, 42W power other LEO orbits

Summary

Global/regional atmospheric CO_2 observations require high accuracy and precision measurements owing to very small variations in atmospheric CO_2 mixing ratio.

- Laser absorption lidar at 1.57µm with ranging-encoded IM provides advanced capability in cloud/aerosol discriminations.
- IM-CW lidar has demonstrated the capabilities of precise CO₂ measurements through many airborne flight campaigns under variety of environment conditions, including CO₂ column measurements through thin cirrus clouds and to thick clouds. Over land, clear-sky CO₂ measurement precision within 1-s integration is within 1 ppm while mean bias is much smaller.
- * Ranging uncertainties are shown to be below sub-meter level.
- Analysis shows that current IM-CW lidar approach will meet space CO₂ observation requirements and provide precise CO₂ measurements for carbon transport, sink and source studies.

Atmospheric Carbon & Transport (ACT) – America

Penn State NASA LaRC, WFF, GSFC, JPL Exelis, Colorado State NOAA ESRL/U Colorado DOE Oak Ridge, U Oklahoma Carnegie Inst. Stanford

The ACT-America suborbital mission addresses the three primary sources of uncertainty in atmospheric inversions: atmospheric transport, sources and sinks of carbon, and atmospheric concentration measurements.

