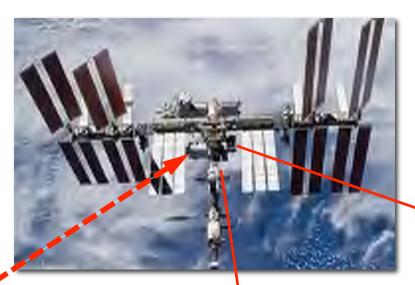


www.nasa.gov/telerobotics



Intelligent Robotics Group NASA Ames Research Center terry.fong@nasa.gov

2013-09-10

Smart SPHERES

Enhance & Enable Human Missions

Motivation

- Maintain human spacecraft
- Enhance crew productivity
- Need robots to do work before, in support of, and after humans

In-Flight Maintenance (IFM)

- Keep spacecraft in a **safe** and **habitable** configuration
- Many IFM tasks are tedious, repetitive and routine
- Many tasks cannot be done using only fixed sensors

Unmanned mission phases

- Setup prior to human arrival
- Contingency situations (decrew due to fire, etc.)

International Space Station (ISS)

- Increment 35/36 = 260 hr of planned IFM activities
- 44 hr/month average

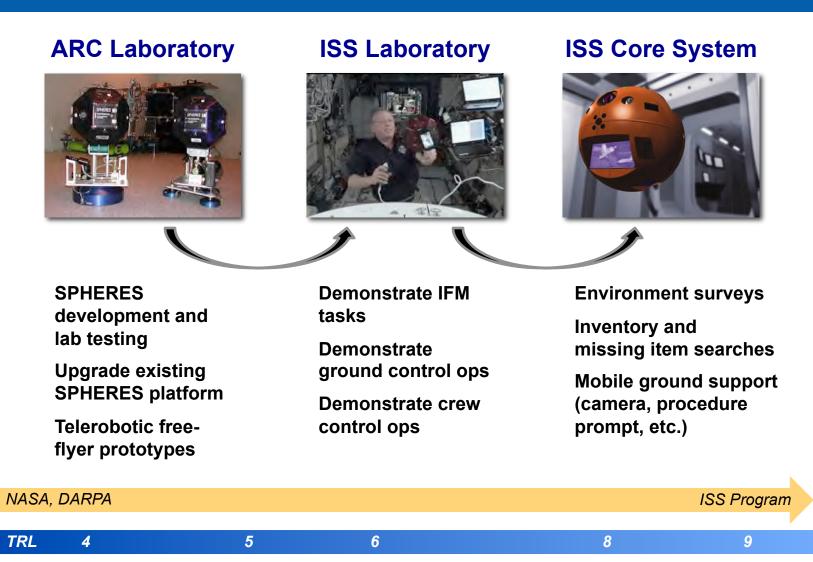
IVA Free-Flyer can off-load IFM tasks on ISS from astronauts

- Air sampling (5 hr/month)
- Sound survey (3 hr/month)
- Camera positioning (3+ hr/month)
- Video safety survey (1 hr/month)

IVA Free-Flyer Use Cases

Off-load work from crew

- Perform interior **environmental surveys** (air quality, sound levels, radiation)
- Support **post-fire recovery** by assessing smoke, combustibles, etc. (potential replacement for CSA-CP instrument)
- Support **Automated Logistics Management** (ALM) (inventory and missing item searches)
- Ground controllable mobile camera to support IVA activities, safety fly-through video, and E/PO products
- Provide mission control, payload scientists, public with telepresence ("free-flying Skype")


Support Crew

- Function as **floating microphone**
- Function as free-flying computer (display/speak procedures to crew)
- **Transfer items** from one crew member to another (e.g., transport tool needed to complete an IVA crew activity)

IVA Free-Flyer Roadmap

SPHERES

Synchronized Position Hold Engage Reorient Experimental Satellites

- IVA free-flyers developed at MIT with DARPA funding
 - 22 cm diameter, 4 kg
 - Cold-gas (CO₂) propulsion
 - Sonar beacon localization
 - Powered by 16 AA batteries
- Testbed for distributed satellite & free-flying control algorithms
- 3 units installed on ISS in 2006
- ISS Facility managed by ARC
 - Coordination & scheduling
 - Flight operations
 - Sustaining engineering

Scott Kelly working with SPHERES on the ISS

SPHERES ISS Facility

- Program Executive: J. Crusan (HQ / HEOMD)
- Program Manager: A. Martinez (ARC / R)
- Operations Lead: S. Ormsby (ARC / PX)
- Engineering Lead: J. Benavides (ARC / TI)
- Payload Integration: M. Boyer (JSC/OZ)

SPHERES

Smart SPHERES

Smartphone Upgrade

• Convert SPHERES from satellite testbed to free-flying robot

Google Nexus-S

- Android-OS smartphone
- Hardware
 - 1GHz Cortex A8 (ARM) + GPU, 512 MB RAM, 16 GB flash
 - 3-axis gyro, 3-axis accel., two color cameras (still/video)
 - 480x800 touchscreen
- Connectivity
 - 802.11 b/g/n (Wi-Fi)
 - MicroUSB
- Physical
 - 63x124x11 mm, 129 g

Smart SPHERES Team

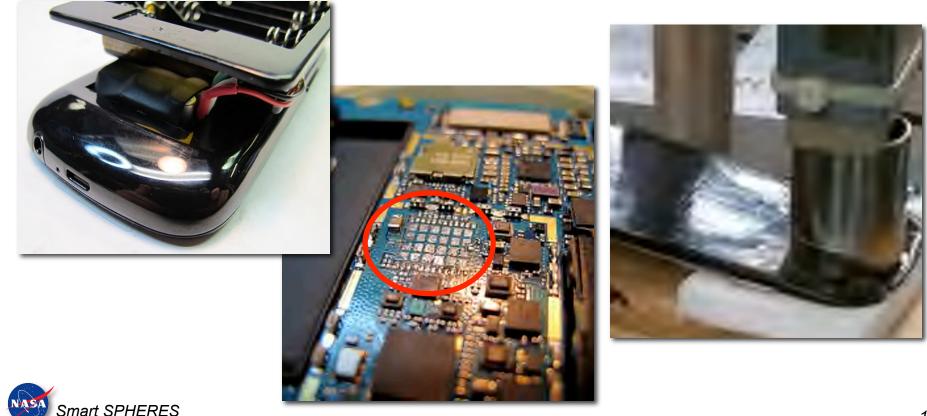
- Team Lead: C. Provencher (ARC / TI)
- Engineering Lead: DW Wheeler (ARC / TI)
- User Interfaces: T. Cohen (ARC / TI)
- Smartphone Software: T. Morse (ARC / TI)
- ISS Certification: M. Bualat (ARC / TI)

Putting a Smartphone on ISS ...

Certification Challenges

- **GSM 850Mhz frequencies** are not safe for ISS
- Cell phone **lithium-polymer** batteries are not flight certified
- Alkaline batteries are preferred and shipped (upmassed) on regular 6-month basis
- **Glass breakage** is a safety critical problem (free-flying shards)
- **Procurement** and certificates of conformance (prove that this is a "smartphone")
- Mechanical drawings and assembly procedure
- Windows XP SP3 with new device and no driver support

Smart SPHERES



Putting a Smartphone on ISS ...

Modifications for ISS Certification

- Replaced Lithium polymer battery with Alkaline (AA "six-pack")
- Removed GSM chip (transmitter front-end module)
- Added teflon tape to contain glass in case of breakage

Smart SPHERES on ISS

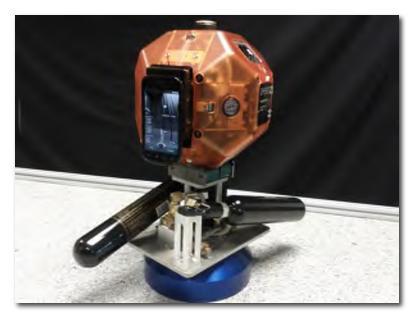
Smartphone Upgrade

- Delivered to ISS on STS-135
- Provides low-cost, COTS avionics upgrade for SPHERES
- Activiated and initial check-out on November 1, 2011

Key Points

- Smartphone was the first COTS smartphone (with open-source software) certified for use on ISS
- Smartphone enables remote operation of SPHERES by crew and ground control
- Smartphone provides modern CPU, Wi-Fi, and sensors (camera, magnetometer, etc)


Checkout Test (Nov 1, 2011)



Verify performance in space

- SPHERES translated 1m in +X, +Y, +Z directions
- SPHERES made full rotations about the X, Y, Z axes.
- Ran same test on ISS and in SPHERES Lab (ARC) to compare and assess the results
- Logger app (Android Market) recorded all available sensor data
 - Gyroscope
 - Magnetometer
 - Gravity
 - Linear Accelerometer
 - No GPS
 - No battery temperature

Coordinate Systems

Smart SPHERES Checkout

November 1, 2011 Crew: Mike Fossum, Expedition 29 Commander

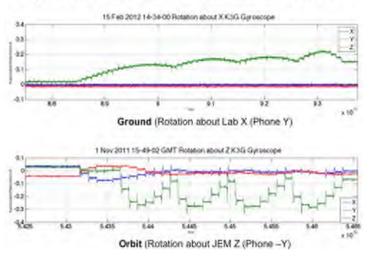
4x speed

Smartphone Sensors

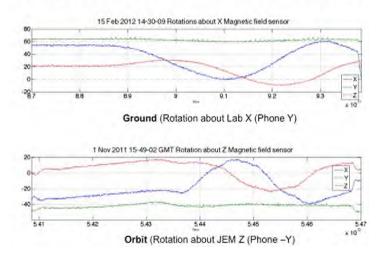
Raw video from smartphone

Exposure balanced

Smartphone Sensors


Gryoscope

- Four 90 degree turns (with pauses in between)
- Total duration was faster on orbit (less mass & no friction)
- On-orbit "stair steps" due to thrusters firing
- On-orbit has oscillations in X & Z axes (ground unit sits in a pallet which keeps it stable)

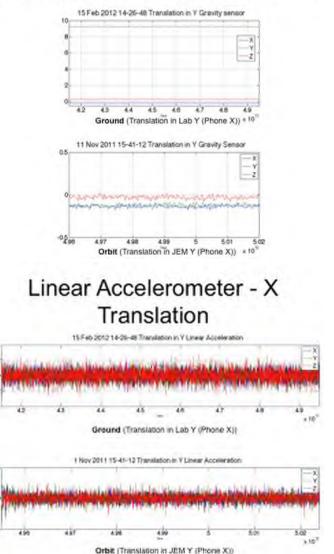

Magnetometer

- No significant difference
- Field is stronger on Earth
- Neither were calibrated

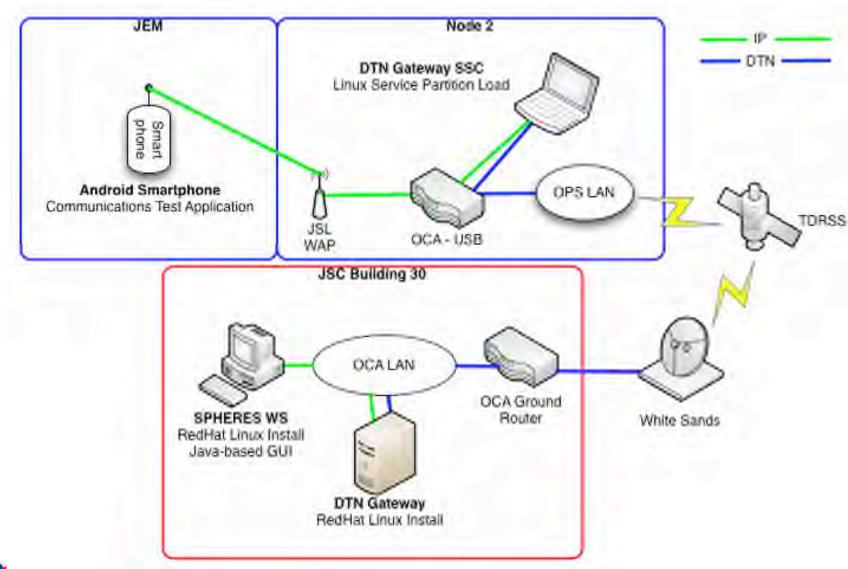
Gyroscope - Rotation about Y

Magnetometer - Rotation about Y

Smartphone Sensors


Gravity

 Results - as expected (confirmed microgravity...)


Linear Accelerometer

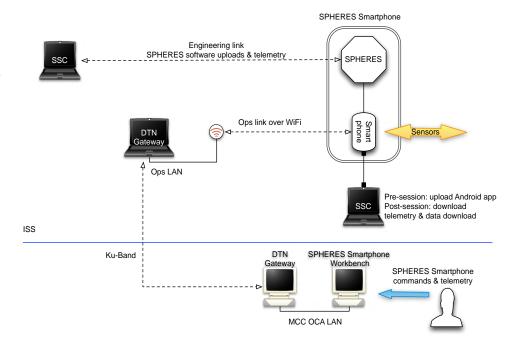
- Movement does not register with the sensor on ground or in orbit
- SPHERES mass = 4Kg
- Twelve thrusters with 0.1N each

Gravity Sensor - X Translation

Smart SPHERES Network Config

Data Comm Test (July 2, 2012)

Nominal conditions

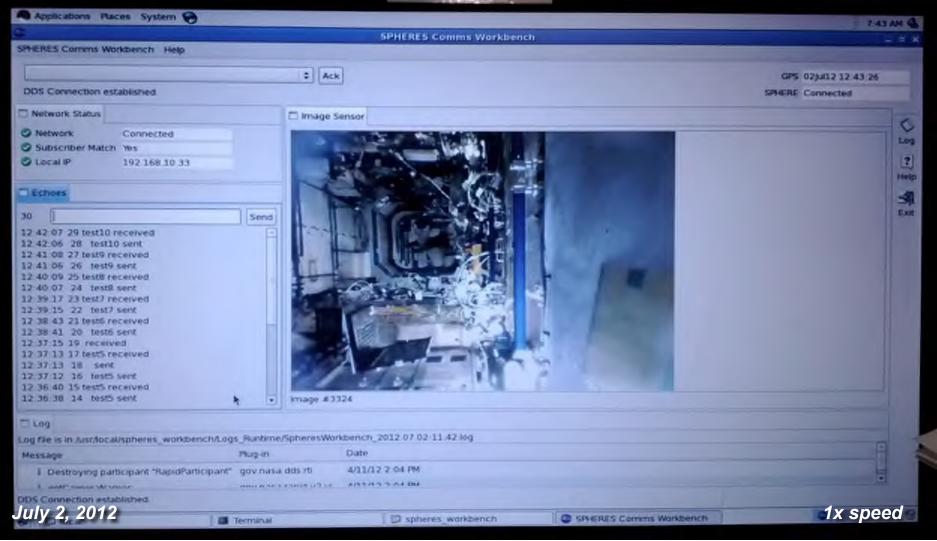

- 10 minutes of video downlink
- 11 no-op commands
- Tested greater than the normal Wi-Fi range

Off-nominal conditions

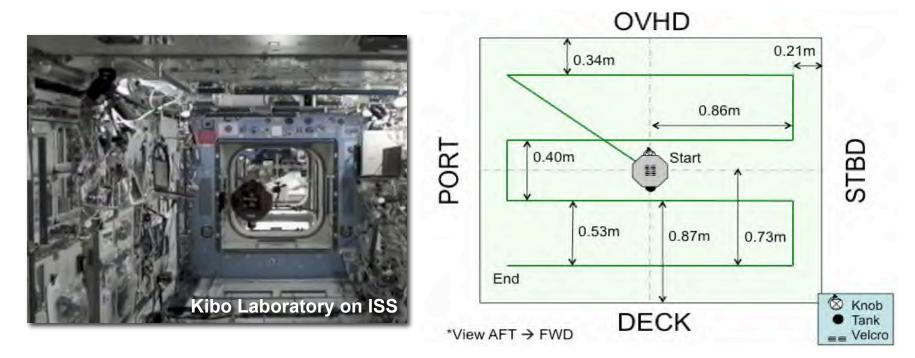
- Loss of signal
- ISS network error

Protocols

- NASA "RAPID" (messaging) http://rapid.nasa.gov
- Data Distribution Service (DDS) middleware
- Disruption Tolerant Networking (DTN) transport



Data Communications Test



Space Station Free-Flying IVA Survey

- Demonstrate video survey within ISS (Kibo Laboratory module)
- Smart SPHERES remotely operated by ISS Mission Control (Houston)
- Manual control (discrete commanding) and supervisory control (command sequences)

Remote Ops from MCC-Houston

IVA Survey

December 12, 2012 Crew: Kevin Ford, Expedition 33 Commander

2x speed

IVA Survey

December 12, 2012 Crew: Kevin Ford, Expedition 33 Commander

-

1x speed

Future Work

Hardware Improvements

- New propulsion system
- Longer run-time
- Docking mechanism
- "Manipulator" (perhaps just a stick!)
- IFM specific sensors (RFID, miniature gas, etc)

Software Improvements

- Navigation: localization and hazard detection
- Crew detection and tracking
- Auto-docking and recharge
- Integration with ISS telemetry and databases
- Upgraded avionics and core flight software

Questions ?

