Modeling delamination migration: quasi-static and fatigue loading

N. V. De Carvalho
nelson.carvalho@nasa.gov
National Institute of Aerospace

B.Y. Chen
Imperial College London
National University of Singapore

J.G. Ratcliffe
NASA Langley

S. T. Pinho, P. Baiz
Imperial College London

T. E. Tay
National University Singapore
Motivation

Migration: The process by which a propagating delamination relocates to a new ply interface via matrix cracking

Impact

Skin-stringer pull off

1 Experiments: delamination migration test
2 Modeling approach
3 Validation
4 Summary
Experiments: delamination migration

Test Setup - Premise

Delamination
- ("positive" shear stress)

Migration
- ("negative" shear stress)

*adapted from Greenhalgh, 2009

E.S. Greenhalgh, C. Rogers, P. Robinson. Fractographic observations on delamination growth and the subsequent migration through the laminate. Composites Science and Technology, 69:2345-2351, 2009.
Experiments: delamination migration test

Test setup

- Cross-ply laminate
- “2D” migration process
- Pre-crack (Teflon insert) between 0° and 90° ply
- Variable load position (L)

Experiments: delamination migration test
Test setup - overview
Experiments: delamination migration test

Test setup - overview

Delamination

Migration
Experiments: delamination migration test

Test setup – validation data

Load - displacement

Migration location

Damage morphology
1 Experiments: delamination migration test

2 Modeling approach: Floating Node Method (FNM) and Virtual Crack Closure Technique (VCCT)

3 Validation

4 Summary
Floating Node Method

Same implementation strategy suitable for standard finite element architecture

X-FEM

Phantom Node Method (PNM)

Floating Node Method (FNM)

Remeshing

Same solution

Same solution

Floating Node Method (FNM)

- **Real node**
- **Floating node**
- **Coordinates of crack positions**

\[K_q = Q \]
Floating Node Method (FNM)

Real node
Floating node
Coordinates of crack positions

\[K_q = Q \]

\[K_A q_A = Q_A \]

\[K_B q_B = Q_B \]
Floating Node Method (FNM)

Key Characteristics:

- Floating Nodes are topologically related to each element with no initial position assigned.
- The position of the floating nodes is assigned only after the crack path is determined.
- The floating nodes are used to form sub-elements within the original element and accommodate crack networks.
- Ideally suited to represent multiple cracks and their intersection.
- Can be coupled with Virtual Crack Closure Technique (VCCT) and cohesive zone crack formulations to model crack propagation.
Virtual Crack Closure Technique (VCCT):

- **Mode I**
 \[
 G_I = \frac{1}{2\Delta a_1} F_n [q_n] \left(\frac{\Delta a_1}{\Delta a_2} \right)^{\frac{1}{2}}
 \]

- **Mode II**
 \[
 G_{II} = \frac{1}{2\Delta a_1} F_t [q_t] \left(\frac{\Delta a_1}{\Delta a_2} \right)^{\frac{1}{2}}
 \]
FNM & VCCT applied to cross-ply laminates:

Laminate

\[[0^\circ/90^\circ_2/0^\circ] \]

1 FNM Element (multiple plies)

\[\Omega \]

- Real node
- Floating node (DoF)
- Coordinates of crack positions

FNM & VCCT applied to cross-ply laminates:

Laminate

\([0^\circ/90^\circ_2/0^\circ]\)

1 FNM Element

\([0^\circ/90^\circ_2/0^\circ]\)

- Real node
- Floating node (DoF)
- Coordinates of crack positions
FNM & VCCT applied to cross-ply laminates:

Quasi-static

- Fracture Criterion:
 \[f(G_I, G_{II}) = \frac{G_T}{G_{c,\text{Int}}} - 1 = 0 \]
- Mixed Mode exponential law:
 \[G_{c,\text{Int}} = G_{Ic} + (G_{IIc} - G_{Ic}) \left(\frac{G_{II}}{G_T} \right)^\eta \]

Fatigue

\[
\frac{da}{dN} = A \left(G_{T,\text{max}} \right)^n
\]
\[n = n_I + (n_{II} - n_I) \left(\frac{G_{II,\text{max}}}{G_T} \right) \]
\[A = A_I + (A_{II} - A_I) \left(\frac{G_{II,\text{max}}}{G_T} \right) \]

Delamination

- Real node
- Floating node (DoF)
- Coordinates of crack positions
FNM & VCCT applied to cross-ply laminates:
Migration onset

Quasi-static

\[
\frac{G_T}{G_c^\mathrm{i}(F_t)} > \frac{G_T}{G_c^{\mathrm{Inter}}} \geq 1
\]

\[
G_c^\mathrm{i} = \begin{cases}
G_c^A, & F_t < 0 \\
G_c^B, & F_t > 0
\end{cases}
\]

Fatigue

\[
\left(\frac{da}{dN} (F_t) \right)_i > \left(\frac{da}{dN} \right)_{\mathrm{Inter}}
\]

\[
\left(\frac{da}{dN} \right)_i = \begin{cases}
\left(\frac{da}{dN} \right)_A, & F_t < 0 \\
\left(\frac{da}{dN} \right)_B, & F_t > 0
\end{cases}
\]
FNM & VCCT applied to cross-ply laminates: Migration onset – quasi-static

\[\frac{G_T}{G_c^i(F_t)} > \frac{G_T}{G_{\text{Inter}}} \geq 1 \]

\[G_c^i = \begin{cases}
G_c^A, & F_t < 0 \\
G_c^B, & F_t > 0
\end{cases} \]

Material A

Material B

No growth
FNM & VCCT applied to cross-ply laminates: Migration onset – quasi-static

\[\frac{G_T}{G_c^i (F_t)} > \frac{G_T}{G_{\text{Inter}}} \geq 1 \]

\[G_c^i = \begin{cases} G_c^A, & F_t < 0 \\ G_c^B, & F_t > 0 \end{cases} \]

Diagram showing the relationship between \(G_T/G_c \) and \(G_T/G_{\text{Inter}} \) for different material configurations.
FNM & VCCT - application to composites: Migration onset - fatigue

\[
\left(\frac{da}{dN} \right)_{F_t} > \left(\frac{da}{dN} \right)_{Inter}
\]

\[
\left(\frac{da}{dN} \right)_i = \begin{cases}
\left(\frac{da}{dN} \right)_A, & F_t < 0 \\
\left(\frac{da}{dN} \right)_B, & F_t > 0
\end{cases}
\]

Material A

Material B

\[
\left(\frac{da}{dN} \right)_{Inter}
\]
FNM & VCCT applied to cross-ply laminates:

Quasi-static

\[f \left(G_I, G_{II} \right) = \frac{G_T}{G_{Ic}} - 1 = 0 \]

Fatigue

\[\frac{da}{dN} = A_I (G_{Tmax})^{n_I} \]

Maximum tangential stress criterion:

\[\theta = 2 \tan^{-1} \left(\frac{1}{4} \left[\left(\frac{G_I}{G_{II}} \right) \pm \sqrt{\left(\frac{G_I}{G_{II}} \right)^2 + 8} \right] \right) \]
• Topological criterion
 - local delamination is onset when matrix crack reaches interface
Fatigue algorithm

1. Determine the growth rate for each crack

\[\left(\frac{da}{dN} \right)_i \]

2. Determine the number of cycles needed to propagate each crack by one element, and the crack which propagates in fewest cycles

\[\delta N_{\text{inc}}^i = \delta a_{1\text{el}}^i \left(\frac{da}{dN} \right)_i - \delta N_{\text{acc}}^i \]

\[\delta N_{\text{inc}}^n = \min \left\{ \delta N_{\text{inc}}^i \right\} \]

3. Propagate the crack

\[a^n = a^n + \delta a_{1\text{el}}^n \]

4. Accumulate the cycles

\[N = N + \delta N_{\text{inc}}^n \]

\[\delta N_{\text{acc}}^i = \delta N_{\text{acc}}^i + \delta N_{\text{inc}}^n \]

\[\delta N_{\text{acc}}^n = 0 \]
Verification – Static: DCB

Verification – Fatigue: DCB benchmark

1 Experiments: delamination migration test

2 Modeling approach: Floating Node Method (FNM) and Virtual Crack Closure Technique (VCCT)

3 Validation: modeling delamination migration

4 Summary
Validation: Delamination migration test

Numerical model

<table>
<thead>
<tr>
<th>Dimensions (mm)</th>
<th>B</th>
<th>$2h$</th>
<th>C</th>
<th>S</th>
<th>a_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.7</td>
<td>5.25</td>
<td>12.7</td>
<td>115</td>
<td>49</td>
<td></td>
</tr>
</tbody>
</table>

*B is the width of the specimen (out-of-the-page);
*90° - specimen width direction; 0° - specimen span direction

- Contact modeled between specimen and clamps/baseplate
- Clamping force applied in a first static step
- Abaqus/Standard (Implicit) + UEL
- All material properties obtained using standard/recommended test methods

Model details
Validation: delamination migration test

Results - migration process

Observations

- Correct sequence of events: delamination followed by migration
- Failure morphology well captured – including crack path through-thickness
Validation: delamination migration test

Results – load vs displacement

\[L = 1.0a_0 \]:

Observations
- Max load: good agreement
- Delamination: unstable growth followed by arrest and subsequent unstable and stable growth
- Migration: predicted before delamination arrest
Validation: delamination migration test

Results – load vs displacement

\[L = 1.1a_0 : \]

Observations
- Max load: good agreement
- Delamination: small region of stable growth prior to main load drop
- Migration: predicted within the main load drop
Validation: delamination migration test

Results – load vs displacement

\[L = 1.2a_0: \]

Observations

- Max load: good agreement
- Delamination: stable delamination growth prior to main load-drop
- Migration: predicted within the main load drop
Validation: delamination migration test

Results – load vs displacement

Observations

- Max load: good agreement
- Delamination: stable growth prior to main load-drop
- Migration: predicted within the main load drop
Validation: delamination migration test

Results – Migration location

\[L = a_0 \quad \text{and} \quad u_2 = V \]

\[a_0 \quad \Delta M \]

\[\Delta_M, \quad \text{mm} \]

Observations
- Trend well captured
- Conservative predictions
Fatigue - Preliminary results
Delamination growth and cycles to migration

Constant amplitude, $R = 0.1$ and $f = 5$ Hz:

Observations
- Load-offset affects fatigue life
1. Experiments: delamination migration test

2. Modeling approach: Floating Node Method (FNM) and Virtual Crack Closure Technique (VCCT)

3. Validation: modeling delamination migration

4. Summary
Summary

• Developed a finite element model based on the Floating Node Method combined with the Virtual Crack Closure Technique to capture the interaction between delamination and matrix-cracking.

• Identified and applied migration criteria for both quasi-static and fatigue loading.

• Compared simulations and experiments.
 – Good agreement observed for load-displacement, migration location, and path.

• Validation of the fatigue simulations are in progress.
Modeling delamination migration: quasi-static and fatigue loading

N. V. De Carvalho
nelson.carvalho@nasa.gov
National Institute of Aerospace

B.Y. Chen
Imperial College London
National University of Singapore

J.G. Ratcliffe
NASA Langley

S. T. Pinho, P. Baiz
Imperial College London

T. E. Tay
National University Singapore
Backup Slides: cohesive zone elements

FNM: Formation of Non-Matching Mesh

- Global mesh with partitioning
- Cohesive zone elements before and after matrix cracking

“Non-matching mesh”

- Saturation crack density (experimental)
- Floating node method
- Experimental data points
Backup Slides: element integration
Backup Slides: Topological migration criterion, experimental evidence
Backup Slides: FNM vs PNM, convergence: K_I

![Diagram showing comparison between FNM and PNM for convergence of K_I.](image)

Error in K_I

- **Phantom Node Method (PNM) (Abaqus)**
- **FNM**

- Axes:
 - X-axis: Number of DoF
 - Y-axis: Error in K_I (%)
Backup Slides: FNM vs PNM, accuracy: K_l, K_{ll}

K_l, K_{ll} (MPa mm$^{1/2}$)

<table>
<thead>
<tr>
<th></th>
<th>FNM</th>
<th>PNM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int. 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode II</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analytical
BENCHMARK
SIMULATION