

2nd AIAA Aeroelastic Prediction Workshop: Plans & an Interesting Technical Issue

Jennifer Heeg, Pawel Chwalowski

NASA Langley Research Center

Dave Schuster NASA Engineering & Safety Center

Daniella Raveh Technion – Israel Institute of Technology

Adam Jirasek, Mats Dalenbring

Swedish Defense Research Agency, FOI

Aerodynamics Technical Working Group Meeting, January 2015, Kissimee FL

AePW building block approach to validation

Utilizing the classical considerations in aeroelasticity

- Fluid dynamics
- Structural dynamics
- Fluid/structure coupling

AePW-1: Focused on Unsteady fluid dynamics

AePW-2: Extend focus to coupled aeroelastic simulations

You are invited to participate in AePW-2

Extend focus to coupled aeroelastic simulations

	Case 1	Case 2	Optional Case 3		
			А	В	С
Mach	0.7	0.74	0.85	0.85	0.85
Angle of attack	3	0	5	5	5
Dynamic Data Type	Forced Oscillation	Flutter	Unforced Unsteady	Forced Oscillation	Flutter
Notes:	Attached flow solution	 Unknown flow state 	 Separated flow effects 	 Separated flow effects 	 Separated flow effects on aeroelastic solution
	 Oscillating Turn Table (OTT) exp data 	 Pitch and Plunge Apparatus (PAPA) exp data 	 Oscillating Turn Table (OTT) experimental data 	 Oscillating Turn Table (OTT) experimental data 	 No experimental data for comparison

AePW-1: Applying the Lessons Learned

- One configuration only
- Benchmarking case: including a case that we have confidence can be "well-predicted"
- Comparison metrics:
 - Unsteady quantities for all cases
 - Integrated sectional forces and moments
 - Critical damping ratios and frequencies
 - Extended statistics: mean, std, mode, max, min
- Time histories from solutions requested because
 - nothing is steady
 - single person, single method of post-processing matters
 - there's always more to see- nonlinearities, off-nominal frequency content
- Results requested at more finely spaced points than experimental data
- Common grids suggested for analyses
- Various fidelity aerodynamic contributions encouraged
- Discussion telecons for analysis teams

Overview of requested submittal data sets

- Steady rigid pressure coefficient distributions: statistics of the results
- Time histories
 - Angle of attack
 - Leading and trailing edge displacements
 - Pressure coefficients
 - Lift & pitching moment coefficients
 - Sectional lift & pitching moment coefficients
- Frequency response functions: C_p/θ
 - At forced oscillation or flutter frequency
 - Across 0-100 Hz
- Static aeroelastic pressure coefficient distributions: statistics of the results
- Flutter bounds

Steady rigid pressure distributions

Case comparisons 60% span,

For the primary forced oscillation case, Case #1, disagreements with experimental data limited to the peak of the upper surface shock.

For the primary flutter case, Case #2, shows a well-matched rigid pressure distribution without much variation among the computational results.

The complexity of the Case #3 is indicated by the variation among the computational results & difference from the experimental data \rightarrow Shock location, shock strength, aft loading especially on lower surface.

Temporal parameter influences on aeroelastic stability results

FUN3D analysis (URANS + SA)

	Case 1	Case 2	Optional Case 3		
			А	В	С
Mach	0.7	0.742	0.85	.85	.85
Angle of attack	3°	-0°	5°	5°	5°
Dynamic Data Type	Forced oscillation	Flutter	Unforced Unsteady	Forced Oscillation	Flutter
Notes:	 Attached flow solution. Oscillating Turn Table (OTT) experimental data. R-134a 	 Pitch and Plunge Apparatus (PAPA) experimental data. R-12 	 Separated flow effects. Oscillating Turn Table (OTT) experimental data. R-134a 	 Separated flow effects. Repeat of AePW-1 Oscillating Turn Table (OTT) experimental data. R-134a 	 No experimental data for comparison. Separated flow effects on aeroelastic solution. R-134a

Summary of temporal parameters for different solutions

	Summary of temporal properties					
directory	DT	dt	sample/4Hzcycle			
	(nondim)	(sec/sample)				
coarseDT	121.876	0.02	12.500			
mod1DT	60.93801	0.01	25.000			
mod2DT	24.3752	0.004	62.500			
mod4DT	21.2	0.003478946	71.861			
mod3DT	20	0.003282024	76.173			
DT15	15.2345	0.0025	100.000			
medDT	12.1876	0.002	125.000			
DT7	7.61725	0.00125	200.000			
DT6	6.093801	0.001	250.000			
DT3	3.0469	0.0005	500.000			
fineDT	1.21876	0.0002	1250.000			
xfineDT	0.121876	0.00002	12500.000			

Varying time step size at q = 168.8 psf; 25 subiterations per global time step

Varying time step size at q = 168.8 psf; Temporal error convergence 10%, 1000 subiterations maximum per global time step

Stability at q=169 psf, Mach 0.74, α = 0° Varying time step size, Medium Grid, TC 10%

Physical time step size, seconds

For temporal error convergence of 10%, with gvel0 = 5.0 on both modes:

- Simulation shows unstable system for all cases gvel0 = 0.5 on both modes:
- Simulation shows stable Mode 1 behavior at smallest time step (more iterations running to see if this changes)
- Smaller time step = more unstable
- Higher value of initial kick = more unstable

Jen, remember that you are Assuming that there are 2 eigenvalues, One stable and one unstable. The fine grid result with gvel = 0.5 may just Be indicating this other root. Need to combine the gvel results and then analyze the resulting signal for 2 modes.

Varying time step size at q = 168.8 psf; Temporal error convergence 10%, 1000 subiterations maximum per global time step

Stability at q=169 psf, Mach 0.74, α = 0° Varying time step size, Medium Grid, TC 10%

Time steps / 4 Hz cycle

For temporal error convergence of 10%, with gvel0 = 5.0 on both modes:

 Simulation shows unstable system for all cases gvel0 = 0.5 on both modes:

- Simulation shows stable Mode 1 behavior at smallest time step (more iterations running to see if this changes)
- Smaller time step = more unstable
- Higher value of initial kick = more unstable

SAME INFORMATION AS ON PREVIOUS SLIDE, but showing Horizontal axis as Time steps/4 Hz cycle

The following 4 slides are from Pawel and show the results for Coarse, Medium and Fine grids for DT = 1, with 10% temporal error convergence and 1444 as the maximum number of subiterations

Varying time step size at q = 168.8 psf; Temporal error convergence 10%, 1000 subiterations maximum per global time step

Damping values were calculated using the generalized displacements associated With the two aeroelastic modes, treating each as if they contained only A single mode. Near neutral stability, this isn't a bad assumption.

How good are the fits that are used in the damping calculations? The following plots show this for the Mode 2 data sets.

Q 169, DT 1.2, comparison of temporal error convergence & fixed number (25) subiterations

q = 168.8, DT = 1.2, Temporal Error Convergence Criteria 10%, Maximum # of subiterations: 1000

Q 168.8 psf, DT 24 comparison with DT=1 10% temporal error convergence

Changing the subiteration criteria after stability

Varying temporal error convergence criteria

Flutter solution starting from rigid solution vs static aeroelastic solution

(DT = 24.375, 5% temporal error convergence)

BSCW analysis in FUN3d + SA Medium Grid Mach 0.74, gbar 169, aoa 0 Flutter analysis with time step DTmod2, 24.375 Mode 1, initiated from static aeroelastic solution 2 Mode 2, initiated from static aeroelastic solution Mode 1, initiated from rigid solution Mode 2, initiated from rigid solution 1.5 **dgibb** 0.5 0 -0.5 -1 -1.5 20000 40000 60000 Simulation_Time_adj, Simulation_Time

Solution initiated from The rigid solution shows table behavior.

Solution from static aeroelastic solution shows unstable behavior and then limit cycle oscillation

Physical LCO prediction? Q 169, DT 15, TC 10%

Initial velocity kick (gvel0) variations

For case 1250 time steps/cycle (DT = 1.2), Medium grid, 10% temporal error convergence, qbar = 168.8 psf

• Currently running 0.5, 2.75 & 10.0

For case ~ 200 times steps/cycle (DT = 7), Medium grid, 10% temporal error convergence, qbar = 168.8 psf

• Ran gvel0 = 5.0 & gvel0 = 0.5

Velocity kick influence Q = 168.8, DT = 7 TC 10%

Dec 8, 2014

Thoughts regarding LCO results

- If these are physical LCO results, then regardless of the gvel, the results should go to the same magnitude?
- That is, if they do not encounter some violation or explosion due to numeric
- Hmmm. Should they? Or, if it's physical, shouldn't the size of the velocity perturbation influence the results? Basins of attraction and all that?

152 psf,

Varying DT and subiteration convergence specification

135 psf,

Varying DT and subiteration convergence specification

