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Purpose and Importance of Building
Climate Zones

® Inthe US, residential and commercial building infrastructure
combined consumes about 40% of total energy usage and emits
about 39% of total CO,emission (DOE/EIA “Annual Energy Outlook
2013"). Thus, mcreasmg the energy efficiency of buildings is
paramount to reducmg energy costs and emissions.

® Building codes, as used by local and state enforcement entities are
typically tied to the dominant climate within an enforcement
jurisdiction, where the dominant climate is based upon a 30-year
average of local to regional surface observations.

® Guidelines for these codes, applied to residential and commercial
buildings, are developed by Department of Energy (DOE) and
ASHRAE (formerly known as the American Society of Hearting,
Refrigeration and Air-Conditioning Engineers).

® Based upon surface observations ASHRAE, in partnership with the
_ Department of Energy, have developed climate zone maps for WhICh‘
— _bundlng codes are developed.
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Purpose and Objectives

® A significant shortcoming of the methodology used in
constructing such maps is the use of surface observations that

® may be far removed from or not representative of the construction
site of interest (particularly outside the US and Europe)

® may frequently have periods of missing data that need to be filled
by various approximation schemes

® may be difficult to update, lacking information about variability

® Assimilation data products, such as the Modern-Era
Retrospective analysis for Research and Applications
(MERRA), provide regular long-term estimates of near-surface
conditions including variability.

® This talk explores the value of the use of an atmospheric
assimilation system to derive such climate maps.
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Climate Zone Definitions

Table A-3 Climate Zone Definitions (taken from Proposed Addendum b to Standard 169,
Climate Data for Building Design Standards).
Heat|ng Deg ree Days Thermal Zone Name I-P Units Sl Units
HDD =Y (T Ts)
( base [ 0 EXtr‘?ng‘e)'y gr‘;t (Og;‘m'd 10,800 < CDD50°F 6000 < CDD10°C
_ Very Hot — Humid (1A), oF < o <
Tbase = 18°C (650':) 1 Dry (1B) 9000 < CDD50°F < 10,800 5000 < CDD10°C < 6000
2 Hot — H“Egig)(ZA)’ Dry 6300 < CDD50°F < 9000 3500 < CDD10°C < 5000
3A and 3B Warm — Humid (3A), 4500 < CDD50°F < 6300 2500 < CDD10°C < 3500
Dry (3B) AND HDD65°F < 3600 AND HDD18°C < 2000
. ) . CDD50°F < 4500 CDD10°C < 2500
Cooli ng Degree Days. 3C Warm — Marine (3C) AND HDD65°F < 3600 AND HDD18°C < 2000
Mixed — Humid (4A), 2700 < CDD50°F < 6300 1500 < CDD10°C < 3500
+ 4A and 4B o o
CDD = (< T > _Tb ) Dry (4B) AND 3600 < HDD65°F <5400  AND 2000 < HDD18°C < 3000
| ase
ac Mixed — Marine CDD50°F < 2700 CDD10°C < 1500
o o AND 3600 < HDD65°F <5400  AND 2000 < HDD18°C < 3000
Tbase =10°C (50 F) A angsg  Cool- Humid (5A), Dry 1800 < CDD50°F < 6300 1000 < CDD10°C < 3500 AND
(5B) AND 5400 < HDD65°F < 7200 3000 < HDD18°C < 4000
. CDD50°F < 1800 CDD10°C < 1000
5C Cool —Marine (5C)  AND 5400 < HDDB5F <7200 AND 3000 < HDD18°C < 4000
N ) 6AandeB  Cold- H“(rgéd) (6A).Dry 2500 < HDD65°F < 9000 4000 < HDD18°C < 5000
Note that negative
7 Very Cold (7) 9000 < HDDB5F < 12600 5000 < HDD18°C < 7000
values are not
. . 8 Subarctic/Arctic (8) 12600 < HDD65°F 7000 < HDD18°C
included in sum
The criteria for dry and humid are similar but not identical to those enumerated in Table 2B
above.




Current DOE/ASHRAE Climate Zones Map
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Characteristics of Briggs buildings climate zones

Zone # Climate Zone Name and Type Zone # Climate Zone Name and Type

1A Very Hot — Humid 4C Mixed — Marine
1B Very Hot — Dry 5A Cool — Humid
2A Hot — Humid 5B Cool — Dry
2B Hot — Dry 5C Cool — Marine
3A Warm — Humid 6A Cold — Humid
3B Warm — Dry 6B Cold — Dry
3C Warm — Marine 7 Very Cold

Mixed — Humid 8 Subarctic

Mixed — Dry
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Briggs et al., 2002 of the
Continental US (ASHRAE
Transactions)

Key Parameters:

» Heating/Cooling
Degree days using
Max/Min daily
temperatures

* Annual precipitation
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MERRA Overview

- MERRA was generated with version
5.2.0 of the Goddard Earth Observing
System (GEOS) atmospheric model

and a 3-D data variational assimilation 7~ "%

system.

- MERRA assimilates satellite
radiances and in situ measure-ments
from a large set of sources.

Main Observing Systems Assimilated in GEOS-5
6-hr window centered at 00 UTC 11 Nov 2007
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- MERRA provides a complete suite of = §

meteorological parameters at a 1/2°
latitude 2/3° longitude with 72 vertical
levels, from the surface to 0.01 hPa,
spaning from 1979 to near-present

(Rienecker at al 2008, 2011 describe
MERRA in detail)

Operational (NOAA, DoD)
Research (NASA)
Operational+Research




Deriving Building Climate Zones from MERRA

MERRA hourly

(72° x 2°) Surface
Meteorological
DEIE!

Daily Averaged
Global: T, Tmin,

Tmax, Prec

Monthly Averaged
and Summed

Quantities:
HDD18/CDD10

Annual
Averaged and

Summed
Quantities
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NCDC Daily Average 2 Meter Temperature {F)
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MERRA 30 Year Averaged CDD (10°C)

ASHRAE Tbase = 50F (CDD)
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MERRA 30 Year Averaged HDD (10°C)
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MERRA Based 30 Year Climate
Zones for CONUS

CONUS )

Q
=
=
=
-—

o
-

105W 100W 95w el

Longitude

Climate Zaones
2012-11-20-12:36

GrADS: OOLA/IGES



MERRA vs DOE/ASHRAE Climate Zone Maps

ASHRAE vs. MERRA Climate Zones In CONUS (1982 - 2006)

2 ¢ ASHRAE vs MERRA Climate Zone (1982 - 2006)
889 Surface Sites
7 y=0.9901x - 0.0018 6 Sites
R*=0.8926

3 - 695 Sites
(78%)
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(13%)

o e Trsites

Climate Zone Designations Based Upon MERRA Data
E~]

0 1 2 3 4 5 6 7 8
ASHRAE Climate Zone Designations Based upon Surface Site Observations
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MERRA T, Variability
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Climate Zone Variability from MERRA

Percent of Climate Zone / CONUS Area Variation
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Climate Zone Variability from MERRA

Weighted Mean Zone Latitude Variation
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Statistical Significance?

® Used statistical
technique of
Weatherhead et al
(1998) as modified by
Hinkelman et al
(2009) considers the
autocorrelation as
part of the time
series.

® Determines
confidence inteval
and estimates # of
years until 90%
probability is
obtained.
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Climate Zone Trend (% CONUS Area/decade)

Decadal Trend Of Climate Zone as % of CONUS Area & Number of Years
of Additional Data Required to Achieve a 95% Confident Level In Trend
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National Climate Assessment Regions

National Climate Assessment was established to provide regular reports on
climate science and impacts for the United States.

Using Natl Climate Assessment regions
MERRA, 51N : B R,
we assess : DU

changes to
building
zones over 4201
the last 30 30N -
years.

48N -

45N -

36N 1

33N -

Note: we
divide 30N
Great o~
Plains into
2 regions

24N

125W 120W 115w 110W 105W 100W 95W 90W 85W 80W 750 70W 65W
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MERRA Climate Zones by NCA Region

CONUS Climate Zones (1981 — 2011)
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MERRA Climate Zones & Variability

Trends to 95% Confidence

Northwestregion: Area
of zone 5 increasing

Great Plains South region: Zone 3
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Region 2 (7) is 5IN
in(de)creasing 48N {
by about 1.2% 45N
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Conclusions from Last 30 Years

® Building Climate zones computed using MERRA HDD/CDD agree
well (78% of zones agree; 21 of the zones agree with +/- 1 zone -
partly due to elevation differences)

* MERRA assimilation data products provide good agreement with
observed surface temperature variability

® MERRA variability of annual climate zones show a general
migration of zones northward

®* However, statistical significance to 95% level was obtained for the
increase of the most extreme warm zone (zone 1) and zone 3 in
the Southern Great Plains

® Numerous other zones will reach at least the 90% within the next
decade if the currently observed changes continue

® The potential of reanalysis data sets to provide building climate
zone information will assist the development building codes in
response to climate related changes; potential to compare to long-
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Climate Simulation Analysis:
CMIP5

* Building projects require a long-
term planning horizon and usually

have a multi-decadal lifespan. 10- . RCP2E
*  Climate Model Intercomparison — 8- Lopones

Project (CMIP5) § {4
* We explore the future forecasted E

building climate zones from a g

multi-model ensemble from the =

recent CMIP5 climate simulations. =

@

* The projections of climate zones E 0 |

from the RCP4.5 and 8.5 runs

(Van Vuuren et al., 2011) for 28 - |

models. 2000 2025 2050 2075 2100
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Climate Simulation Analysis:
CMIP5

30-YEAR MEAN OF DAILY TEMPERATURE AREA AVERAGES WITH LATITUDINAL
WEIGHTING OVER USA FOR CMIP5 RCP4.5 AND RCP8.5 RUNS

20
From 28 models —
evaluating the 18
ensemble model
mean, 15% warmest
(in red) and 15% e,
coldest (in blue) 5
. 0 €
simulations from g 12
each pathway. m
8
1976-2005 2011-2040 2041-2070 2071-2100
RCP 4.5  ==§==pye of All Models O Median of All Models = 4= =85th Percentile ==& =]5th Percentile
RCP 8.5  ==#==pye of All Models O Median of All Models ==4= 85th Percentile =)= 15th Percentile
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MERRA vs. CMIP5 Ensemble

Ensemble base climate zones agree well with MERRA

Climate Zones (1976-2005)
) Based on All CMIP5 Models Historical Data (1x1 degree)
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RCP 4.5 RCP 8.5
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RCP 4.5 RCP 8.5

Climate Zone Difference Least Warming 15% of Models Climate Zone Difference Least Warming 15% of Models
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Conclusions from CMIP5

® Ensemble base periods from 28 Models used for climate simulations give
climate zones relatively consistent with current designations.

® Used an ensemble analysis of 28 models and separated into mean, 15%
warmest and 15% coolest for

® RCPs:4.5and 8.5
® Decades: 2011-2040, 2041-2070, 2071-2100

® Zone vary widely from RCP RCP 4.5 coolest and RCP 8.5 warmest models.

® Warmest climate zones expand in area; including introduction of newly formed
tropical zone in Gulf Coast US

® (Coolest climate zones that represent current climate shrink and disappear depending
upon the RCP and model ensemble

® Climate zones changes first occur zone transitions and spread in area.
® Some changes for RCP 8.5 and warmest models exceed 3 climate zones
® Most climate areas see a climate zone change of 1 zone in the ensemble mean.

® Determining the probable occurrence of these scenarios represents ongoing
work. However, the cost of adapting to these changes from these results can
begin to be estimated
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