

Recent Aeroacoustic Tools and Methods Developments for Analysis and Design of Advanced Aviation Systems

Stephen A. Rizzi, Leonard V. Lopes and Casey L. Burley Aeroacoustics Branch NASA Langley Research Center

53rd AIAA Aerospace Sciences Meeting @ SciTech 2015 Kissimmee, FL January 8, 2015

Outline

- Aeroacoustic Tools and Methods Development
- Aeroacoustics Tools and Methods Use Cases
 - System Noise
 - CFD/CAA Based Design
 - Time Dependent Configurations

• Perception-Influenced Design

- NASA Auralization Framework
- Open Rotor and Distributed Electric Propulsion Auralizations
- Concluding Remarks

Aeroacoustic Tool and Methods – Development

NASA Projects: Push capabilities to AS/T³ for advancing tools and methods

- cross-cutting source noise models and data
- validation data

NASA Projects + Other Government Agencies + Industry: Pull of AS/T³ Tools and Methods
Capabilities to perform system noise prediction and MDAO analysis

AS/T ³ enabled	AS/T ³	Environmentally Responsible Aviation	Fixed Wing	Rotary Wing	High Speed
Propulsion Airframe Aeroacoustics	TD-FAST	 Data Diffraction Integral Method (DIM3) 	Fast Scattering Code (FSC)		
Engine source		Soft vaneEngine fan data	 Core models/data Fan models/data Soft vane data 		 Surrogate models for jet noise
Airframe source		 LG data Flap-side edge data 	 LG models Flap-side edge models 		
Source to receiver effects				 Propagation models/data Terrain effects 	

NRA: Fast Efficient Computation of Acoustic Scattering for Aircraft Noise Prediction (Old Dominion University)

APPROACH

Develop, implement and validate a fast, efficient, high-fidelity time domain acoustic scattering tool for a complete aircraft configuration over a practical frequency range.

- Implement a boundary element computation on unstructured triangular and quadrilateral surface elements
- Validate results with known time and frequency domain benchmark solutions
- Demonstrate the validity and efficiency of the method for full conventional and unconventional aircraft configurations
- Develop interface for integration with the ANOPP2 multifidelity framework

SIGNIFICANCE

The validated time domain acoustic scattering tool (TD-FAST) provides higher-fidelity acoustic shielding/scattering predictions for incorporation into system noise assessments of current and future aircraft configurations.

POSSIBLE FUTURE WORK

- Incorporation of external incident source descriptions
- Incorporation of impedance boundary condition on scattering surfaces
- Implementation and validation of a CPU-only version

Aeroacoustic Tools and Methods – Use Cases

System Noise

CFD/CAA Based Design Time-Dependent Configurations including Flow and Acoustics

System Noise

• Evaluate closed HWB design (N2A-EXTE)

- Boeing redesign of the CMI SAX 40 via NASA Research Announcement award (2007-2011)
- Simultaneously meet NASA N+2 goals for noise (42 EPNdB below Stage 4) and fuel burn (>25% reduction rel. B737/767 technology)
- Fabricate and deliver a full-span, 5.8% scale model for aerodynamic and acoustic testing
- NASA Langley conducted aerodynamic (2011) and acoustic (2012-2013) tests
- Noise assessment process developed to utilize latest data and prediction methods
 - Measured aerodynamic performance for aircraft configuration & flight path definition
 - Measured acoustic data for source noise and propulsion airframe aeroacoustic effects
 - ANOPP2/ANOPP prediction for source noise, propagation, certification noise metrics

N2A-EXTE Noise Assessment Process

Cumulative System Noise Results

38.7 dB is reached with technology assumptions for fan and gear noise

SciTech 2015

Component PNLT for "Best" Configuration

2014 (complete):

 Initial coupling ANOPP2 with Model Center for conventional 737 aircraft

2015:

- Coupling ANOPP2 with Model Center for unconventional aircraft utilizing scattering method
- Initial coupling ANOPP2 with OpenMDAO for conventional 737 aircraft

2016:

- Coupling ANOPP2 with OpenMDAO for unconventional aircraft utilizing scattering method
- Initial coupling using adjoint methodology of ANOPP2 within OpenMDAO

Aeroacoustic Tools and Methods – Use Cases

System Noise

CFD/CAA Based Design Time-Dependent Configurations including Flow and Acoustics

- Development of an open rotor noise prediction methodology
- Comparison with CRPFAN (not shown) will provide further confidence in NASA's suite of open rotor prediction tools
 - Multi-fidelity source modeling capability within ANOPP2
- Mixture of prediction methods leads to better understanding of noise characteristics
- More accurate N+2, N+3 system assessments based on predicted source levels as opposed to measurement

Aeroacoustic Tools and Methods – Use Cases

System Noise

CFD/CAA Based Design Time-Dependent Configurations including Flow and Acoustics

Time Dependent Configurations – Rotorcraft Noise Prediction and Propagation

What do these transformative systems have in common?

Perception-Influenced Design

"A synthesis of validated aeroacoustic tools and methods plus human perception"

• Auralization of aircraft flyover noise consists of source-path-receiver modeling

- Source noise synthesis based on prediction (ANOPP, ANOPP2), flight-scaled wind tunnel data, flight test data
- Propagation of synthesized noise generates pseudo-recording at ground receiver and accounts for spreading loss, atmospheric absorption, Doppler simulation, and ground plane effects
 - Pseudo-recording demonstrated to obtain same integrated metrics as those obtained from system noise prediction
- Receiver modeling takes pseudo-recording to a subjective test environment for evaluation

Host Environment (Executable, GUI, MATLAB, LabView, etc.) [C/C++, VisualBasic, Java, MATLAB, etc.]								
Executive/Scheduler Manages threads, optimization, message-passing, memory								
API Object Definitions Component Source SourceFrame Sink Receiver Atmospec Path PolySampleBul GTF GTFSeries	SceneGen Defines a "simulation frame" at block boundary by traversing and interpolating trajectories, and reading live sensors	PathFinder Connects sinks back in time to sources through multi-path algorithms, maintaining at least source x sink paths at each frame	SynthEngine Creates new block of time pressure history from each component for each different emission angle for each frame	GTFEngine Applies Gain-Time-Filter to TPH at fractional samples for each path				

DEP Aircraft Component and System Noise

High lift systems (LEP & T.E.)

- Motor nacelles
- Minimize turbulent edge flows

Engine/airframe integration

- Prop-prop interaction
- Prop-wing interaction

Landing gear design & placement

Propulsion/LEP System

- Propeller noise
- Electric motor noise
- Low annoyance/detection configurations

Effect of Spread Spectrum on Leading Edge Propeller Noise

State-of-the-Art General Aviation Baseline – Cirrus SR22 Average Source Power: 102.2 dB (prop only)

Notes

- All average source power levels taken over 1km x 1km area
- Sound sampled at ground location in middle of area, with aircraft flying 150m directly overhead

Distributed Electric Propulsion – LEAPTech Concept with 18 propellers Average Source Power: 87.5 dB (props only) for all configurations below, yet sound very different

- NASA aeroacoustic tools span range from source noise prediction and reduction, to PAA, to systems analysis, to human perception and metrics
 - Unifying ANOPP2 and NAF frameworks allow projects to plug-in their own methods and both leverage and invest in the cross-cutting toolset that AS/T³ is continuing to develop.
 - Tools under development support all NASA aeronautics projects and those of other government agencies and industry.
- Aeroacoustic tools and methods demonstrated for system noise prediction, CFD/CAA based designs, and time-dependent configurations
 - ANOPP2 acoustic formulations provide a new path for Revolutionary
 Computational Aerosciences work to achieve optimized air vehicle designs
- Perception-influenced design is a means of achieving low noise conceptual and detail design for advanced configurations in a MDAO environment
 - This is an enabling capability not previously available
 - Applies to vehicle systems over a wide range of flight regimes