
NASA NIFS – Internship Final Report

Kennedy Space Center 1 April 8, 2016

Spaceport Command and Control System - Support

Software Development

Shayne Tremblay

National Aeronautics and Space Administration Kennedy Space Center

Computer Science

NIFS Spring Session

04/08/2016

NASA NIFS – Internship Final Report

Kennedy Space Center 2 April 8, 2016

Spaceport Command and Control System - Support

Software Development

Shayne Tremblay

University of Central Florida, Orlando, Florida, 32816

The Information Architecture Support (IAS) Team, the component of the Spaceport Command and Control

System (SCCS) that is in charge of all the pre-runtime data, was in need of some report features to be added

to their internal web application, Information Architecture (IA). Development of these reports is crucial for

the speed and productivity of the development team, as they are needed to quickly and efficiently make

specific and complicated data requests against the massive IA database. These reports were being put on the

back burner, as other development of IA was prioritized over them, but the need for them resulted in

internships being created to fill this need. The creation of these reports required learning Ruby on Rails

development, along with related web technologies, and they will continue to serve IAS and other support

software teams and their IA data needs.

Nomenclature

CSCI = Computer Software Configuration Item
CUI = Compact Unique Identifier

DA = Development Activity
EIC = End Item Controller
ERB = Embedded Ruby

GUI = Graphical User Interface

HTML = HyperText Markup Language

IA = Information Architecture
IAS = Information Architecture Support

IDE = Integrated Development Environment
MPCV = Multi-Purpose Crew Vehicle
MVC = Model View Controller

SCCS = Spaceport Command and Control System

SLS = Space Launch System

TCID = Test Configuration Identifier

NASA NIFS – Internship Final Report

Kennedy Space Center 3 April 8, 2016

I. Introduction to Information Architecture

 Information Architecture is a subteam of SCCS that is in charge of an internal web application, also called

Information Architecture (IA). The IA application is essentially a web interface that allows users to view, upload,

download, and generally interact with data related to components, CUIs, TCIDs, and various other types of data

involved with NASA projects. Typical users include the various CSCI teams, engineers, and the IA team itself. To

outsiders, IA can be considered a "magic black box" that can respond to a wide variety of very specific data

requests, crucial for the development of both hardware and software projects across SCCS.

II. Objective

 The internship position that I was chosen for was created in order to aid in the development of the Reports

section of IA. IA reports are generally used by the SCCS software development teams to gather data for their

projects about different components, CUIs, and various other pieces of data that are involved with SCCS projects.

An example use case of the reports section could be: an engineer on a software team wants to see what components

use a specific CUI, so they run a report against that CUI and get back a list of the components that use that CUI.

These reports greatly improve productivity and efficiency in many software development projects, as they spare

users from having to manually and systematically check every component and CUI that they are concerned with. My

position involved the creation of these reports, the alteration of already existing reports, and the testing of these

reports and related parts of the web application.

Figure 1. The Information Architecture (IA) application web interface. (Author owned image)

NASA NIFS – Internship Final Report

Kennedy Space Center 4 April 8, 2016

III. Technical Approach

A. Framework: Ruby on Rails

The IA web application is written using the Ruby on Rails web framework, an open-source web development

framework built upon the Ruby programming language. Ruby is a high-level, object-oriented language that is known

for its simplicity and readability. The Ruby community has created a multitude of reusable Ruby packages, called

gems, which are free to use in Ruby applications. Rails is one of these gems, and it sets up a structured foundation

for developing web applications quickly and easily via its “Convention over Configuration” methodology. Rails uses

the popular model, view, controller (MVC) organizational pattern that is common among many web frameworks.

Simply put, the model component contains backend “business” logic, the views contain the markup that the user will

be interfacing with, and the controllers assist in the interaction between the models and views. Ruby on Rails thrives

as a framework when it comes to data driven applications, which IA is the epitome of, due to its use of Active

Record, an abstracted, object relational interface that allows developers to interact with a database in an easy,

intuitive, and robust way. Active record accomplishes this via the way it “connects classes to relational database

tables to establish an almost zero-configuration persistence layer for applications”.

B. Frontend: CoffeeScript and Haml

Though Ruby on Rails is a full stack web framework, it falls short when it comes to dynamic front-end

interfaces. This is where CoffeeScript and Haml come in. CoffeeScript is a programming language that

feels extremely similar to Ruby, but compiles to JavaScript, and is commonly used for the front-end

development of Rails applications. CoffeeScript files are kept in their own directory within the Rails

application, and are used for situations such as having some content disappear when a checkbox is checked,

etc. Haml is a markup language specifically used in Rails applications that provides a cleaner, more concise

syntax, and replaces the Rails standard ERB frontend markup. ERB allows for the execution of Ruby code

directly in markup code, and Haml allows for this too, but in a simpler, less cumbersome implementation.

Figure 2. Ruby on Rails framework structure (author
owned image)

Figure 3. Model View Controller (MVC) structure (author
owned image))

NASA NIFS – Internship Final Report

Kennedy Space Center 5 April 8, 2016

C. Testing: RSpec and Cucumber

For unit testing, IA uses RSpec, a “behavior driven” testing framework for Ruby applications. The RSpec

testing implementation is based on establishing context for what you are testing, and then assertions for the actual

tests. For interface testing, IA uses Cucumber, another “behavior driven” testing framework. Cucumber tests are

written in two parts: the first part is the feature file, which is written in seemingly plain English and provides a list of

instructions for the test procedure, and the second part, which is the actually Ruby/RSpec code that the plain English

instructions map to when the tests are actually run. Using these two frameworks, IA’s test suite covers everything

from the user interface, to the data manipulation at the code level.

Figure 3. Example of Cucumber feature and step code (author owned image)

Figure 2. Comparison of HTML and Haml, and JavaScript and CoffeeScript. (author owned image)

NASA NIFS – Internship Final Report

Kennedy Space Center 6 April 8, 2016

D. IDE and Debugging: RubyMine and Byebug

 RubyMine is a Ruby specific IDE that contains a lot of helpful features for Ruby and Rails application

development. One of the most useful functions is the ability to click on a Ruby method call and get redirected to the

declaration of that method. RubyMine also aids in refactoring; say you need to rename a variable or method,

RubyMine can search your entire project to find and replace all calls/declarations of said variable or method. A tool

that has proved invaluable in this position has been the Byebug gem, which is a Ruby application debugger. Byebug

allows you to place breakpoints in your application code, which will freeze the execution at that point, and allow

you to inspect variable values, change values, and even call methods in that frozen state. This makes investigating

bugs and generally understanding application processes more approachable and intuitive.

E. Version Control and Code Reviews: AccuRev and Code Collaborator

 IA is a massive application with an equally massive codebase, making version control and code reviews a

must. The IA teams uses AccuRev for its version control, which is a stream-based version control system that has a

GUI interface. AccurRev is also utilized by IA to supply data for safety-critical systems. Code is kept in AccuRev

stations, and developers work off these stations (repositories of code) on their local machines via a workspace.

Stations are organized hierarchically via streams; stations that are downstream from another station will pick up all

of the changes of the upstream station when they update their workspace. This system allows for a controlled push

of code to the very top stream, which is the stream from which the application itself is built. When code is promoted,

it must go through the code review processes prior to being pushed upstream. This is done via Code Collaborator, a

code review web application that can import AccuRev transactions and allow other users to leave comments, report

bugs, and ultimately accept the code to be pushed upstream.

Figure 4. Example of terminal output of Byebug gem. (author owned image)

NASA NIFS – Internship Final Report

Kennedy Space Center 7 April 8, 2016

IV. Reports

A. Dependency Checking for TCID Report

 The very first DA assigned to me was to fulfill a need for the already existing Dependency Checking for TCID

Report. This report takes a TCID Definition as an input, and returns a file that contains a list of all the TCID

Definition’s dependencies, where a dependency is a link between a component and a CUI. In the old report, each

row represents a dependency; the rows would contain the component name, the CUI name, and whether or not the

CUI was included in the TCID Definition. If the CUI was included, the row would also contain the CUI’s creation

date, source, maturity, work order, author, and whether or not it is retired. If the CUI was not included in the TCID

Definition, these columns were ignored for that dependency.

 The DA gave a list of new requirements for this report, which I was to implement. The first being the addition

of a column that states whether or not the component was verified, as well as the pedigree of the component. Adding

these was simply a matter of altering the report generating method to pull this data from the already accessed

component objects and printing them to the report. The next requirement was for all of the fields to be filled,

regardless of whether or not the CUI was included in the TCID Definition. The solution to this was less trivial, as a

rewrite of the majority of the previous implementation was required in order to have access to the database records

containing the data for these missing CUIs. The method I used was to first deal with the CUIs that were included in

the TCID Definition, and while pulling their data, I pushed the IDs of the missing CUIs to an array, which I used to

query for them later on. The final report-generating class contained a lot of database queries, and with this came

some performance concerns. In many cases, there was a need to query for a certain type of record, like a component

record, but then pull data from an association to that record. This can result in 𝑂(𝑛2) efficiency which means that

the amount of time it would take for the query to run would grow exponentially in relation to the amount of data it

had to query.

Active Record solves this problem by allowing for eager loading via a call to the ‘includes’ method, which

loads the association into memory during the initial database query, allowing for quicker access to it later that does

not involve any more database queries. The final product was not only an updated report that contained all of the

data necessary to meet the requirements of the DA, but the report also runs faster than the previous version due to a

more efficient setup of queries and data fetching loops.

 Another requirement for the updated report was for users of the report to have the option to select either a full

or violations report, where a full report would contain all of the TCID Definition’s dependencies, and a violations

report would only contain the dependencies where the component is not verified. It was also requested that, in the

event the user chose to generate a violations report, the user can filter the types of violated dependencies that they

want to show up in the report. The violations options include:

- “Failed CUI dependencies”: This violation occurs when the CUI is missing in the TCID Definition

- “Reverification Needed”: This is a cover for all component violations.

- “Retired CUIs”: This violation occurs when a CUI is retired.

Figure 7. Example of Active Record Query with use of ‘includes’ for eager loading. (author owned image)

NASA NIFS – Internship Final Report

Kennedy Space Center 8 April 8, 2016

 Implementing this requirement involved changing

both the business logic and the user interface. The

controller and model classes for this report were updated

to be able to handle the extra parameters for the users’

options, which was done via a few conditional

statements. The user interface was previously a single

dropdown menu, but the updated report now contains a

second drop down menu with options for a “Full Report”

and a “Violations Report”. When the “Violations

Report” option is selected, three check boxes appear,

each representing one of the three violation types listed

above, which was easy to implement via the use of

CoffeeScript.

 Upon finishing up the updates to the report, another requirement outside of the original DA emerged that

called for the report to be included in the TCID Build procedure. During the TCID Build procedure, the report

would be run twice, once for a full report and again for a violations report, and the two resulting output files would

be placed into a log directory. This required the creation of another method which would handle the call by the

procedure and to set up the necessary parameters the user would normally have access to if running the report the

typical way. The clients for this implementation also requested that the output files be in a .txt form, as the report

would initially deliver a .csv file instead. Since .txt files are not tab delimited the way .csv files are, making this

change involving utilizing one of Ruby’s string formatting methods called ‘ljust’, which I used to dynamically

append spaces to the end of strings to keep spacing standard for each column of the report.

 The IA development team aims for extensive code coverage of the entire IA app, so when a feature is added,

tests must also be added, and when a feature is altered, the tests for that feature must also be altered. Since IA

features are very dependent on complicated data sets, and it is crucial for the accuracy of its different features, the

FactoryGirl Ruby gem is used to generate sample data in order to validate accurate results. For the Dependency

Checking for TCID Report, FactoryGirl is used to create a TCID Definition, various components, CUIs, and

dependencies between those components and CUIs. The gem makes this easy by allowing for option parameters to

be passed to the creation method in order to dynamically create data with specific requirements. For the unit tests, I

used FactoryGirl to create dependencies that would match each use case and validated the resulting .txt file against

the expected result. For the user interface tests, I used Cucumber’s JavaScript flag, which causes it to run the tests in

actual browser to validate that the user would be able to use the dropdowns and checkboxes as intended.

 The finished Dependency Checking for TCID Report was a great success. It met all of the new requirements

in terms of the data that is collected, the user interface, and its injection into the TCID Build process. A frequent

user of this report is the SCCS Ops Build Team, who I met with frequently to understand their needs for the report’s

update. The initial report was helpful for them, but the missing data caused them to still have to manually check for

some bits of crucial information, which was very time consuming. They were very satisfied with the updated report

Figure 8. Dependency Checking for TCID user interface
(author owned image)

NASA NIFS – Internship Final Report

Kennedy Space Center 9 April 8, 2016

and claimed that it would save them a considerable amount of time on a regular basis. The report will be available to

the Ops Build Team, as well as all other IA users, in a newer iteration of IA coming in the near future.

B. Component Interdependency Report

 My second assignment was to create an entirely new report, which was to be called the Component

Interdependency Report. The goal for this report was to have a fast and simple way of seeing which components

have dependencies on the same CUIs as a specific given component. In the event that someone was planning on

removing a component from a project, it would be convenient for them to be able to see what components would be

affected by the removal of the removed component’s CUIs. The SCCS Ops Build Team needs to do this very thing

on a regular basis, and actually used an informal script to retrieve this data when they needed. The script was lacking

however, as it only provided them with component names. It was requested that the final report list not only the

component name, but also the component type, the component’s pedigree (i.e. preproduction, production, etc.), and

the specific component with which it has the interdependency..

 The development of this report began with creating the user interface. The DA

stated that the input for a report will be a component of the type EIC Project, Server

Project, MPCV, or SLS, and that the user can input one or more of these

components. The implementation I decided to go with included two drop downs,

where the first would have options for EIC Project, Server Project, MPCV, and SLS,

and the second would contain all of the components for that first selection. When a

user selects a specific component in the second drop down, they can click the “Add”

button to add it to the “Selected Components” list, and the components in this list

will be what the report runs against when the user clicks “Generate”. Adding the

components to the list, and having this list get passed to the controller method

required some pretty complicated CoffeeScript to get working. When the “Add”

button is clicked, it not only appends the component name to the list, but also adds

the component’s ID to a hidden field which gets passed to the controller method.

 Once the controller action is invoked, the IDs are stored in a hash where they

are sorted by the types of components they are, and another hash is generated to act

as a look up table for the original component names. This is necessary in order to

maintain the link between the components found to have interdependencies and the component that they have an

interdependency with. Once these hashes are created, they are passed to the report’s model where the actual report is

generated and where the database is queried. I based the querying procedure off of the informal query the Ops Build

Team used when they needed this data, but I modified it to also include the newly requested columns. A few

separate loops were also needed to organize the data in such a way for it to be printed to the resulting .txt file in the

right format and order.

 The most challenging part of creating this report was understanding the two different ways these dependencies

existed in the IA database. The majority of the dependencies between components and CUIs was via a simple

Dependency record which was associated with the given component and CUI. However, components and CUIs can

also be associated via an IO Tag Name, which requires reaching through the database to the component’s source to

actually find. The final report will take each inputted component, find all of its dependent CUIs’ IDs first, find all of

the CUIs’ IDs that have dependencies via IO Tag Names, and then proceed to find all of the components that have

dependencies on this collection of CUIs. Once these components have been collected, they are sorted alphabetically,

and the necessary data is pulled from these components and printed to a .txt file, which is the final product of the

report.

Figure 9. Component Interdependency
report user interface (author owned image)

NASA NIFS – Internship Final Report

Kennedy Space Center 10 April 8, 2016

 Testing for this report was very similar to the testing for the Dependency Checking for TCID Report.

FactoryGirl was used to generate a handful of components, CUIs, and dependencies between these components and

CUIs, and the unit test asserted that the proper data showed up in the final .txt file. The unit tests also check that an

error occurs if the path that the model tries to save .txt to is invalid. RSpec makes this easy, where you can

encapsulate code you expect to fail in a curly braces, and tell it that you expect an error from this code. The user

interface testing for this report was a bit more robust. CoffeeScript can prove to be quite fragile and break easily, so

the test involves testing the variety of input cases a user may have for this report.

 Unlike the Dependency Checking for TCID Report, the Component Interdependency Report had one target

customer, which was the SCCS Ops Build Team, who I met with frequently for this report as well. Because of this, I

was able to complete this report far more quickly and efficiently, as there were fewer last minute changes to be

made, which not only take time to implement, but also take more time to be code reviewed. The Ops Build Team

was very satisfied with the result and are excited to use the report, as it will save the a lot of time in the same way

the Dependency Checking for TCID Report will.

V. Conclusions

 During this internship, I learned about purely data-driven uses for the Ruby on Rails framework and its related

technologies. All of my previous Ruby on Rails experience was within the scope of being application based or for

social networking. Compared to other frameworks, Rails is robust and scalable to where increasing the amount of

and complexity of data is no issue, and the simplicity of Rails development makes it easy and efficient to add

features. I believe that I would not have been able to begin contributing to the IA web application as fast as I did if it

was not for how intuitive and approachable Ruby on Rails development is. I had very little database experience prior

to starting this internship, and through the very data-oriented DAs that I worked, I am now very comfortable with

database work, specifically the Active Record database interface. Collaboration is a huge component of IA

development, where communication with the rest of the team, especially the more senior developers, is key to

getting any work done. My communications skills have been increased as equally to, if not more so than, my web

development skills.

Acknowledgments

 I would like to give thanks to those that I had the pleasure to work with and receive amazing support from. This

internship has been my first professional position, and it was nothing less than an honor for it to be at the Kennedy

Space Center. Those who made it especially great include Andrew Davis, Logan Smith, Peata Ameperosa, Jared

Rodriguez-Rivera, Josh Johnson, George Meyer, Oscar Brooks, Caylyne Shelton and Jamie Szafran.

NASA NIFS – Internship Final Report

Kennedy Space Center 11 April 8, 2016

References

Software:

Yukihiro "Matz" Matsumoto, “Ruby”, https://www.ruby-lang.org

Rails Core Team, “Ruby on Rails”, http://rubyonrails.org/

Jeremy Ashkenas, “CoffeeScript”, http://coffeescript.org/

Norman Clarke, Matt Wildig, Akira Matsuda, Tee Parham, Nick Walsh, “Haml”, http://haml.info/

David Chelimsky, Myron Marston, Andy Lindeman, Jon Rowe, Paul Casaretto, Sam Phippen, Bradley Schaefer,

“RSpec”, http://rspec.info/

Aslak Hellesøy, Joseph Wilk, Matt Wynne, Gregory Hnatiuk, Mike Sassak, “Cucumber”, https://cucumber.io/

jetBrains, “RubyMine”, https://www.jetbrains.com/ruby/

Deivid Rodriguez, “Byebug”, https://github.com/deivid-rodriguez/byebug

AccuRev, Inc., “AccuRev”, http://www.borland.com/en-GB/Products/Change-Management/AccuRev

SmartBear, “CodeCollaborator”,

https://smartbear.com/product/collaborator/overview/#_ga=1.265703819.525207949.1460390061

https://www.ruby-lang.org/
http://rubyonrails.org/
http://coffeescript.org/
http://haml.info/
http://rspec.info/
https://cucumber.io/
https://www.jetbrains.com/ruby/
https://github.com/deivid-rodriguez/byebug
http://www.borland.com/en-GB/Products/Change-Management/AccuRev

