

AS3.12-5899

PSC Detection and Composition Classification

- PSCs detected as statistical outliers from background aerosol using nighttime 532-nm scattering ratio (R₅₃₂) and perpendicular backscatter (β_{\perp})
- Composition classification based on comparison of CALIOP particle depolarization ratio δ_{P} and inverse scattering ratio 1/R₅₃₂ observations with theoretical optical calculations (Pitts et al., 2007-2013)
- Five composition classes in second generation algorithm:
 - \rightarrow STS = supercooled ternary (H₂SO₄-H₂O-HNO₃) solution
 - \rightarrow Mix 1, Mix 2, Mix 2-enh(anced) = external mixtures of liquid (binary H₂SO₄ aerosol or STS) droplets and nitric acid trihydrate (NAT) particles (in increasing number density)
 - \rightarrow Ice, wave ice = H₂O ice (synoptic, mountain-wave-induced)
- When measurement noise is taken into account, there is significant overlap between the Mix 1 and Mix 2 classes. Therefore, in our most recent algorithm we have combined these into one class: Mix1+Mix2

Antarctic PSC Areas: 2006-2014

CALIPSO Polar Stratospheric Cloud Observations from 2006-2015 Michael C. Pitts¹ and Lamont R. Poole²

¹NASA Langley Research Center, Hampton, Virginia USA; ²Science Systems and Applications, Incorporated, Hampton, Virginia USA;

2006-2014 Antarctic Vortex-Average PSC Area

- General evolution of PSC season is similar from year-to-year
- \rightarrow Multi-year average is fairly representative

2006-2014 Antarctic Vortex-Average PSC Area by Composition

Arctic PSC Areas: 2006-07 to 2014-15

• Arctic PSC occurrence varies dramatically from year to year and is significantly lower overall than in the Antarctic: Multi-year average is not representative

Antarctic PSCs for July at 20 km Altitude (2006-2014)

We have developed an approach to calculate PSC optical depth from the CALIOP 532-nm attenuated backscatter measurements using a composition-dependent extinction-to-backscatter ratio. The lower panel shows the retrieved PSC optical depth along a single CALIOP orbit. The dashed lines in the lower panel indicate optical depth values of 0.01 and 0.04 which were used in earlier studies (e.g. Kinne and Toon, 1990; Hicke and Tuck, 2001) as representative of Type 1 (STS and NAT) and Type 2 (ice) PSCs, respectively.

Multi-year Monthly Antarctic PSC Optical Depth Composites

Monthly composites of PSC optical depth based on nine years (2006-2014) of CALIOP Antarctic observations. Large areas of monthly-mean PSC optical depths exceeding 0.04 are present in each month. During July and August monthly means exceed 0.1 in areas near the Antarctic Peninsula, a climatologically favored region for ice PSCs.

- Interesting spatial patterns observed in Antarctic PSC composition
 - \rightarrow [Mix 1 + Mix 2] predominant at lowest altitudes
 - \rightarrow STS predominant early and late in season
 - \rightarrow Frequent maximum in ice PSCs over Antarctic Peninsula
- \rightarrow optical depth dominated by ice clouds

Monthly Average Spatial Distributions

Arctic PSCs for January at 20 km Altitude (2006-2015)

Summary

• With measurement uncertainties, there is significant overlap between Mix 1 and Mix2 composition classes → Therefore, revised composition classification combines Mix1 and Mix2 into a single class called Mix1+Mix2

• Multi-year averages fairly representative of PSC evolution in Antarctic, but each Arctic winter is unique

• PSC optical depth retrieved using composition-dependent extinction-to-backscatter ratio