

Combined Experimental and Computational Aeroacoustic Analysis of an Isolated UAV-Scale Propeller

Nikolas S. Zawodny D. Douglas Boyd Jr. Randolph H. Cabell

NASA Langley Research Center

Acoustics TWG 2015

04/21/2015

6/3/2016

NASA, N. S. Zawodny, nikolas.s.zawodny@nasa.gov

Acknowledgements

• QFF Support Team

– D. Stead, D. Kuchta, J. Moen

- Members of Acoustics Branches & NIA
 - S. Rizzi, A. Christian, F. Grosveld, J. Stephenson, M. Rafaelof
- Members of ASAB & NGCS Branches
 - W. Fredericks, P. Rothhaar

Outline

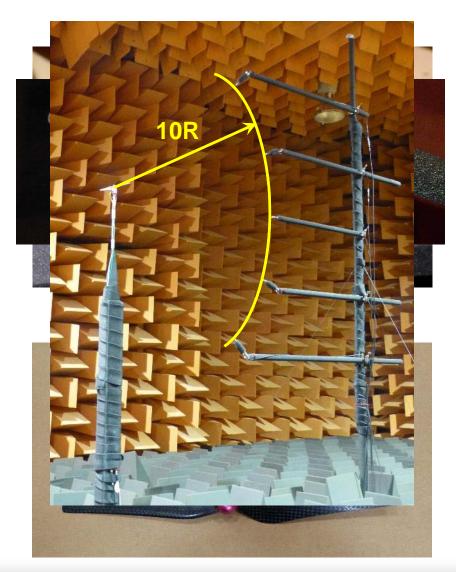
- Introduction
 - VLHA Motivations
 - Objectives of Current Study
- Technical Approach
 - Experimental Setup
 - Predictive Approach
- Preliminary Acoustic Analysis
 - Aerodynamic vs. Motor Noise
 - Predictive Comparisons
- Remarks and Future Work Ideas

Introduction

VLHA Motivations

- <u>Vertical Lift Hybrid Autonomy (VLHA) goal:</u> Show feasibility of applying current conceptual design tools to small vertical lift unmanned aerial vehicles (UAVs)
- Within acoustics discipline:
 - Assess current noise prediction tools
 - Flight tests (F. Grosveld)
 - Test stand measurements
 - Improve tools as necessary
 - Assess human response through prediction-based auralizations
 - Apply tools to develop noise control solutions and quiet designs

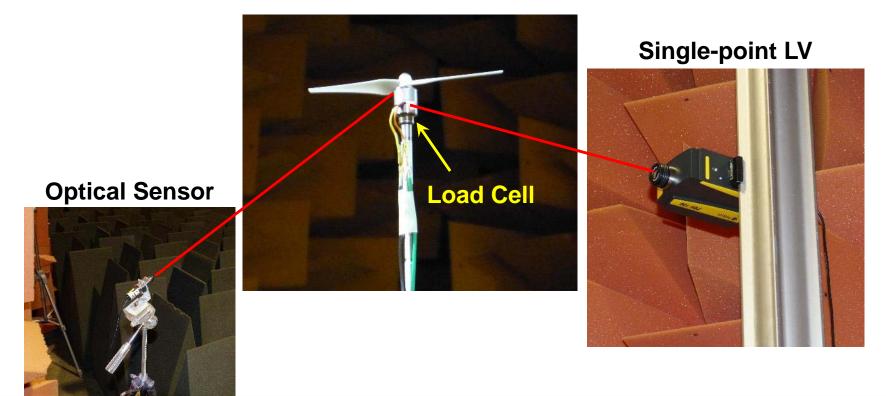
Introduction Objectives of Current Study


- Baseline acoustic characterization
 - Perform on simple, canonical propeller-motor combination
 - Attempt to identify noise source generation mechanisms
- Assess current high-fidelity noise prediction capabilities
 - CFD coupled with FW-H acoustic analogy
 - Physics-based; fewer "knobs" to tweak as compared with certain lower fidelity models

Technical Approach Experimental Setup

- Isolated propeller-motor apparatus
 - Installed in <u>Structural Acoustic</u> <u>Loads and Transmission (SALT)</u> anechoic facility
 - Blades located 6' (≈ 15R) above floor wedge tips
- Far-field microphones
 - Qty. 5 measurement locations ($\Delta \theta$ = 22.5 deg.)
 - Two types:
 - GRAS 1/2" diam. diffuse field
 - B&K ¼" diam. free-field
- Motor and propeller blades
 - Components of DJI's Phantom 2 quadcopter*
 - Two blade types:
 - Those provided by DJI (manufacturer)
 - Carbon fiber (CF) replicas

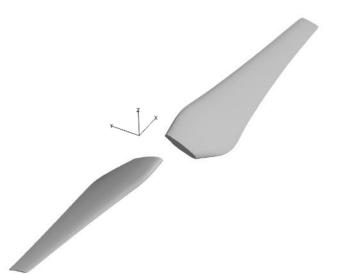
*NASA does not endorse DJI products. Product was selected based on cost and parts availability.

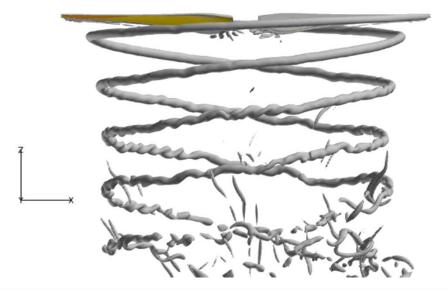

6/3/2016

Technical Approach

Experimental Setup (contd.)

- Simultaneous measurements
 - Microphones
 - Thrust (1-D load cell)
 - Motor RPM (optical sensor and tachometer)
 - Support rod deflection (via single-point LV system)
 - Unsteady current (between ESC and motor)



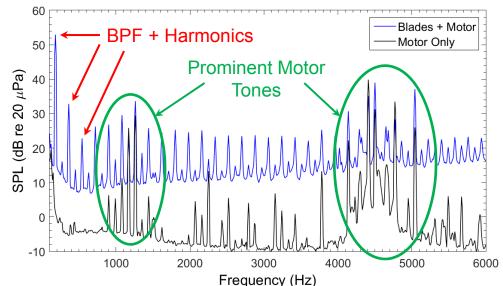


Technical Approach

Predictive Approach

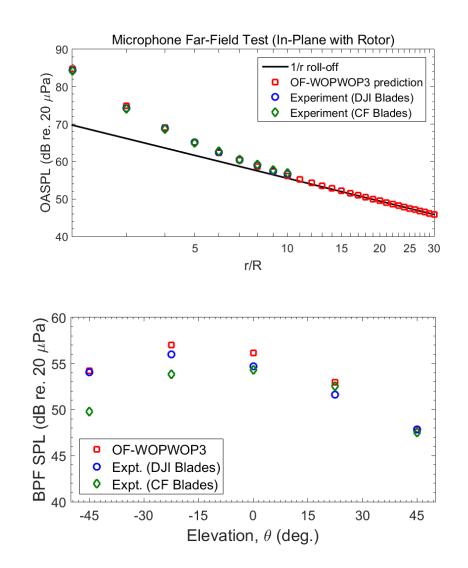
- CFD Analysis
 - Used OVERFLOW 2 unsteady RANS solver
 - Performed on isolated UAV blades (hub excluded)
 - Approximate hover condition
 - Represents a "first pass" CFD prediction
- Acoustic Predictions
 - Unsteady blade surface pressures input into FW-H acoustic analogy
 - Qty. 10 converged revolutions used

Technical Approach Important Notes for Predictions

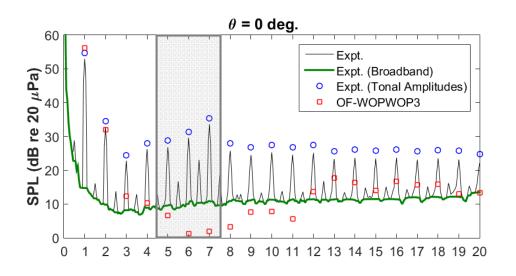

Blade geometries

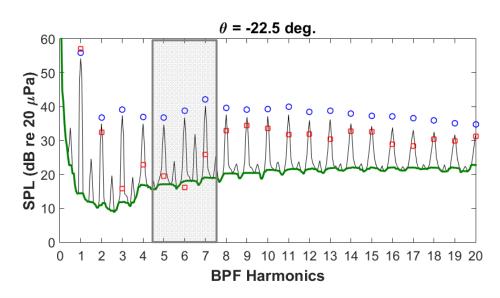
- Surface mesh generation of ONLY DJI-provided blade
- Coordinate system unknown
- CFD mesh result of "best guess" of correct orientation
- Perfect "mirror image" blade assumption
- Blade deflections unaccounted for with current CFD methodology
- Currently planning 2nd pass at scanning and surface mesh generation of BOTH blade sets

Preliminary Acoustic Analysis Aerodynamic vs. Motor Noise


- Baseline case:
 - 5400 RPM (hover)
 - DJI blades
 - "Motor Only" denotes unloaded data
- Acoustic Spectra
 - Rich with BPF and associated harmonics
 - Evidence of motor noise contamination at discrete tones
 - Effects of loaded motor noise???

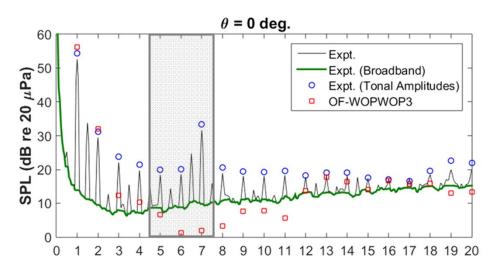
Preliminary Acoustic Analysis Acoustic Far-Field Characteristics

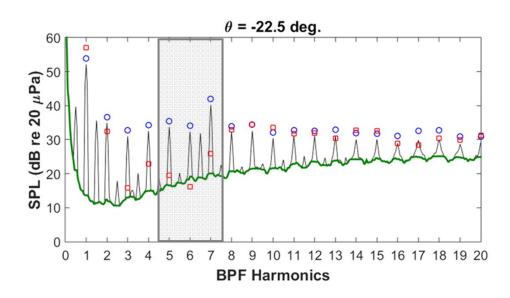

- Far-field test (OASPL)
 - Excellent agreement b/w pred. & expt.
 - Radial distance of 10R selected as reasonable location for experiments
- BPF acoustic amplitudes
 - Reasonable agreement b/w prediction and DJI blades
 - Best agreement at $\theta = \pm 45^{\circ}$
 - Maximum discrepancy < 1.5 dB
 - CF blades show larger discrepancies for negative elevation angles



Preliminary Acoustic Analysis Spectral Comparisons (DJI Blades)

- Notes:
 - BPF = 180 Hz
 - Only tonal amplitudes of BPF harmonics shown
 - Grayed out region
 represents frequency
 range of prominent
 unloaded motor noise





Preliminary Acoustic Analysis Spectral Comparisons (CF Blades)

- Notes:
 - BPF = 180 Hz
 - Only tonal amplitudes of BPF harmonics shown
 - Grayed out region
 represents frequency
 range of prominent
 unloaded motor noise

Remarks & Future Work Ideas

- Experiments
 - Have provided insight into different possible noise source mechanisms (i.e. prop noise, motor noise)
 - Tonal and broadband components of noise; modeling of both a worthwhile endeavor
 - Not representative of sound associated with full vehicle in flight
 - Develop method of measuring/isolating motor noise under loading
 - Plan to test multiple props in controlled environment (with vs. without airframe?)
 - Test effects of varying RPM between motors (induce beat frequencies)
- Predictions
 - Have started with CFD-based methodology
 - First attempt shows promise, reasonable comparisons with experiments
 - Developing process flow for incorporation of prediction results into a UAV flyover auralization
 - Plan on performing 2nd pass at generating accurate blade surface mesh
 - Can look into using lower fidelity tools (i.e. CAMRAD II) in place of CFD