The Boeing SUGAR Truss-Braced Wing Aircraft: Wind-Tunnel Data and Aeroelastic Analyses

Dr. Robert Bartels, Senior Research Engineer, Aeroelasticity Branch, LaRC

Co-investigators:

Mr. Rob Scott, Senior Research Engineer, Aeroelasticity Branch, LaRC
Mr. Timothy J. Allen, Boeing Research and Technology, Huntington Beach
Mr. Bradley W. Sexton, Boeing Research and Technology, St Louis

NASA Ames Applied Modeling and Simulation Seminar
April 16, 2015
Outline

• Context and objectives
• Wind tunnel testing and validation data
• Analyses
 – Structural Models
 – Aerodynamic Modeling
 – Mode Shape Transfer Between Dissimilar CSD/CFD Models
 – Results
 • Flutter Simulations with Linear Aerodynamics
 • Sensitivity to structural model and angle of attack
• Conclusions
Outline

• Context and objectives

• Wind tunnel testing and validation data

• Analyses
 – Structural Models
 – Aerodynamic Modeling
 – Mode Shape Transfer Between Dissimilar CSD/CFD Models
 – Results
 • Flutter Simulations with Linear Aerodynamics
 • Sensitivity to structural model and angle of attack

• Conclusions
TBW Context in Fixed Wing Project

Research Theme 2: Higher Aspect Ratio Optimal Wing
Future wings will be of higher aspect ratio, lighter, more flexible, and have varying degrees of laminar flow to reduce drag and improve performance.

Technical Challenge 2.1 Higher Aspect Ratio Wing
Enable a 1.5-2X increase in the wing aspect ratio with safe structures and flight control (TRL 3)

<table>
<thead>
<tr>
<th>Goals Metrics (N+3)</th>
<th>Noise</th>
<th>Emissions (LTO)</th>
<th>Emissions (cruise)</th>
<th>Energy Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 4 – 52 dB cum</td>
<td>CAEP6 – 80%</td>
<td>2005 best – 80%</td>
<td>2005 best – 60%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FY09</th>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
<th>FY13</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I, started April 2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Phase II, 4 years**
 - Truss Braced Wing Concept refinement
 - Update FEM
 - TBW model & TDT test
 - Aero Perf. Test, task ends April 2016

Boeing, LaRC, Boeing
TBW Phase I Findings, Phase II Objectives

Phase I – Design Study of TBW Configuration

- Large uncertainty in wing weight estimates prevent concluding whether TBW is viable/beneficial concept

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Block Fuel/Seat (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>20</td>
</tr>
<tr>
<td>Baseline “SUGAR Free”</td>
<td>30</td>
</tr>
<tr>
<td>“Refined SUGAR”</td>
<td>40</td>
</tr>
<tr>
<td>Conventional</td>
<td>50</td>
</tr>
<tr>
<td>“SUGAR High”</td>
<td>60</td>
</tr>
<tr>
<td>Truss Braced Wing</td>
<td>70</td>
</tr>
<tr>
<td>“Refined SUGAR”</td>
<td>80</td>
</tr>
<tr>
<td>Conventional</td>
<td>90</td>
</tr>
</tbody>
</table>

Phase II - Includes High Fidelity FEM to Refine Weight Estimate and Experimental Validation via ASE Wind-Tunnel Test in the TDT
Outline

• Introduction

• Wind tunnel testing and validation data

• Analyses
 – Structural Models
 – Aerodynamic Modeling
 – Mode Shape Transfer Between Dissimilar CSD/CFD Models
 – Results
 • Flutter Simulations with Linear Aerodynamics
 • Sensitivity to structural model and angle of attack

• Conclusions
Wind-Tunnel Test Objectives

• Determine Experimental Flutter Boundaries

• Investigate Active Flight Controls
 - System ID
 - Flutter Suppression
 - Assess Effects of FS on Gust Response
TBW Aeroelastic Wind-Tunnel Model

Full-Scale Design Point:
- Mach = 0.82
- Altitude = 15,915 ft
- Span = 170 ft
- Weight = 143,164 lb

Spar Pod Construction
- Wing, Strut, Pylon Scaled
- High Bandwidth Control Surfaces:
 - 2 Trailing Edge
- Designed for Side Wall Mount
 - Fuselage 13.4 ft (reduced from 18.7 ft)
- Span = 12.75 ft (to centerline)
- Standoff = 2.25 in
- Weight = 500 lb

Model Scale Factors:
- Length = 0.15
- Frequency = 3.470

Predicted Flutter Boundary

Model Design Point
- Gas = R134a
- Scaled Weight = 109.63 lb
- Mach = 0.82
- Q = 162 psf

NextGen Aeronautics
TBW Wind-Tunnel Model Wing Tip Accelerations

AOA -1 degree

Dynamic pressure ~ psf

Mach number

Hard flutter boundary

8 g
7 g
6 g
5 g
4 g
3 g
9 g
TBW Wind-Tunnel Model Wing Tip Accelerations

AOA +1 degree

![Graph showing dynamic pressure vs. Mach number with various acceleration levels and hard flutter boundary.](image-url)
Outline

• Introduction

• Wind tunnel testing and validation data

• Analyses
 – Structural Models
 – Aerodynamic Modeling
 – Mode Shape Transfer Between Dissimilar CSD/CFD Models
 – Results
 • Flutter Simulations with Linear Aerodynamics
 • Sensitivity to structural model and angle of attack

• Conclusions
Structural Models

Beam-Rod v.19 and v.20 FEMs

- V.19 FEM was updated with *before-test* ground vibration test (GVT) data.
- V.20 FEM was updated with *after-test* GVT data.
 1. Correlation of mode 3 was improved by decreasing bending stiffness on the strut attachment beam and on certain wing elements.
 2. Correlation of mode 4 was improved by adjusting torsional stiffness on inner wing elements.
Structural Models

Modes 3 and 4 coalesce to produce flutter/LCO
Structural Models

- Cases at zero degrees AoA use unloaded structural modes.
- Cases at +1 and -1 degree AoA use structural modes derived from a nonlinear loaded static solution. i.e., modes derived from a geometrically non-linear structure.
Outline

• Introduction

• Wind tunnel testing and validation data

• Analyses
 – Structural Models
 – Aerodynamic Modeling
 – Mode Shape Transfer Between Dissimilar CSD/CFD Models
 – Results
 • Flutter Simulations with Linear Aerodynamics
 • Sensitivity to structural model and angle of attack

• Conclusions
Aerodynamic Modeling

- Vortex-lattice aerodynamics for static aeroelastic solutions.
- Doublet-lattice for flutter solutions.
- The Navier-Stokes grid has 4.5 million nodes.
- The wind-tunnel wall is treated as a symmetry plane.
Outline

• Introduction

• Wind tunnel testing and validation data

• Analyses
 – Structural Models
 – Aerodynamic Modeling
 – Mode Shape Transfer Between Dissimilar CSD/CFD Models
 – Results
 • Flutter Simulations with Linear Aerodynamics
 • Sensitivity to structural model and angle of attack

• Conclusions
Mode Shape Transfer Between Dissimilar CSD/CFD Models

Final (blue) and initial (gray) surfaces
Outline

• Introduction

• Wind tunnel testing and validation data

• Analyses
 – Structural Models
 – Aerodynamic Modeling
 – Mode Shape Transfer Between Dissimilar CSD/CFD Models
 – Results
 • Flutter Simulations with Linear Aerodynamics
 • Sensitivity to structural model and angle of attack

• Conclusions
Results – Linear Aerodynamics

- Flutter simulations with linear aerodynamics
- Conditions at which Navier-Stokes simulations are performed
- All conditions in this figure are at -1 or +1 degree AoA.
- Static wing and strut loading influences the dynamic pressure at which flutter occurs.
- Note that experimental conditions are also included for reference.
Outline

• Introduction

• Wind tunnel testing and validation data

• Analyses
 – Structural Models
 – Aerodynamic Modeling
 – Mode Shape Transfer Between Dissimilar CSD/CFD Models
 – Results
 • Flutter Simulations with Linear Aerodynamics
 • Sensitivity to structural model and angle of attack

• Conclusions
Results – Comparison of v.19 and v.20 FEM

- Time step and sub-iterative convergence of RANS solutions was studied in Bartels et al. (2014).
- Comparison is made between the v.19 and v.20 TBW FEMs at 0 AoA.
- Flutter occurs for the v.20 FEM at a higher dynamic pressure due to larger separation of mode 3 and 4 frequencies.
- The shape of the v.20 flutter onset above Mach 0.80 is different than the v.19 FEM flutter onset.
Results – Comparison, AoA -1, 0 and +1 deg
Results – Comparison, AoA -1 and +1 deg

<table>
<thead>
<tr>
<th>Mach no.</th>
<th>Dyn press. (psf)</th>
<th>Analysis/Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.70</td>
<td>85</td>
<td>RANS, v.20</td>
</tr>
<tr>
<td>0.70</td>
<td>100</td>
<td>RANS, v.20</td>
</tr>
<tr>
<td>0.75</td>
<td>80</td>
<td>RANS, v.20</td>
</tr>
<tr>
<td>0.75</td>
<td>100</td>
<td>RANS, v.20</td>
</tr>
<tr>
<td>0.78</td>
<td>75</td>
<td>RANS, v.20</td>
</tr>
</tbody>
</table>
Results – Comparison, AoA -1 and +1 deg

Mach 0.75, 80 psf

Mach 0.78, 75 psf
Conclusions

- Conclusions that can be clearly made:
 1. Angle of attack and model sensitivity is predicted well with linear aerodynamics and a static nonlinear structural model.
 2. LCO is predicted with nonlinear aerodynamics (Navier-Stokes) and linear dynamic structural model.
 3. Flutter and LCO onset are quite sensitive to the mass and/or stiffness distribution of the wing.
 4. Force/displacement transfer between fluid and structure meshes requires algorithms that can accommodate complex beam structures models and fine CFD mesh spacing.

- Somewhat tentative conclusions:
 1. A better refined CFD mesh may enable better correlation of simulated LCO onset with experiment.