Ultra-High Power Density Piezoelectric Energy Harvesters

Tian-Bing Xu and Jin Ho Kang National Institute of Aerospace, Hampton, VA 23666

Emilie J. Siochi NASA Langley Research Center, Hampton, VA 23681

Lei Zuo and Wanlu Zhou Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061

Xiaoning Jiang Department of MAE, North Carolina State University, Raleigh, NC 27695

Energy Harvesting & Storage USA 2015

Santa Clara, CA November 18~19, 2015

Outline

- Introduction: Background and motivation
- Methodologies for harvesting more electrical energy
 - Enhanced mechanical energy capture
 - Increased mechanical to electrical energy conversion efficiency
 - Increased energy storage efficiency
- Experimental results and validation
- Low cost piezoelectric harvester
- Conclusions

Piezoelectric Energy Harvesting Applications

Power for portable devices

A soldier with portable electronics

Smartphone

Vibration Sources

	Accele	Frequency peak	
VIDIATION SOURCE	(m/s²)	G (9.8 m/s ²)	(Hz)
Car engine compartment	12	1.22	200
Base of 3-axis machine tool	10	1.0	70
Blender casing	6.4	0.65	121
Clothes dryer	3.5	0.36	121
Person tapping their heel	3	0.31	1
Car instrument panel	3	0.31	13
Door frame just after door closes	3	0.31	125
Small microwave oven	2.5	0.26	121
HVAC vents in office building	0.2 - 1.5	0.02 - 0.15	60
Windows next to a busy road	0.7	0.07	100
CD on notebook computer	0.6	0.06	75
Second story floor of busy office	0.2	0.02	100
Railway	1.078 - 1.568	0.11 - 0.16	12 - 16
Truck	1.96 - 3.43	0.2 - 0.35	8 - 15
Ship	0.98 - 2.45	0.1 - 0.25	12 - 13

Smart. Mater. Struct. 17 (2008) 043001; MRS Bulletin 37 (2012) 1039.

Power Consumption of Wireless Sensors

Wireless sensors need power sources on the order of 100 mW

State-of-the-Art

Piezoelectric Energy Harvesters

Cantilever Beambased Harvesters

S. Roundy and P. K. Wright, Smart Mater. Struct. 13(5), 1131– 1142, 2004

- ➢ 0.2µW ~4 mW
- Resonance mode operation
- > >1000 papers

Edge Clamped Circular Diaphragm Harvesters

- Kim, S., W. W. Clark and Q.-M. Wang, Journal of Intelligent Material Systems and Structures, Vol. 16: 847-854, 2005
- ▶ 1~20 mW
- High resonance frequency > 1000 Hz
- Suitable for acoustic pressure

Flextensional Harvesters

- Cymbal

Kim, H.-W., A. Batra, S. Priya,
K. Uchino, D. Markley, R. E.
Newnham, and H. F.
Hofmann, 2004, JJAP Vol. 43,
No. 9A, pp. 6178–6183

52 mW of electrical power to a 400 k Ω matched resistive load under 70 N_{rms} force at 100 Hz

Energy conversion efficiency: 7.8%

Multilayer stack

Sosnicki, O., N. Lhermet, F. Claeyssen, ACTUATOR 2006, 14 – 16 June 2006, Bremen, Germany

50 mW electrical power at the resonance frequency of 110 Hz with 0.85g acceleration

Multidisciplinary Challenge

Outline

- Introduction: Background and motivation
- Methodologies for harvesting more electrical energy
 - Enhanced mechanical energy capture
 - Increased mechanical to electrical energy conversion efficiency
 - Increased energy storage efficiency
- Experimental results and validation
- Low cost piezoelectric harvester
- Conclusions

Approach I: Capture More Mechanical Energy

Two-stage Force Amplification Piezoelectric Energy Harvester (TS-FAPEH)

If $\theta_1 = \theta_2 = 11^\circ$, then **625 times** more mechanical energy can be captured/transferred into each piezoelectric element

Tian-Bing Xu, Emilie J. Siochi, Lei Zuo, Xiaoning Jiang, and Jin Ho Kang, "Multistage Force Amplification of Piezoelectric Stacks" U.S. Patent 9,048,759 B2, June 2015.

Approach II: Increase Energy Conversion Efficiency

Piezoelectric Material Selection and Mode

*TRS: http://www.trstechnologies.com

Approach III: Increase Energy Storage Efficiency

Optimization of Multilayer Stacks

> Optimize number of layers, n, for charge generation and collection

Stored energy
$$\Delta E = \frac{2Q_0 \Delta Q + (\Delta Q)^2}{2C_s} = \frac{(\Delta Q)^2}{2C_s} (if \quad Q_0 = 0)$$

where $\rightarrow Q_0$ initial electric charge in the super-capacitor

11

Multidisciplinary Integration and Design Optimization

Frame geometry and parameters design is critical

Outline

- Introduction: Background and motivation
- Methodologies for harvesting more electrical energy
 - Enhanced mechanical energy capture
 - Increased mechanical to electrical energy conversion efficiency
 - Increased energy storage efficiency

Experimental results and validation

- Low cost piezoelectric harvester
- Conclusions

Harvesting Electrical Power

> Two finger compression can directly power 50 LEDs.

Off-resonance Mode Operation 34 gram TS-FAPEH

- The generated electrical power is proportional to
 - frequency
 - the square of the applied force.

Resonance Mode Operation Without Proof Mass 34 gram TS-FAPEH

It only took 1.4 seconds to charge a 6,600 µF super-capacitor from 0 to 6.8 V (full) for 1 g_{rms} acceleration

Comparison With the State-of-the-Art Piezoelectric Energy Harvesters

On-resonance mode operation									
Harvesters	Weight (gram)	Applied force		Generated	power density				
		Force (N _{rms})	Frequency (Hz)	electrical power (mW)	normalized by weight, force ² , and frequency {µW/[kg.(N _{rms}) ² .Hz]}				
Cymbal (K. Uchino and T. Ishii, Ferroelectrics, 400, 305 (2010)	10.5	49.5	100	52	20.2				
This TS-FAPEH	34	15	128	248	253				

Off recommende mode energies

Resonance mode operation

Type of PEH	Weight (gram)	Excitation		Generated	Power density	
		Acceleration (g _{ms})	Frequenc y (Hz)	electrical power (mW)	weight and accel. ² [W/(kg.g ²)]	
One-stage Flex tensional (O. Sosnicki, N. Lhermet, and F. Claeyssen, ACTUATOR 2006)	269	0.9	110	50	0.23	
This TS-FAPEH	34	0.7	213	366	22	

> Power density is more one order of magnitude higher than others

Outline

Introduction: Background and motivation

- Methodologies for harvesting more electrical energy
 - Enhanced mechanical energy capture
 - Increased mechanical to electrical energy conversion efficiency
 - Increased energy storage efficiency
- Experimental results and validation
- Low cost piezoelectric harvester

Conclusions

Low Cost PZT Polycrystalline Ceramic Stack-Based TS-FAPEH

- Generated 3.5 mW electrical power from low frequency manual compression
- PZT polycrystalline material cost is 10 times lower than PMN-PT single crystal material

Resonance Mode Operation PZT MS-FAPEH without Proof Mass

It took 8 seconds to charge a 6,600 μF super-capacitor from 0 to 6.8 V (full) for 0.5 g_{rms} acceleration and 2 seconds for 1 g_{rms} acceleration.

Resonance Mode Operation PZT TS-FAPEH with Proof Masses

- Lowered the resonance frequency
- Significantly increased the generated electrical power

Resonance Mode Operation at 0.25 g_{rms} Acceleration PZT TS-FAPEH with 50 gram Proof Mass

Power delivered to resistive loads

Charging a 6,600 μ F Super-capacitor At 0.25 g_{rms} with 50 gram proof mass

Outline

- Introduction: Background and motivation
- Methodologies for harvesting more electrical energy.
 - Enhanced mechanical energy capture
 - Increased mechanical to electrical energy conversion efficiency
 - Increased energy storage efficiency
- Experimental results and validation.
- Low cost piezoelectric harvester

Conclusions

Comparison of Two-Stage and Single-Stage Flextensional Harvesters

The power density of the two-stage is more than one order of magnitude higher than the samestacked one-stage

The operational frequency of the TS-FAPEH is in the range of practical applications

Conclusions

- TS-FAPEH energy harvesters gave high energy (>10 times) density via three approaches:
 - Two-stage structures that capture orders of magnitude more mechanical energy
 - "33" mode piezos that increase energy conversion efficiency
 - Optimized multilayer stacks that increase energy storage efficiency many times
- The TS-FAPEH generated significantly higher electrical power both offresonance and at resonance -- with and without proof masses
- A lower-cost PZT-multilayer TS-FAPEH also exhibits excellent performance
- The resonance frequency of the TS-FAPEH is in the range of many practical applications.

Contact Information

For licensing/other business POC

Dr. Rheal P. Turcotte
 NASA Langley Research Center
 Email: rheal.p.turcotte@nasa.gov
 Phone: 757-864-8881

> Questions?