Overview of Unmanned Aerial System Traffic Management (UTM)

Motivation

- Many applications of Unmanned Aerial System (UAS) have been proposed
 - Humanitarian

– Precision agricultural

Package delivery

- Infrastructure monitoring
- Worldwide interest is intense
- UAS will need to operate in uncontrolled airspace
- No infrastructure is available to support these new operations
 - Today's Air Traffic Management (ATM) started after mid-air collision over Grand Canyon in 1956
- The US needs a system for managing UAS operations in civilian low-altitude airspace

Sense of Urgency

- Business applications are emerging rapidly
- Low-altitude operations could become dominant aviation activity
- Vehicle designs are changing continuously
- Airworthiness certificate relief and Certificate of authorization (COA) are taxing processes
- Visual line of sight is limiting
- Several efforts to integrate civilian UAS into the National Airspace System are underway
- An automation system, operational procedures, flight rules, and regulations are urgently needed to enable the industry

Agenda

- Objectives
- Development Approach
 - Builds
 - Services
 - Simulation Capabilities
 - Field Tests
- UTM Build 1 Field Test Description
- Summary

Objectives

- Develop proof-of-concept UTM system to safely enable low-altitude small UAS operations
 - Automation system
 - Operational procedures
 - Flight rules

• Demonstrate UTM system in field tests in conjunction with a broad set of partners

US Airspace Classification

Source: Pilot's Handbook of Aeronautical Knowledge, FAA

UTM Applications

Notional UTM Scope

UTM Builds and Services

- Based upon four risk-based criteria:
 - Density of people on the ground
 - Number of structures on the ground
 - Likelihood of manned operations in close proximity
 - Number of UAS operations in close proximity
- Each build enables certain types of missions and provides certain services
- Each build includes supports the missions and services of the previous builds
- Builds are intended to be developmental milestones as well as self-contained systems.

High-Level UTM Builds

• Build 1:

- Within visual line-of-sight
- Over unpopulated land or water
- No manned aircraft
- Geo-fences separate UAS
- Contingencies handled manually by UAS pilot
- Build 2:
 - Beyond line-of-sight
 - Over sparsely populated land
 - Few manned aircraft
 - Procedures and rules-of-the road separate UAS
 - Contingencies alerted to UAS operator

• Build 3:

- Beyond line-of-sight
- Over modestly populated land
- Some manned aircraft
- In-flight separation of UAS
- Some contingencies resolved
- Build 4:
 - Beyond line-of-sight
 - Urban environments
 - Manned aircraft commonplace
 - Autonomous separation of UAS
 - Large-scale system-wide contingencies resolved

Notional UTM Airspace

High-Level UTM Services

- Security Services:
 - System Health Monitoring
 - Vehicle Registration
 - User Authentication
 - Flight Monitoring
- Flight Services:
 - Flight Planning
 - Scheduling and Demand Management
 - Separation Assurance
 - Contingency Management

- Information Services:
 - Airspace Definition
 - Weather Information
 - Terrain and Obstructions
 - Traffic Operations

UTM System Architecture

UTM Simulations

- Demonstrate and evaluate advanced UTM services and UAS operations in high-fidelity human-in-the-loop simulations
- Define human's roles, responsibilities and procedures for managing UTM operations
- Perform verification and validation testing of UTM system prior to field tests
- Simulate complex operations that cannot be done during the field tests (e.g., urban operations, 9/11 type scenarios)

NASA Lab Test Bed

UTM simulator with access for external partners

UTM Field Tests

- Demonstrate, and evaluate current UTM services and UAS operations in conjunction with UTM stakeholders
- Verify tools and procedures to manage UTM operations
- Accelerate deployment of UTM System to FAA UAS test sites
- Validate assumptions made by the UTM Concept of Operations (e.g., vehicle performance, operational conditions, integration with real flight hardware and NAS systems)
- Provide tangible products for technology transfer of UTM requirements and capabilities to the FAA and UTM stakeholders

Build 1 Field Test Scenario

- Outside the Mode-C Veil
- At least 3 nmi away from airports, helipads, etc.
- 1,200 feet AGL or lower
- Risk Criteria
 - Population Density: Only people involved in operation
 - Structural Density: Only structures related to the operation
 - Manned operations: No non-participating aircraft expected
 - UAS Operations: Segregated by geo-fences or time
- Test Constraints
 - Within visual line-of-sight of Pilot-in-Command
 - During daylight hours
 - With visibility greater than 1 statute mile and clear of clouds

Build 1 Field Test Objectives

 Objective 1: Demonstrate UTM Build 1 capabilities and effectiveness under real world uncertainties

• Objective 2: Collect data to support Build 2 development

Build 1 Field Test Approach

Build 1 Field Test Example

Summary

- UTM is a unique and necessary effort to enable safe operations
- Collaboration is welcome: private sector, university, and government agencies
- Field testing and simulations will demonstrate UTM feasibility

Backup Slides

UTM Services: Security Services

- System Health Monitoring
 - Monitors the status of the internal subsystem and external system components required to provide each UTM service
- Vehicle Registration
 - Ensures that only registered vehicles are approved for operations within UTM airspace and receive the appropriate UTM services
- User Authentication
 - Ensures that only credentialed users can access the system and are provided the appropriate UTM services
- Flight Monitoring
 - Monitors both UAS and non-UAS operations within the UTM airspace in terms of their safety and security risk to each other

UTM Services: Flight Services

- Flight Planning
 - Assesses proposed UAS operations against airspace availability and operational constraints
- Scheduling and Demand Management
 - Schedules UAS operations to reduce congestion, conflicts, and improve overall safety as traffic demand increases
- Separation Assurance
 - Provides temporal, procedural and in-flight separation services from other traffic, weather, terrain, and vertical obstructions
- Contingency Management
 - Resolves off-nominal conditions that occur during an operation such as flight non-conformance and lost communication

UTM Services: Information Services

• Airspace Definition

- Provides users with the physical extents of its UTM airspace as well as regions within that airspace where operations are not permitted – either permanently or temporarily
- Weather Information
 - Provides users with information about the current and predicted weather conditions in the UTM airspace

• Terrain and Vertical Obstructions

- Provides users with information about the terrain, man-made structures, and vertical obstacles in the UTM airspace
- Air Traffic Operations
 - Provides users with information about the planned and current UAS operations in the UTM airspace

Standalone Testbed: UTM-PS Personal Simulator for UTM

Functionality

- Create and control UAS scenarios in MACS
- Visualize in Simulation Viewer
- Communicate to UTM via UTM API
- MACS Messaging Window to display UTM comm.

Automated messages:

- MACS flight plan->Operational plan
- ALL CLEAR (TBD sec) before activating aircraft
- MACS flights state -> UTM position updates
- CLOSED message ->UTM (landed)

Manual messages

 UTM messaging window in MACS for viewing UTM messages and sending responses from MACS

NASA Lab test bed: UTM-LS

Lab Simulator for UTM

NASA Lab Test Bed

UTM simulator with access for external partners

Build 1 Location and Layout

Test Location: Crows Landing Airfield

- 35 miles east of Moffett Field, CA
- NASA Ames Research Center has a Use Agreement with Stanislaus Co. which owns most of the property.
- Vehicles would be operating under a NASA MOA*
- There are no usable facilities or services at Crows Landing. Users must be 100% selfsufficient and bring all their own equipment, power, bathrooms, shade, water, and food.
- There are services several miles away in the towns of Crows Landing or Patterson.
- Test Duration: 1 Week
 - Dates: TBD (August 17-20th 2015)

Build 1 Flight Test Scope

- Block A: Singleton Operations
 - Testing UTM Services in Nominal Conditions
 - Testing Operational Procedures in Nominal Conditions
 - Testing Vehicle Conformance
 - Data Collection: Vehicle and Surveillance Performance
- Block B: Sequential Operations
 - Testing UTM Services in Nominal and Off-Nominal Conditions
 - Testing Operational Procedures in Nominal and Off-Nominal Conditions
 - Testing Vehicle Conformance
 - Data Collection: Vehicle and Surveillance Performance
- Block C: Coincidental Operations
 - **7** Testing UTM Services in Nominal and Off-Nominal Conditions
 - **7** Testing Operational Procedures in Nominal and Off-Nominal Conditions
 - Testing Vehicle Conformance
 - Data Collection: Vehicle and Surveillance Performance

UTM Constraint Checking

Operation plan approxiteted

- Trajectory conformance depends on:
 - Aerodynamic characteristics
 - Vehicle performance (e.g. thrust)
 - Automatic flight control
- Three ongoing efforts:
 - Vehicle modeling with available data
 - Model validation with field tests
 - Assessing feasibility of wind tunnel tests