Synthesis and Modification of Holey Graphene for Energy Storage

Emerging Holey 2D Nanomaterials

Yi Lin,¹ Jae-Woo Kim,¹ and John W. Connell²

¹National Institute of Aerospace, Hampton, VA 23666 ²Advanced Materials & Processing Branch, NASA Langley Research Center, Hampton, VA, 23681

Next-Gen Energy Storage Devices: Lightweight AND Low-Volume

Power (Density)

$$P = \frac{V^2}{4Rs}$$

Energy (Density)

V: Cell voltage R_s: Internal resistance C: Capacitance Applications Backup power systems Avionics Communication systems UAVs

Impacts

- Improve aircraft reliability and operation time
- Improve energy efficiency
- Reduce emissions
- Improve aircraft safety

Nanocarbon Electrodes

Current collector: Metals

Electrode: Activated carbon (0.1 – 0.8 mm)

Separator: Thin porous

polymeric membrane

Electrolyte: Aqueous, organic, or ionic liquid

Nanocarbons

<u>Carbon Nanotubes</u>: L < 5 μ m; D < 100 nm <u>Graphene</u> : L < 10 μ m; T < 5 nm

✓ High theoretical surface area
 ✓ High electrical conductivity

Improving Accessible Surface Area

- Graphene foams & aerogels
 - Porous
 - High gravimetric capacitance

- But LARGE volume (i.e., low volumetric performance)

For example:

□ Zou et al., ACS Nano **2010**, *4*, 7293.

□ Ji et al., *Nano Lett.* **2012**, *12*, 2446.

Chen et al., *Adv. Mater.* **2012**, *24*, 4569.

Gun et al., Adv. Mater. 2013, 25, 2554.

Our Solution: Holey Graphene (hG)

Controlled Catalytic Oxidation

Nanoscale

Nanoscale 2013, 5, 7814.

Holey Graphene vs. Graphene

Improved ion transport path at high stacking density

Courtesy: Prof. Liangbing Hu (UMD)

Hole Size Control

Catalyst Removal: HNO₃(2.6 M), 2h reflux

hG_x(X: Starting Ag Content)

Holey Graphene vs. Graphene for Supercapacitors

□ <u>In-plane porosity</u>: Improve ion transport path

- Accessible surface area: Improve gravimetric capacitance
- □ <u>Volume reduction</u>: Mitigate need to create large pores/spacing
- Electrical Conductivity: Retain graphitic crystallinity

Effect of Holes?

Catalyst Loading > Hole Size

Improvement of capacitance was achieved at an optimum catalyst loading (\leftrightarrow hole size).

- □ More catalyst, larger holes.
- Optimal capacitance at ~10 mol% Ag

hG: Effect of Acid Treatment

Further capacitance improvement was achieved by introducing more oxygen functional groups.

Scalability

S-52 S-52(S-52(S-52(S-5200 30.0kV 0.0mm x80.0k TE 7/29/11

Catalyst-Free Synthesis of hG: "Generation II" "hG₀"

Differential Thermogravimetric Analysis (DTA)

Single Step + Catalyst-Free = Highly scalable!

ACS Nano 2014, 8, 8255.

Catalyst-Free Synthesis of hG₀

Catalyst-free partial oxidation of graphene (or CNTs) at higher temperature than catalytic method

- □ Minimal processing, single-step
- **Typical hole sizes** < 10 nm for hG₀

hG₀: Facile Thin Film Fabrication

Enhanced Volumetric Performance

ACS Nano 2014, 8, 8255.

Improved volumetric performance.

Graphene vs. Holey Graphene

Improved ion transport path at high stacking density

Courtesy: Prof. Liangbing Hu (UMD)

Intrinsic Capacitive Properties of hG₀

Presence of Holes *≠* Capacitance Improvement

Material Properties: Capacitive Performance of hG₀

G 430 °C/3 h 430 °C/10 h

Presence of Holes *≠* Capacitance Improvement

hG₀: Synthesis Temperature

hG₀: Raman Properties

hG₀: Chemical Composition (XPS)

Fitted Peaks	Binding Energy (eV)	Area (%)						
		G	h-Graphene (10 h air oxidation)					
			395 °C	405 °C	435 °C	445 °C	450 °C	460 °C
From C-1s								
sp ²	284.8	74.9	70	70.7	69.7	68.4	65.4	67
C-OR	286.4	8.2	10.3	9.8	10.5	11.5	13.2	12.6
C=O	288	3.2	3.8	3.9	3.7	4.2	6	4
COOR	289.3	1	1.3	1.2	1.2	1.6	1.7	1.8
From O-1s ^a								
O-C	531.6	51.1	38.4	37.9	36.8	39.2	34.7	33.9
O=C	533.6	45.4	46.8	47.2	44.2	48.2	44.6	44.3
Doped O 1	536 – 536.5	3.5	9.4	10.5	11.6	9.5	15.5	13.8
Doped O 2	538.2 – 539.2	_	5.4	4.4	7.4	3.1	5.2	8

hG₀: Surface Area and Pore Size

Capacitance vs. O Content vs. Weight Retention

hG₀ Formation Mechanism

Application Challenges

- Which structure-composition is the most appropriate for a specific application?
 - Sensors
 - Catalysis
 - □Supercapacitor electrodes
 - □ Battery electrodes
 - Membranes
 - Electronic devices

hG Modification: Conductive Polymers

Polyaniline (PANI)

In situ polymerization

Further capacitance improvement can also be achieved by introducing pseudocapacitance.

hG Modification: Metal Oxides

Manganese Oxide (MnO_x)

S-5200 30.0kV 0.2mm x150k TE 5/13/14

300nm

S-5200 30.0kV 0.2mm x501k TE 5/13/14

2D Nanomaterials Beyond Graphene

- □Hexagonal boron nitride (h-BN)
- Metal dicharcogenides (e.g. MoS₂, WS₂, etc.)
 Others

Can they be also etched to form holes?

Our Experience in Boron Nitride Nanomaterials

- Nanosheets (BNNS) vs nanotubes (BNNT) ≈ Graphene vs CNT
 - "White" graphene (insulating; bandgap ~ 6eV)
 - Thermal stability (>800°C in air)
 - Chemical inertness
 - High thermal conductivity
 - High mechanical strength
 - Radiation resistant
 - Low toxicity
 - Potentially low cost
- Potential applications
 - Thermal conductive (but electrically insulating) fillers
 - Low optical absorption or transparency
 - Robust coatings
 - High quality dielectric substrate for graphene electronics:
 - require large area (preferably >10 μm) sheets
- Current Bottleneck:
 - High-yield production
 - Size control
 - Actual program needs

Nanoscale 2012, 4, 6908-6939.

BNNS from Exfoliation of h-BN

Chemical Functionalization

<u>lipophilic</u>

Octadecylamine (ODA)

hydrophilic

 H_2N

Polyethylene glycol (PEG), amine-terminated

Sonication-Assisted Direct Solvent Dispersion

• B • N

J. Phys. Chem. Lett. 2010, 1, 277.

J. Phys. Chem. C 2010, 114, 17434.

J. Phys. Chem. C 2011, 115, 2679.

BNNS-Based SERS Sensors

Thermal/oxidation resistance and low-color of BNNS is unique and should be further explored.

ACS Appl. Mater. Interfaces **2012**, *4*, 1110.

□How can we etch the inert 2D surface?

Ag-Decorated h-BN (Ag-BN)

Nanoscale

Nanoscale **2013**, *5*, 7814. Reproduced by permission of The Royal Society of Chemistry

Ag-Catalyzed BN Oxidation

Thermal Gravimetric Analysis (TGA): 10 °C/min, air

Ag-Catalyzed BN Oxidation

800 °C, 3h b a 100 nm 100 nm d C e 20 nm 50 nm

Edge Structure of BNNS

Zigzag-B Zigzag-N Armchair

Atomic Structure

Pit Growth

Temperature Effect

Temperature Effect: Acid Purification

After purification with nitric acid, intrinsic shapes of pits/holes were revealed.

FT-IR

Note: HR-TEM resolution was insufficient to differentiate B vs. N

Zigzag-edge Enriched!

Zigzag-B Zigzag-N Armchair

Modulation of Bandgap?

Holey BNNS: Where to go from here?

- □ Scalability
- □ Hole density

□ Properties:

- Holey BNNS
- Zigzag edge-enriched BNNS

Applications

- Membranes
- Catalysis

Acknowledgments

- □ Funding:
 - Leading Edge Aeronautics Research for NASA (LEARN)
 - NASA Langley Internal Research and Development (IRAD) Program
- □ Students:
 - Yunlong Liao
 - Michael Funk
 - Caroline Campbell
 - Lawrence Garcia
 - David Baggett
- Collaborators:
 - Prof. Liangbing Hu (University of Maryland)
 - Prof. Liming Dai (Case Western Reserve University)
 - Prof. Zhongfang Chen (University of Puerto Rico)
 - Prof. Hannes Schneipp (College of William & Mary)
 - Prof. Frank Gupton (Virginia Commonwealth University)
- Experimental Assistance
 - Dr. Kent Watson (NIA)
 - > TGA: Crystal Chamberlain (NASA)
 - > HR-TEM: Prof. Hani Elsayed-Ali/Dr. Wei Cao (ODU)
 - > XPS: Prof. Frank Gupton/Kendra Woodberry (VCU); Prof. Liangbing Hu/Dr. Xiaogang Han (UMD)