

A Case Study for Assured Containment

Kelly Hayhurst, Jeff Maddalon, Natasha Neogi, NASA-LaRC

Harry Verstynen, Whirlwind Engineering LLC.

2015 International Conference on Unmanned Aircraft Systems

Denver, CO

June 10, 2015

Outline

- Motivation
- Hazard Partitioning and Confined Operations
- Containment and Assurance Issues
 - Geofencing and Assurance
 - Assured Containment
- Agricultural Case Study for Assured Containment
- Summary

UAS in the NAS

- UAS are authorized to operate commercially in the US National Airspace System (NAS) on a case-bycase basis
 - Part 21.25, Part 21.17(b), Section 333 Exemption, COAs, proposed sUAS rule etc.
- FAA Pathfinder Program
 - News Gathering (CNN): Urban Area, Visual Line of Sight (VLOS)
 - Agricultural Survey (PrecisionHawk): Rural Area, Extended VLOS (EVLOS)
 - Railway Line Inspection (BNSF): Isolated Area, Beyond VLOS (BVLOS)
 - FAA suggests "developing design standards tailored to a specific UAS application and proposed operating environment" [11]
- Incremental approach to gaining type-design and airworthiness approval

Motivation for Approach

- Wish to enable airspace access for commercial applications whose vehicle platform is not 'small', and/or who may wish to operate BVLOS
- Several commercial application domains have been identified:
 - Precision Agriculture, Inspection/Surveillance, Mapping/Surveying
- Applications may present limited set of hazards compared to Conventionally Piloted Aircraft (CPA), enabling development of a streamlined set of requirements for their type certification basis
- This will enable a 'starting' certification basis for (Operational Concept, Platform) pair.

Our Approach

- Provide provisional means for confined commercial operations that are not single –vehicle or -case limited
 - Operations fall outside small UAS (sUAS) parameters
 - Vehicle being used does not meet CPA airworthiness standards
 - Large scale substitution of operational limits for airworthiness requirements
- Assured Containment System
 - Includes localization system independent of the autopilot system
 - acts to keep Unmanned Aircraft (UA) within given bounds
 - realized by smaller set of functions than in a typical autopilot → facilitates certification quality safety arguments
- May ease overall effort required to regulate some special purpose UAS, expediting market entry

Barriers to Assurance Arguments for Containment

- Inadequate understanding of effect of conventional Hazards on Airworthiness Standards for UAS
- Lack of Assurance Arguments for Commercial Off The Shelf Components (COTS) in safety critical roles
- Lack of Component (e.g., sensors, actuators) Quality Assurance Data
- Lack of relevant C2 Datalink Standards
 - Mission differences between Global Hawk and Ag operations
- Lack of Ground Based Equipment Standards
 - Ground Station, Ground Based Detect and Avoid, etc.
- Lack of Ground Crew/Operator procedures
- Lack of guidance for certifying infrastructure systems

HAZARD PARTITIONING AND CONFINED OPERATIONS

Hazards for UAS Under Confined Operations

- Hazard space for CPA (on which current regulation is based):
 - Hazards to people onboard aircraft
 - Hazards to people on other aircraft
 - Hazards to people and property on ground
- Lack of people onboard removes significant portion of CPA hazard space
- Rote removal of corresponding regulation may act to expose secondary hazards
- Must account for coupling between hazards

Hazard Partitioning

- CPA has inherent coupling of mitigations for onboard and ground hazards
 - Mitigations for people on board also act to protect people on ground (e.g., hull integrity)
- Hazard partitioning provides potential means to analyze and mitigate groupings of hazards independently of one another
- Mitigating common hazards over entire partitions requires less effort than individually mitigating each hazard
 - e.g., operational restrictions for crop dusting

Confined Operations

- Further partition ground hazards with respect to operational area
 - Hazards to people on the ground within operational area
 - Hazards to people on ground outside operational area
- Can use different strategies to mitigate these partitions if:
 - Partition is maintained (no explicit coupling across these hazard partitions)
 - Any implicit coupling across partitions is managed by mitigation technique
- If partition scheme decouples hazards → Enable development of mitigations whose impact can be mapped onto relevant hazards
- Eases complexity of assurance argument

CONTAINMENT AND ASSURANCE ISSUES

Containment Schemes: Class U Airspace [1]

- Confined operations in well-defined airspace volumes designated for particular tasks
- Class U: Surface to 500 feet above ground level below existing Class G airspace
 - mechanisms to enforce this partition are airspace rules and/or operational procedures
- Sub-classifications
 - property ownership (private or public)
 - type (rural, suburban, and urban)
- Certified geofence required to keep UA in designated operating area

Containment Schemes: Geofencing

- Geofence algorithm detects when UA has transgressed preset boundary (or if transgression is imminent)
 - alert pilot or issue control command
- This requires a reliable and fault tolerant algorithm
 [2-4]
- Implementation must consider:
 - computational platform upon which algorithm is implemented
 - underlying operating system [5]
 - communications architecture [6-7]
- Often implemented through autopilot

Geofences and Assurance Arguments

- For assurance purposes, no single point of failure between autopilot and geofence
- Assurance argument requires independence
 - Cannot have common dependence on the global positioning system (GPS) and inertial measurement unit (IMU) for navigation
 - Cannot use same processor as for autopilot
 - Cannot use same actuators to implement resolution strategy
 - Must consider switching logic and timing (common clocks)

Assured Containment System

- Assured containment system acts to keep the UA within given bounds with a certification quality safety argument
- Safety argument must demonstrate that the UA will remain in a specified area in the presence of common vehicle, position sensing, autopilot, sensor and actuator failures
- Independence of assured containment system from UA primary avionics enables certification ease

Assured Containment: Components

Containment system consists of:

- sensors that determine the vehicle state information,
- decision logic to detect an anticipated breach of containment,
- means to control the breach of containment (e.g., actuators for flight termination)
- Also includes: operational procedures, human-machine interfaces, and software required to set and validate the containment area

Assurance Argument consists of the following premises:

- containment system will be independent of the UA autopilot system as well as other avionics,
- containment system will have an independent means by which to ensure the geospatial containment of the UA in the event of onboard autopilot, sensor and servomotor connection failures.
 - e.g., independent servos for flight termination, independent processor for decision logic, GPS-independent means of determining position etc.
- no single failure in the UA's autopilot systems results in an automatic failure of the containment system

Limited functionality may aid in certification

AGRICULTURAL CASE STUDY FOR ASSURED CONTAINMENT

Define Concept of Operations [8]

- Clearly define:
 - Operational Scenarios
 - Operational Environment
 - Assumptions
 - Functional Performance
 - Anticipated Safety
 Considerations
- Also Relevant: economic considerations

Vehicle Selection [9]

- Relevant Vehicle characteristics
 - e.g., range,endurance, speed
- Relevant SafetyConcerns
 - Autorotative capability, etc.
- EconomicConsiderations

Architecture

- Assured Containment uses multilateration techniques [10]
 - GPS-degraded environments
- Position determined by separate onboard computer that operates independently of the primary navigation system
- Computer determines distance using ground-based sensors, compares to pre-loaded boundary
- Position and speed indicate boundary will be exceeded → Signal generated to close emergency fuel control valve, forcing the UA to the ground

Hazard Analysis

- For the clearly defined Conops, an Operational Hazard Assessment (in conjunction with the selected vehicle) will yield relevant hazards
 - Evaluate with respect to severity
- Vehicle specific hazards (that are evinced in operational context) are then aggregated
 - Controllability, maneuverability, etc.
- In the context of operational and environmental assumptions, this forms the set of hazards to be mitigated (airworthiness, operational, training...)
 - Ground Station, Operator, Communication Links, etc.

Develop Type Certification Basis

- Can develop regulation for each hazard that will result in desired level of mitigation
 - Can use available regulation for conventional hazards
 - Can modify available regulation to fit similar hazards in new context
 - Can abstract groups of requirements
 - Can simplify many requirements
 - Develop regulation for aspects of vehicle/operation that are novel
 - e.g., Communications Link, Containment Area

Proposed Containment System Requirements

- Preliminary requirements for a containment system must mitigate the hazards associated with escape from the containment volume.
- Additional requirements address:
 - The accuracy of the aircraft's location relative to the containment boundaries,
 - Situational awareness of the UA's location relative to the containment boundaries,
 - Failure of infrastructure related to position information (e.g., GPS, cell phone network),
 - Means of detecting impending boundary violations,
 - Means of alerting the pilot in command,
 - Means of ensuring the UA remains within the established containment boundaries at all times; and,
 - Release of high energy parts that may constitute a hazard to crewmembers bystanders outside the containment area.

Assured Containment Concept Summary

- Assured containment system consists of:
 - hardware, software and operational procedures
 - evidentiary material (e.g., safety analysis, reliability data, proofs, etc.) that demonstrate the system performs its intended containment function at the required level of assurance
- Assured containment system must be analyzed as a whole (for airworthiness), including
 - documented, fixed design
 - failure modes that can be clearly understood, (and mitigated or controlled)
- Due to focused functionality, effort required to develop and certify assured containment system may be less than the effort required for conventional UAS autopilot and supporting systems

Perspectives

- Enabling access to airspace for a wide class of vehicles and applications will require either:
 - Case by case evaluation or
 - Reuse of assurance concepts and arguements to form a common certification basis across vehicles and operational concepts
- Concept of assured containment offers one possible approach to streamlined development of design standards tailored to UAS applications suitable for confined, rural operational environments

Implications

- Yields streamlined approach to airworthiness certification
 - Allows midsize UAS to operate near populated areas
- Could enable further commercial uses:
 - herd management, natural resource exploration, wind turbine, pipeline, and power line inspections etc.,
- Industry and regulators gain valuable experience with UAS while carefully controlling access and potential harm to the aviation system as a whole
- Use of operationally driven type certification bases may provide relief while maintaining safety, and begin to build a foundation for certification over other classes of operations and vehicles

Questions?

Natasha.A.Neogi@nasa.gov

References

- [1] Ella M. Atkins, "Autonomy as an enabler of economically-viable, beyond-line-of-sight, low-altitude UAS application with acceptable risk," AUVSI Unmanned Systems 2014, Orlando, FL, pp.200-211.
- [2] Iman Sadeghzadeh and Youmin Zhang, "A Review on Fault-Tolerant Control for Unmanned Aerial Vehicles (UAVs)," Infotech@Aerospace 2011, AIAA 2011-1472, 29 31 March 2011, St. Louis, Missouri.
- [3] K. Bhamidipati, Daniel Uhlig, and Natasha Neogi, "Engineering Safety and Reliability into UAV Systems: Mitigating the Ground Impact Hazard," University of Illinois, Urbana-Champaign, Urbana, IL, 61822, 2008.
- [4] E. N. Johnson and D. P. Schrage, "System Integration and Operation of a Research Unmanned Aerial Vehicle," Journal of Aerospace Computing, Information, and Communication, vol. 1, January 2004, Georgia Institute of Technology, Atlanta, GA, USA.
- [5] E. A. Marconato, D. F. Pigatto, K.R.L.J.C. Branco, and L.H.C. Branco, "LARISSA: Layered architecture model for interconnection of systems in UAS," 2014 International Conference on Unmanned Aircraft Systems (ICUAS), May 2014, Orlando, FL, pp. 20-31.

References

- [6] D. F. Pigatto, G. Freire Roberto, L. Gonçalves, J. F> Rodrigues Filho, A. S. Roschildt Pinto, and K.R.L.J. Castelo Branco, "HAMSTER Healthy, mobility and security-based data communication architecture for Unmanned Aircraft Systems," 2014 International Conference on Unmanned Aircraft Systems (ICUAS), May 2014, Orlando, FL, pp. 52-63.
- [7] Shengxiang Jiang, Petros G. Voulgaris, and Natasha Neogi, "Distributed control over structured and packet-dropping networks," International Journal of Robust and Nonlinear Control, vol. 18, Issue 14, pp. 1389–1408, 25 Sept. 2008
- [8] Kelly J. Hayhurst, Jeffrey M. Maddalon, Natasha A. Neogi, and Harry A. Verstynen, "Concept of operations for UAS use in precision agriculture for targeted aerial application", in preparation.
- [9] Dragonfly Pictures, Inc., (undated), "DP-14 Hawk", [Online], Available:
- http://www.dragonflypictures.com/ products/unmanned- vehicles/dp-14-hawk/
- [10] "Multilateration & ADS-B, Executive Reference Guide", (undated), [Online], Available: http://www.multilateration.com.
- [11] FAA, "FAA UAS Roadmap",
- https://www.faa.gov/uas/legislative_programs/uas_roadmap/media/UAS_Roadma

Hazard Partitioning

Hazard State Space

Hazard Partitioning

