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Abstract 

NASA, Marshall Space Flight Center is working on new manufacturing techniques for producing liquid 

propulsion systems hardware. The use of additive manufacturing processes offer great promise in 

reducing manufacturing turnaround times and ultimately overall product cost. This paper will detail 

Marshall’s efforts to produce the world’s first fully additively manufactured rocket engine. Metrics thus 

far obtained on manufacturing cycle times, component and part count reductions, testing to date, and 

estimated and actual cost comparisons will be presented. Marsha ll engineering’s approach and planning 

for certification of these new manufacturing process for liquid rocket engines will be overviewed.  

Introduction 

Additive manufacturing has the potential to revolutionize liquid rocket engine design and development.  

From reducing lead times and costs, to minimizing part counts and welds, when engineers design for 

additive manufacturing the design space is wide open.  A significant amount of work is currently 

underway to better characterize material properties and provide rationale for certification of parts 

made using powder bed fusion.  In parallel, engineers are working to use the technology in their designs 

and test the hardware in relevant environments.  A team of propulsion engineers at NASA’s Marshall 

Space Flight Center (MSFC) has worked to design, build and test a rocket engine and rocket engine 

components that take advantage of additive manufacturing.  As illustrated in Figure 1, the parallel 

efforts of material development, working with the industrial base and development of propulsion 

components benefit many of NASA’s efforts in spaceflight.  Through this effort, engineers have gained 

valuable insight into the cost, schedule, and technical benefits of using additive manufacturing.  

 

Figure 1:  Parallel paths to Develop Additive Manufacturing for Propulsion 



Frequently, cost and schedule savings of additively manufactured parts is thought of as the cost and 

schedule to produce a single component or piece part. The issue with this line of thinking is that the 

benefits of using additive reach well beyond the hardware cost; if additive manufacturing influences the 

design from its inception, it can change every aspect from layout to the number of drawings to the 

number of assembly steps.  Using additive manufacturing to influence the design of a system changes 

the entire product life cycle.  Reduced part counts translate to reduced drawings, process developments 

and configuration management support.  It also means increased reliability and simplified assembly of 

historically complex components and systems.  The shorter lead times over some traditional 

manufacturing techniques, mean earlier risk reduction testing, reducing the need for upfront analysis, 

while providing real data for improved analytical models as the design matures.  While additive 

manufacturing properties are still being collected and questions remain about repeatability and a path 

to certification, additive manufacturing, particularly powder bed fusion, opens the door for a new 

approach to design and development. 

Additive Manufacturing Demonstrator Engine (AMDE) Overview 

The AMDE project began in 2012 as an effort to prove that additive manufacturing could reduce the 

time and cost to develop rocket engines.  The objectives of the project were to reduce the cost and 

schedule required for new engine development and demonstrate it through a complete development 

cycle, advance the technology readiness level of additively manufactured parts through component and 

system testing, and to develop a cost effective prototype engine whose basic design could be used as 

the first development unit for an in-space propulsion class engine.   With limited personnel, in less than 

3 years the team built over 100 additively manufactured parts, tested injectors, turbomachinery, and 

valves in both component and system tests, and designed a prototype engine. 

The AMDE is a liquid oxygen (LOX)/liquid hydrogen (LH2) open expander cycle engine designed to 

operate at 35,000 lbf of vacuum thrust with an estimated Isp of 452 seconds.  The engine was developed 

for sea level testing and due to limited resources, controllers, valve actuators and gimballing were 

excluded from the design effort.  Using additive manufacturing the overall part count of the major 

components designed and built was reduced by 80%.  Figure 2 shows the part count by component.  In 

addition to reducing the part count, there are only 30 welds estimated for the engine.  The total effort 

lasted approximately 3 years, cost $10million, and an average of 20 to 25 equivalent full-time employees 

were devoted to the effort.   



 

Figure 2:  Additive Manufacturing Demonstrator Engine Design and Part Count 

Additive Manufacturing Benefits to Propulsion System Design and Hardware 

Impact of Additive Manufacturing on the Design Cycle 

Due to the high cost and complexity of aerospace hardware and ever increasing analytical capabilities, it 

is often the practice to delay procurement and testing of components until after the critical design 

review is complete.  This reduces the risk of a redesign or costly failure during test.  Also, for parts that 

were traditionally cast, or involved complex process development, the time invested to develop the 

casting often does not allow for multiple design iterations.  The AMDE effort leveraged the low cost and 

quick turnaround times for additively manufactured hardware to shift from a traditionally serial 

development cycle, to a more concurrent cycle as illustrated in Figure 3.  This allows for earlier hardware 

build and test that impacts system design and analysis. 

 

Figure 3:  Shifting Development Model 



The AMDE effort spent approximately $500K during the first year procuring hardware based on 

preliminary designs.  This was to satisfy two primary objectives: determine “buildability” of hardware by 

additive manufacturing vendors across the United States and to test as much hardware as possible.  At 

the conclusion of the first year, sub-scale engine injector testing, shown in Figure 4, was performed that 

provided assurance that the technology was capable of producing hardware with acceptable 

performance and durability.  Prior to the sub-scale testing, multiple single element prototypes, Figure 5, 

were produced and used for water flow testing as well as sectioned to examine internal passages.  The 

information gathered early in the design cycle, allowed for build, assembly and test of the final units to 

occur without significant increases to projected costs or schedules.  Early test data also gave analysts 

and designers confidence in the performance of the component and system. 

 

Figure 4:  Sub-scale injector hot fire test 

 

Figure 5:  Single injector element 

Procuring hardware with preliminary designs also allowed for multiple iterations with additive 

manufacturing vendors without detrimentally affecting the overall schedule.  For example, the complex 

fuel turbompump shaft and blisk was originally built with features that were not acceptable.  This early 

unit opened a conversation between the manufacturing vendor and the component engineer.  After 

implementing changes, a new part was ordered for less than $10,000 and received in less than 2 

months.  While this part was not the final design, it provided confidence that the hardware could be 

produced and gave engineers and technicians a component to use for development of tool paths as well 

as rotor balance and assembly procedures and trials. 

Layout Flexibility 

During the layout of a rocket engine, it is vital to incorporate flexibility into the system.  Historically, the 

engine layout is constrained by manufacturing techniques, standard tube and pipe wall thicknesses, and 

thinning at bends.  These factors require flexible elements which can often increase cost and schedule, 



as well as complexity by introducing bellows, welds and flow induced vibrations into the system.  Using 

additive manufacturing for engine layouts removes line thickness constraints and thinning at the bends.  

It is possible to customize the line thickness to minimize overall weight.  Additionally, as the size of the 

build boxes increase, the number of welds required will be reduced.  The AMDE design included less 

than 30 welds in the entire engine assembly.  Finally, complex line geometries can build flexibility into 

the system to account for loading during operation.  Integrated loads analysis indicates that the AMDE 

layout includes enough flexibility in the system to eliminate the need for additional flexible ducts.  An 

example of the duct design is shown in Error! Reference source not found. and includes complex bends 

and internal vanes.  

 While the system flexibility is a benefit, it is not the only benefit of designing with the additive process 

in mind.  The traditional definitions of interfaces can now be blurred.  For example, it may sometimes be 

possible to incorporate valve bodies into lines, or add length to inlets or outlets of combustion devices 

or turbomachinery.  This added flexibility has the potential to reduce seals and leak paths, simplify 

assemblies and further reduce the number of welds in systems.  Reductions in the number of welds not 

only reduces the amount of “touch labor” on the system, but also reduces the number of inspections, 

doubling the savings that could be realized in assembly schedules.   

Part Count Reduction 

Using additive manufacturing to build hardware can allow designers to combine features reducing 

overall part counts.  This reduction in parts has a cascading effect on the system.  Reducing the number 

of parts reduces the number of drawings, the number of total signatures required, and the development 

of processes for assembly.  It also has the potential to simplify some analysis, such as tolerance stack up 

analysis by reducing the number of parts to be analyzed.   

Engineers at MSFC redesigned a typical flex duct using additive manufacturing.  The result was a  65% 

reduction in part count and a 70% reduction in the number of welds.1  Their efforts also reduced the 

number of machining operations by 60%.1  A sample traditional duct and the redesigned parts are 

shown in Figure 7.  

Figure 6:  Representative Duct Design 



 

Figure 7:  Flexible Element 

Another example of significant part count reduction is the AMDE injector.  Traditional injectors are 

made up of elements which consist of multiple parts each.  By integrating the elements into the injector 

body, the part count was reduced from approximately 250 parts to 6 in the injector assembly.  Again, 

not only were part counts reduced, but the development of critical machining operations and brazing 

operations were eliminated.  Also, instrumentation ports could be strategically played into the injector 

body allowing for measurements in some locations that would not be possible with traditional 

manufacturing techniques.  Figure 8 shows the primary components of the AMDE injector. 

 

Figure 8:  AMDE Injector Assembly 

The reduction in part count illustrated by the previous examples, also increases the reliability of the 

component.  Fewer parts and assembly steps reduces the likelihood for error during assembly and 

streamlines the fabrication and assembly procedures.  Eliminating welds and braze operations by 

combining parts, also eliminates the required inspections after the processes are performed. 

Efficient Packaging and Design Flexibility 

An additional benefit of using additive manufacturing in designs is more efficient packaging and a larger 

design space from which to find solutions.  In the previous example of the part count reduction in the 

injector, additive manufacturing also allowed for the spacing between the elements to be reduced by 

allowing for more efficient element designs.  In this particular example, additional elements can be 

added to the same space or the overall size of the part could be reduced.  Another example of using 

additive to overcome a packaging obstacle, is the fuel mixer shown in Figure 9.  This component was the 

focal point of the integrated layout of the engine.  The loads were highest at this location requiring 



multiple design iterations.  In the end, additive manufacturing allowed for a design solution with a 

customized geometry and varying wall thicknesses to strike a balance between flexibility and strength.  

 

Figure 9:  Fuel Mixer 

  



Mass Reductions 

Additive manufacturing allows for customized designs that efficiently remove material while maintaining 

the structural integrity of the component or system.  With more traditional manufacturing methods, 

removal of material for mass reduction could be costly depending on the part geometry, but with 

additive manufacturing, optimizing the design is easier because some of the traditional manufacturing 

hurdles can be avoided. 

While the material properties of parts made using powder bed fusion are not fully characterized as 

compared to forgings or cast parts, for Inconel, the properties are an improvement over traditional cast 

properties.  This allows for more efficient designs for parts that were previously cast.   

Conclusion 

Powder bed fusion is a new technology for aerospace applications and therefore many unknowns 

remain.  For example, repeatability and consistency of material properties is not yet fully understood.  

The impacts of minor changes to powder chemistry, the methodology to certify hardware for human 

rated applications and cleaning and inspection techniques are still being explored.  Given all these 

challenges and many others not mentioned, the benefits of incorporating additive manufacturing into 

aerospace systems outweigh the concerns.  Reductions in part count, increases in reliability, 

streamlining of fabrication and assembly, increased design flexibility and earlier testing all help to inform 

the designer and engineer.  Designers who embrace the unique aspects of additive manufacturing and 

incorporate them into their designs and use the schedule benefits to gather data early in the design 

process should see better performance and higher reliability parts in their final assemblies.  
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