

SPIE Micro+Nano Materials, Devices and Applications, Sydney, Australia

Wirelessly Powered Micro-Spectrometer for Neural Probe-Pin Device

Dr. Sang H. Choi NASA Langley Research Center Hampton, VA

> Dr. Uhn Lee Gacheon Medical School Incheon, Korea

Dr. Hargsoon Yoon and Dr. Kyo D. Song Norfolk State University Norfolk, VA

December 7, 2015

Implanted Probes & Batteries

Source: Dr. Uhn Lee, Gacheon Medical School, Incheon, Korea

DBS Implantation

Source: Dr. Uhn Lee, Gacheon Medical School, Incheon, Korea

Current Limitations

Power Source: Implanted battery with tether line

- Painful and cumbersome
- Battery life: 3-5 years
- Power-line vulnerable to disconnection

Performance: Jolt suppression voltage only

- Diagnosis and search of anomaly required
- A single function

New Approach: Probe-Pin Device

Power Source: Wirelessly powered

- Micro-coil with train of magnetic pulses
- Rectenna array for microwave coupling

Performance: Integrated multi-functionality

- Diagnosis and search of anomaly required
- Multi-functions integrated
 - o Jolt suppression voltage o Neuro-electricity
 - o Brain temperature
 - o Brain pressure

- o Neuro-chemistry by
 - micro-spectrometer

Logic Circuit for Monitoring, Control, & Data Acquisition

Approximation of Diffraction Phenomena

- Optical situation when light passes a spot, $S(\eta,\xi,0)$ at a coordinate $(\eta,\xi,0)$ on an aperture and illuminates a point, P(x,y,z) at a coordinate (x,y,z) on a screen.
- According to Huygens's Principle, the electric field at a far point P, is obtained by adding each point of the light's wave-front surface, the electric field strength at point **P**, $u(\mathbf{P})$ can be written by the integration of tiny electric fields from all spots like S in the aperture.

Aperture

Note that while the distance r is a temporary variable for integration, the distance r' is a fixed engineering parameter of a given instrument that does not change over the integration.

Where
$$\lambda = \text{wavelength}, k = \text{wavenumber of light}.$$

$$u(P) = \frac{iA}{\lambda} \iint \frac{e^{-ix}}{r} d\frac{3}{2}d\eta$$
Where $\lambda = \text{wavelength}, k = \text{wavenumber of light}.$

$$u(P) = \int \int \frac{3}{2} S(\frac{2}{r}, \eta, \theta) \exp[ik((\frac{2}{r} + m\eta))] d\frac{3}{2}d\eta$$

$$r = r' - (\frac{x}{r} + \eta), l = \frac{x}{r'} = \cos \alpha; m = \frac{y}{r'} = \cos \beta$$
Fraunhofer Terms
$$r = r' - \frac{x\xi + y\eta}{r'} + \left[-\frac{(x\xi + y\eta)^2}{2r'^3} + \frac{\xi^2 + \eta^2}{2r'} \right] + \cdots$$
Fresnel Terms
$$u(P) = \frac{i}{iz} \exp[-ikz] \iint S(\frac{2}{r}, \eta, \theta) \exp[\frac{-ik}{2z} [(x - 2)^2 + (y - \eta)^2] \frac{\mu}{2} \frac{2}{2} i\eta$$

$$a < z < \frac{a^2}{\lambda}$$

Where λ = wavelength, k = wavenumber of light.

Linear Fresnel Spectrometer

Optical distance Z = gap distance between Fresnel grating and the edge of the 0th pixel + pixel pitch/2 + (pixel number × pixel pitch)

Then, the wavelength of the photon on the n_{th} pixel (pixel number = n) with the Optical distance Z is determined by: Wavelength = K²/Z, where K is a Fresnel grating size constant such that, $K = \frac{R}{\pi}$

$$Wavelength = \frac{K^{2}}{Z} = \frac{K^{2}}{gap + PixelNumber * PixelPitch}$$
$$= \frac{R^{2}}{L \times (gap + PixelNumber * PixelPitch)}$$
$$Energy = \frac{hcLZ}{R^{2}} = \frac{hcL}{R^{2}} (gap + PixelNumber * PixelPitch)$$

where L is the number of gradient rings (circular grating) or gradient lines (linear grating) and R is the radius of a circular grating or the height of a linear grating.

Pixel to Wavelength/Energy Conversion

Dimension 1. Active Area: 6.4mm x 0.5mm (Spectrum Area)

2.Die Size: 9.5mm x 2.5mm

3.Packaging: 15.8mm x 7.87mm

Spectrometer Chip

Optical Performance of the 1st Spectrometer Chip

PPD Logic (internal) with TFRA or MIC

1-D Scan Prototype System

μ-Spectrometer

Optical Sensing Diagram

SERS Substrates

Dopamine Sensing Modules

Comparison Table

	Current (Activa-PC+S)*	Prototyped (DBS+µ-Spectrometer)			
Height	65 mm	54 mm			
Length	49 mm	50 mm			
Case Thickness	15 mm	20 mm			
Battery Type	Primary cell	No battery Wireless Power Transfer/Supercapacitor			
Adaptive Sensing	Local Field Potential	Optical Sensing (Neurotransmitter)			
Sensing Method	Electrical Sensing	Optical Sensing			
Sensing Target and Range	Local Field Potentials (< mm)	Neurotransmitters (< mm) O2Hb, HHb Concentration Change (< cm)			
Longevity	Depending on Battery Life and Usage (< 5 years)	Wireless Power Transfer (no limit)			

* Currently evaluated for FDA approval (first implantation: Aug. 7, 2013)

Wireless Dopamine Sensing Test

Dopamine Sensing Results

• Result of cyclic voltammetry of dopamine sensing using carbon fiber electrode

Chronic Dopamine Sensing of Evoked Activity in Rat Brain

Chronic Sensing Test

Medical Applications of WPT

the substantia nigra. Researchers now suggest that its symptoms are a late sign of a more extensive disease that begins in the brain stem and spreads throughout the brain in six stages.

A wireless power receiver with a probe-pin device (PPD) is implanted for deep brain stimulation (DBS). The wireless power receiver couples with incident microwave or with rotating magnetic field.

An array of dipole rectennas with a probe-pin device (PPD) couples with microwave to generate DC power for DBS.

A magnetic induction coils with a probe-pin device (PPD) couples with a rotating magnetic field for DC power for DBS.

Thin-film Dipole Rectenna Array

Densified Thin-film Membrane Dipole Rectenna Array (Langley Designed)

Development of Dipole Rectenna

Year

Wireless Power Transfer

•

Inductance Power Transfer

- 0-3 cm, short range
- Safe for human interaction
- low power applications

Microwave Power Transfer

Planar Coils

Flexible Rectenna Array

Compact and Polarity-free Enhanced Dipole Rectenna Array

Angle SCALE 2 : 1

Wireless Power Transfer: Magnetic Resonance Coupling

Items	Coil-1	Coil-2	Coil-3	Coil-4			
Coil Width	d _{w1} =35.5cm	d _{w2} =35.5 cm	d _{w3} =5.5 cm	d _{w4} =5.5 cm	,	4.92	8.00
Coil Height	d _{H1} =17.3cm	d _{H2} =17.3cm	d _{H3} =5.5cm	d _{H4} =5.5cm	8	36.00	
Number of turns	1	3	N/A	2	48,		
Radius of coil	5.6 mm	5.6 mm	N/A	0.325 mm	<u> </u>	Front View SCALE 2 : 1	Side View SCALE 2 : 1

Comolo	3rd	3rd	Capacitor	Inductance	Resonant Frequency (MHz)		Percentage	0
Sample	Gauge	Turns	(pF)	(μH)	Calculated	Measured	Error	Output (v)
A1	20	9	47	14.74	6.05	12.2	101.65	2.5
A2	20	12	22	26.21	6.63	7.58	14.33	6
A3	20	15	10	40.96	7.86	7.24	7.89	5
A4	20	25	5	113.77	6.67	5.9	11.54	8.5
A5	30	10	10	17.8	11.93	10.85	9.05	4.2
A6	30	20	10	71.4	5.96	5.73	3.86	4.52

Concluding Remarks

- Neural probe-pin devices (PPD) based on Fresnel diffraction microspectrometer were developed
- Neural PPD was successfully tested with animal brain
- Wireless power transmission through human tissue is a promising technology: microwave and magnetic induction coupling
- Microwave transmission through a thin skin was successfully tested and considered for the integration with neural probe-pin devices