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FUN3D Core Capabilities
http://fun3d.larc.nasa.gov
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• Established as a research code in late 1980’s; now supports   
numerous internal and external efforts across the speed range

• Solves 2D/3D steady and unsteady Euler and RANS equations    
on node-based mixed element grids for compressible and 
incompressible flows

• General dynamic mesh capability: any combination of                
rigid / overset / morphing grids, including 6-DOF effects

• Aeroelastic modeling using mode shapes, full FEM, CC, etc.

• Constrained / multipoint adjoint-based design and mesh adaptation

• Distributed development team using agile/extreme software 
practices including 24/7 regression, performance testing

• Capabilities fully integrated, online documentation,                
training videos, tutorials

US Army



Conventional Adjoint-Based Design

• Flow field and grid adjoint equations 
derived for the time-dependent Navier-
Stokes equations on arbitrary 
combinations of static/rigidly 
moving/deforming overset grids 
undergoing parent-child motion

• The following terms are included in the 
Lagrangian

• Objective function

• Grid terms

• Higher-order temporal terms

• Fluxes

• Geometric Conservation Law term

• Overset interpolation terms

• Initial conditions

• Implemented by hand and verified 
using complex variables

∘ is the Hadamard vector multiplication operator; see

Nielsen, E.J. and Diskin, B., “Discrete Adjoint-Based Design for Unsteady Turbulent 

Flows on Dynamic Overset Unstructured Grids,” AIAA Journal, Vol. 51, No. 6, June 2013.



Conventional Adjoint-Based Design

• After linearizing the Lagrangian and solving the flow and grid adjoint
equations, the desired sensitivities are computed as follows

ʘ is the extension of the Hadamard operator to vector-matrix multiplication where the vector on the left 

multiplies each column in the matrix on the right.



Examples
Forward / Reverse Solutions for F-15

• Transonic turbulent flow over 
modified F-15 configuration

• Propulsion effects included as well 
as simulated aeroelastic
deformations of canard/wing/h-tail

• Objective is lift-to-drag ratio

Forward

Solution

Reverse

Solution



Examples
Forward / Reverse Solutions for Wind Turbine

• Incompressible turbulent flow over 
NREL Phase VI wind turbine

• Overset grids used to model 
rotating blade system

• Objective function is based on the 
torque

Forward Solution

Reverse Solution



• Composite grid consists of 9,262,941 nodes / 54,642,499 tetrahedra

• Compressible RANS:  Mtip=0.64, Retip=7.3M, m=0.37, a=0.0º

• Blade pitch has child motion governed by collective and cyclic control inputs:

• Baseline value of all control inputs is zero

UH-60A Blackhawk Helicopter
Overview

1 1cos sinc c s       

Blade

pitch Collective Lateral cyclic
Longitudinal cyclic



UH-60A Blackhawk Helicopter
Problem Definition and Results

• Objective is to maximize      while satisfying trim constraints over second rev:

• Separate adjoint solutions required for all three functions

• 67 design variables include 64 thickness and camber variables across the blade 

planform, plus collective and cyclic control inputs up to ±7º
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such that

• Feasible region is quickly located

• Both moment constraints are satisfied within 

tolerance at the optimal solution

• Final controls: c=6.71º, 1c=2.58º, 1s=-7.00º

Flow

Solves

(2 hrs)

Adjoint

Solves

(3 hrs)

Total Time

Baseline 0.023 - - -

Design 0.103 4 4
0.8 days

(38,400 CPU hrs)

LC



UH-60A Blackhawk Helicopter
Results

Rolling

Moment

Pitching
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Lift



Multidisciplinary Design
Sonic Boom Mitigation

• Multidisciplinary discrete adjoint has been very successful for sonic boom 

mitigation - discrete derivatives of ground-based metrics with respect to OML

• Many other disciplines being considered / pursued
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Challenges for Unsteady Problems

• Extensive linearization and infrastructure effort, particularly for 
dynamic and overset grids

• Sheer cost – every simulation is now a time-dependent run

• For steady flows, terms could be
computed once and stored for efficiency

• Unsteady flows require these
linearizations to be recomputed at every
time step

• Need for entire forward solution

• Brute force it: Store to disk (big data)

• Recompute it: Store periodically,
recompute intermediate steps as
needed (checkpointing)

• Approximate it: Store periodically,
interpolate intermediate steps as
needed

• Chaotic flows



Goal of Current Work

• Theory exists that states these sensitivities are well-defined and bounded

Why does conventional approach not work?

For chaotic flows:

• The finite time average approaches the infinite time average

• The sensitivity for a finite time average does not approach the sensitivity for the 
infinite time average

Compute sensitivities of infinite time 
averages for chaotic flows

Chaotic shedding for 0012

M∞=0.1  Re=10,000  a=20
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Approach

• Least-Squares Shadowing (LSS) method proposed by Wang and 
Blonigan

• Key assumption is ergodicity of the simulation: long time 
averages are essentially independent of the initial conditions

• Also assumes existence of a shadowing trajectory

• The LSS formulation involves a linearly-constrained least squares 
optimization problem which results in a set of KKT equations

• Preliminary LSS exploration for fluids applications
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LSS System
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f  g Q This is a globally coupled space-time 
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represents a time level
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a is a regularization parameter

h is related to time dilation



Reduced LSS System

• To determine sensitivities, we need the LSS adjoint solution

• Use a Schur complement approach to arrive at a reduced system for 
the LSS adjoint variables:

• This remains a globally coupled space-time problem

• BBT increases the fill of the matrix

• Furthermore, the system is dense due to CCT term

Writing the previous system as
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Sensitivity Evaluation

• To determine sensitivities, we evaluate the conventional sensitivity 
expression using the LSS adjoint solution

• Conventional terms related to initial conditions drop out



Problem Definition

• Unstructured mesh consisting of 102,940 grid points with 100,139 prisms 
and 1,144 hexes in spanwise direction

• Relatively coarse wall spacing to alleviate stiffness in LSS system

• Laminar Navier-Stokes equations with second-order spatial discretization

• First-order backward differencing in time for LSS simplicity

Shedding NACA 0012

M∞=0.1  Re=10,000  a=20



Problem Definition

• Simulation started from chaotic initial solution to improve ergodicity

• Objective is to maximize time-averaged lift over final 1,000 time steps

Lift vs Time Step

Averaging

Interval

Lift vs Alpha



Approach

• Execute FUN3D flow/adjoint solvers to output data to disk for use in 
LSS: nonlinear residual vectors and Jacobians of residual and 
objective function

• For this tiny problem, the raw dataset is ~1.1 TB (in-core requirement 
much larger)

• Developed standalone LSS solver, where partitioning is performed in 
time with a single time plane per core

• Assume the spatial discretization fits on a single core for 
simplicity

• Global GMRES solver used with a local ILU(0) preconditioner for 
each time plane, with CCT term neglected in preconditioner

• Execution was constrained to a subset of the cores available on each 
128 GB Haswell node to provide sufficient memory for solving the 
LSS adjoint system

• Checked discrete consistency of LSS implementation using complex 
variables

• This complex variable test does not provide the same rigor for LSS as 
for conventional adjoint implementations; additional verification 
approaches needed



Solution of LSS Adjoint System

• After ~30 minutes for I/O, solution converges 5 orders of magnitude in 
~30 mins on 2,000 cores

• Solution remains bounded

Convergence of LSS Adjoint System LSS Adjoint Solution for Energy Equation



Current Status and Future Outlook

• Assess if (or how well) ergodicity assumption is satisfied for 
this problem

• Evaluate quality of computed sensitivities

• Attempt design optimization

• How to afford extension of LSS to realistic problems?

Thank you to the organizers

for having us!


