Yonghoon Choi^{1,2}, Melissa Yang^{2,4}, Susan A. Kooi^{1,2}, Edward V. Browell³, Joshua P. DiGangi² ¹Science Systems and Applications, Inc., ²NASA Langley Research Center, STARSS-II Affiliate, ⁴National Suborbital Education and Research Center Contact Information: <u>Yonghoon.choi-1@nasa.gov</u>

Introduction

High resolution *in-situ* CO₂ measurements were recorded onboard the NASA P-3B during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) Field Campaigns during July 2011 over Washington DC/Baltimore, MD; January – February 2013 over the San Joaquin Valley, CA; September 2013 over Houston, TX; and July-August 2014 over Denver, CO. Each of these campaigns have approximately two hundred vertical soundings of CO₂ within the lower troposphere (surface to about 5 km) at 6-8 different sites in each of the urban area. In this study, we used structure function analysis, which are a useful way to quantify spatial and temporal variability, by displaying differences with average observations, to evaluate the variability of CO₂ in the 0-2 km range (representative of the planetary boundary layer). These results can then be used to provide guidance in the development of science requirements for the future ASCENDS (Active Sensing of CO₂ Emissions over Nights, Days, and Seasons) mission to measure near-surface CO₂ variability in different urban areas. We also compare the observed in-situ CO₂ variability with the variability of the CO₂ column-averaged optical depths in the 0-1 km and 0-3.5 km altitude ranges in the four geographically different urban areas, using vertical weighting functions for potential future ASCENDS lidar CO₂ sensors operating in the 1.57 and 2.05 μ m measurement regions. In addition to determining the natural variability of CO_2 near the surface and in the column, radiocarbon method using continuous CO₂ and CO measurements are used to examine the variation of emission quantification between anthropogenic and biogenic sources in the DC/Maryland urban site.

Sample Site – DISCOVER-AQ

Figures (above) show the spatial variation of in-situ CO₂ soundings with altitude at DC/Baltimore (left), CA (middle-left), TX (middle-right), and Denver, CO (right). Figures for each location were represented by the mean with standard deviation as a function of altitude at the various spiral points (252 spiral points at DC/Baltimore, 169 spirals at California, 180 spirals at Texas, and 223 spirals at Colorado). These plots shows that within a small geographical area emissions can vary by a lot, even at various locations within the same urban area. The color coded numbers seen in the top and bottom of the figures are the percentage variations from the mean for each site listed in the legend for the top and bottom of the spirals, respectively.

Structure Function and Data Filtering

 $f(Z, y) \equiv < |Z(x + y) - Z(x)| >$

where, <> denotes taking the average for data pairs separated by distance y, Z is the variable of interest (CO_2 in this analysis) at a given location x, it represents the expected gradient (average difference) for a given resolution (distance y).

For the airborne data analysis here, the distance y is considered to represent satellite resolution and the average difference could represent the expected variability for given resolution.

Data Filtration

High resolution 1 Hz data (roughly 100 m resolution), below 2km AGL, data pairs taken less than 60 minutes to minimize the differences by chemistry and transport, and data pairs with distance up to 100 km were used with the assumed well-mixed boundary layer.

Spatial and Temporal Variability of Carbon Dioxide using Structure Functions in Urban Areas: Insights for Future Active Remote CO₂ Sensors

OPTICAL DEPTH CALCULATION

Spatial Variability using Structure Function. Figures below show the comparison of spatial variation observed during DISCOVER-AQ. Each color line indicates a different date and the thick black line is the average difference of targeted resolution in the sites. The shaded box shows the possible ASCENDS resolution to see the spatial variability for establishing measurements for future remote sensor. Some offset variabilities are shown by different weather or surface conditions. DAQ DC/Maryland Va

Column and Surface Variability using OD calculation. Tables the Column Optical Depth and Variability for 3 different weighting functions (1.57µ+3pm, 1.57µ+10pm, and 2.06µ) for Column (0-3.5 km) and Surface (0-1 km). *Equivalent Mixing Ratio (ppm) are compared with consistent 390 ppm at four different sites. The column variation shows 0.55–1.26 %(MD), 0.19–0.74 %(CA), 0.42–1.63(TX), and 0.64–0.88 %(CO) and surface variation range 0.66 – 2.05 % at sites.

Beltsville					Padonia				Fairhill				Aldino				Edgewood				Essex			
	Column (0-3.5 km) Surface			Surface	Column (0-3.5 km)			Surface	Column (0-3.5 km)			Surface	Col	umn (0-3.	5 km)	Surface	e Column (0-3.5 km)			Surface	Col	Column (0-3.5 km) Si		
Weighting Fn.	1.57μ (3pm)	1.57μ (10pm)	2.05 μ		1.57μ (3pm)	1.57μ (10pm)	2.05 μ		1.57μ (3pm)	1.57μ (10pm)	2.05 μ		1.57μ (3pm)	1.57μ (10pm)	2.05 μ		1.57μ (3pm)	1.57μ (10pm)	2.05 μ		1.57μ (3pm)	1.57μ (10pm)	2.05 μ	
Colm.Avg.(ppm)*	386.81	386.82	386.87	387.80	385.17	385.07	384.80	382.32	384.79	384.64	384.27	383.35	384.92	384.81	384.52	386.32	386.18	386.11	385.96	387.41	386.48	386.46	386.45	388.61
Variability (%)	1.24	1.25	1.26	1.88	0.55	0.56	0.60	1.13	0.67	0.67	0.70	1.22	0.70	0.71	0.76	1.38	0.74	0.75	0.79	1.66	0.75	0.76	0.81	0.69
Bakersfield					Porterville				Hanford				Huron			Tranquility			Fresno					
Colm.Avg.(ppm)*	401.90	402.24	403.32	413.01	399.96	400.21	401.00	407.72	400.64	400.97	402.03	410.88	399.08	399.26	399.84	405.02	399.36	399.58	400.28	406.55	399.38	400.04	405.89	388.61
Variability (%)	0.63	0.65	0.74	2.05	0.28	0.30	0.38	1.18	0.39	0.42	0.55	1.49	0.23	0.23	0.26	0.66	0.19	0.21	0.28	0.92	0.41	0.43	0.51	1.32
Galveston				Manvel Croix				Smith Point				Deer Park												
		Gal	veston			Many	vel Croix			Smit	h Point			De	er Park									
Colm.Avg.(ppm)	* 394.33	Gal ^y 394.41	veston 394.65	396.83	394.66	Manv 394.72	vel Croix 394.93	396.90	394.27	Smit 394.31	h Point 394.44	395.71	398.44	Dec 398.59	er Park 399.04	402.94	I							
Colm.Avg.(ppm) Variability (%)	* 394.33 0.57	Gal 394.41 0.59	veston 394.65 0.64	396.83 1.06	394.66 0.45	Manv 394.72 0.47	vel Croix 394.93 0.53	396.90 1.17	394.27 0.42	Smit 394.31 0.43	h Point 394.44 0.46	395.71 0.74	398.44 1.63	Dec 398.59 1.63	er Park 399.04 1.61	402.94 1.86								
Colm.Avg.(ppm) Variability (%)	* 394.33 0.57	Gal 394.41 0.59 Mood	veston 394.65 0.64 dy Tower	396.83 1.06	394.66 0.45	Manv 394.72 0.47 Chant	vel Croix 394.93 0.53	396.90 1.17	394.27 0.42	Smit 394.31 0.43 West	h Point 394.44 0.46 Houston	395.71 0.74	398.44 1.63	Dec 398.59 1.63	er Park 399.04 1.61 onroe	402.94 1.86								
Colm.Avg.(ppm) Variability (%) Colm.Avg.(ppm)	 * 394.33 0.57 * 397.13 	Galv 394.41 0.59 Mood 397.32	veston 394.65 0.64 dy Tower 397.91	396.83 1.06 403.03	394.66 0.45 396.53	Manv 394.72 0.47 Chant 396.72	vel Croix 394.93 0.53 nelview 397.30	396.90 1.17 402.59	394.27 0.42 395.35	Smit 394.31 0.43 West 1 395.46	h Point 394.44 0.46 Houston 395.81	395.71 0.74 398.94	398.44 1.63 394.42	Dec 398.59 1.63 Cc 394.48	er Park 399.04 1.61 onroe 394.67	402.94 1.86 396.42	I							
Colm.Avg.(ppm) Variability (%) Colm.Avg.(ppm) [*] Variability (%)	 * 394.33 0.57 * 397.13 0.70 	Galv 394.41 0.59 Mood 397.32 0.72	veston 394.65 0.64 dy Tower 397.91 0.80	396.83 1.06 403.03 1.76	394.66 0.45 396.53 0.73	Manv 394.72 0.47 Chant 396.72 0.76	vel Croix 394.93 0.53 nelview 397.30 0.86	396.90 1.17 402.59 1.74	394.27 0.42 395.35 0.43	Smit 394.31 0.43 West 395.46 0.44	h Point 394.44 0.46 Houston 395.81 0.49	395.71 0.74 398.94 0.99	398.44 1.63 394.42 0.47	Dec 398.59 1.63 Cc 394.48 0.48	er Park 399.04 1.61 0nroe 394.67 0.51	402.94 1.86 396.42 0.87	Ī							
Colm.Avg.(ppm) Variability (%) Colm.Avg.(ppm) ³ Variability (%)	 * 394.33 0.57 * 397.13 0.70 	Galv 394.41 0.59 Mood 397.32 0.72 Fort	veston 394.65 0.64 dy Tower 397.91 0.80 Collins	396.83 1.06 403.03 1.76	394.66 0.45 396.53 0.73	Many 394.72 0.47 Chan 396.72 0.76 Plat	vel Croix 394.93 0.53 nelview 397.30 0.86 teville	396.90 1.17 402.59 1.74	394.27 0.42 395.35 0.43	Smit 394.31 0.43 West 395.46 0.44 NREL	h Point 394.44 0.46 Houston 395.81 0.49 Golden	395.71 0.74 398.94 0.99	398.44 1.63 394.42 0.47	Dec 398.59 1.63 Cc 394.48 0.48 BAC	er Park 399.04 1.61 0nroe 394.67 0.51	402.94 1.86 396.42 0.87		Denve	er-LaCasa			Cha	atfield	
Colm.Avg.(ppm) Variability (%) Colm.Avg.(ppm) [*] Variability (%)	 * 394.33 0.57 * 397.13 0.70 * 397.36 	Galv 394.41 0.59 Mood 397.32 0.72 Fort 397.38	veston 394.65 0.64 4y Tower 397.91 0.80 Collins 397.46	396.83 1.06 403.03 1.76 398.24	394.66 0.45 396.53 0.73 398.75	Manv 394.72 0.47 Chan 396.72 0.76 Plat 398.88	vel Croix 394.93 0.53 nelview 397.30 0.86 teville 399.17	396.90 1.17 402.59 1.74 401.89	394.27 0.42 395.35 0.43 398.14	Smit 394.31 0.43 West 395.46 0.44 NREL 398.23	h Point 394.44 0.46 Houston 395.81 0.49 Golden 398.44	395.71 0.74 398.94 0.99 400.55	398.44 1.63 394.42 0.47 398.05	Dec 398.59 1.63 Cc 394.48 0.48 BAC 398.13	er Park 399.04 1.61 0nroe 394.67 0.51 0 Tower 398.31	402.94 1.86 396.42 0.87 400.04	399.75	Denve 399.94	er-LaCasa 400.35	404.31	398.61	Cha 398.69	atfield 398.88	400.72

Figure (Right) shows the sensitivity of 3 different weighting functions at all urban spiral sites. Houston, DC, and Denver sites show similar column variability in range from 0.70 to 0.90 %, and San Joaquin site shows least variability at 3.5 km column. The surface column variability (0-1.0 km) was similar at all four sites with 1.39 – 1.53 % variation. The ≧ 1.5 2 μ weighting function shows a little more sensitivity than others at below 3.5km column and surface.

Quantification of Fossil Fuel CO₂ using continuous CO₂ and CO measurement with Radiocarbon ➤ Basic Concept

$\left[CO_{2ff}\right] = \left(CO_{obs} - \right)$	$CO_{bg})/R_{CO}$ Use Emission Inventory of MD NEI 2008 v	value (1
$R_{CO} = \frac{CO}{CO_{2ff}}$	C-14 unavailable for DAQ	

 $CO_{2obs} = CO_{2bic} + CO_{2ff} + CO_{2bg}$ (CO₂ bg = 390 ppm)

During the highway run, the observed CO_2 values are shown with higher than background values at Morning and Noon, but it's lower than background value at Afternoon. FF CO₂ are almost consistent at 3 different time period, but the biogenic uptake signal, which is shown much lower during afternoon, result in the lower observed CO_2 even in the highway.

Figures below show the spatial variability with different time resolutions. As the time is further away from the morning peak traffic time, the spatial variability decreases

Missed Approach Analysis for Column Variability

Figures (Left) When compared with usual aircraft profile (missing in low altitude), Missed approach profiles give a chance to calculate the column values precisely. Here, Colorado Missed Approach profiles were used to derive OD % difference from a constant 390 ppm OD (1st figure). They show CO_2 enhancements varied from 0.6 – 3.6 % OD, or equivalent column mixing ratios of 2.4 – 14.1 ppmv at Colorado profiles. The same profiles were used to evaluate the impact of extending short profiles to the surface before calculating OD (2nd Figure). Assuming these profiles stopped 300 m above the surface, our extension technique introduced maximum errors of 0.8 % (3.1 ppm) at Colorado. Without missed approach, Galveston at Texas (which is not shown here), and Platteville at Colorado show biggest errors in column OD.

Acknowledgements NASA ESSP, Jimmy Geiger, Jim Plant, Bobby Martin, Ali Aknan, Ewan Crosbie, HSRL for ML plot, Jim Crawford for Structure function, DACOM for CO data, and All DAQ team.