

Near Earth Asteroid (NEA) Scout

Les Johnson NASA MSFC Advance Concepts Office Ies.Johnson@nasa.gov

- What is a solar sail?
- A brief history of solar sailing
- NASA's Near Earth Asteroid Scout mission

How does a solar sail work?

3

- What is a solar sail?
- A brief history of solar sailing
- NASA's Near Earth Asteroid Scout mission

The Planetary Society's Cosmos-1 (2005)

- 100 kg spacecraft
- 8 triangular sail blades deployed from a central hub after launch by the inflating of structural tubes.
 - Sail blades were each 15 m long
 - Total surface area of 600 square meters
- Launched in 2005 from a Russian Volna Rocket from a Russian Delta III submarine in the Barents Sea:

The Planetary Society's Cosmos-1 (2005)

- 100 kg spacecraft
- 8 triangular sail blades deployed from a central hub after launch by the inflating of structural tubes.
 - Sail blades were each 15 m long
 - Total surface area of 600 square meters
- Launched in 2005 from a Russian Volna Rocket from a Russian Delta III submarine in the Barents Sea:

Rocket Failed

NASA Ground Tested Solar Sails in the Mid-2000's

NanoSail-D Demonstration Solar Sail

Mission Description:

- 10 m² sail
- Made from tested ground demonstrator hardware

NanoSail-D2 Mission (2010)

Minotaur IV Launch Nov. 19, 2010 5:24pm PST 650km, 72° inclination

NanoSail-D2 De-Orbit 70-120 Days After Sail Deployment

Interplanetary Kite-craft Accelerated by Radiation of the Sun (IKAROS)

Fortunately, IKAROS accomplished with Icarus could not...

NASA

Sunjammer Solar Sail Demonstration Mission

Based on one of the 400 m² NASA Demonstrators:

- Cold Rigidization Boom Technology
- Aluminized Sun Side
- High Emissivity Eclipse
 Surface
- Beam Tip Vane Control

STMD Technology Demonstration Mission (TDM)

318 m2 ISP L'Garde Solar

1200 m² L'Garde Sunjammer was to launch in 2015

Sunjammer Solar Sail Demonstration Mission

Canceled

318 m2 ISP L'Garde Solar Sail 2005

Based on one of the 400 m² NASA Demonstrators:

- Cold Rigidization Boom Technology
- Aluminized Sun Side
- High Emissivity Eclipse Surface
- Beam Tip Vane Control

1200 m² L'Garde Sunjammer was to

launch in 2015

STMD Technology Demonstration Mission (TDM)

2015's LightSail-A (The Planetary Society)

32 m² No active 'sailing' 3U cubesat

- What is a solar sail?
- A brief history of solar sailing
- NASA's Near Earth Asteroid Scout mission

Near Earth Asteroid Scout

The Near Earth Asteroid Scout Will

- Image/characterize a NEA during a slow flyby
- Demonstrate a low cost asteroid reconnaissance capability

Key Spacecraft & Mission Parameters

- 6U cubesat (20cm X 10cm X 30 cm)
- ~86 m² solar sail propulsion system
- Manifested for launch on the Space Launch System (EM-1/2018)
- 1 AU maximum distance from Earth

Leverages: combined experiences of MSFC (PM, SE and Solar Sail) and JPL (flight system bus, instrument and science) with support from GSFC, JSC, & LaRC

Target Reconnaissance with medium field imaging Shape, spin, and local environment

Close Proximity Imaging Local scale morphology, terrain properties, landing site

survey

NEA Scout Sponsored by HEOMD AES

- HEOMD's Advanced Exploration Systems (AES) selected 3 cubesats for flight on SLS EM1
- Primary selection criteria:
 - Relevance to Space Exploration Strategic Knowledge Gaps (SKGs)
 - Life cycle cost
 - Synergistic use of previously demonstrated technologies
 - Optimal use of available civil servant workforce

Payload NASA Centers	Strategic Knowledge Gaps Addressed	Mission Concept
BioSentinel ARC/JSC	 Human health/performance in high- radiation space environments Fundamental effects on biological systems of ionizing radiation in space environments 	Study radiation-induced DNA damage of live organisms in cis- lunar space; correlate with measurements on ISS and Earth
Lunar Flashlight JPL/MSFC	 Lunar resource potential Quantity and distribution of water and other volatiles in lunar cold traps 	Locate ice deposits in the Moon's permanently shadowed craters
Near Earth Asteroid (NEA) Scout MSFC/JPL	 Human NEA mission target identification • NEA size, rotation state (rate/pole position) How to work on and interact with NEA surface • NEA surface mechanical properties 	Flyby and characterize one NEA that is candidate for a human mission

NEA Scout Roles and Responsibilities

Near Earth Asteroid Scout

- Project Manager: Leslie McNutt (MSFC)
- Science PI: Julie Castillo-Rogez (JPL)
- Solar Sail PI: Les Johnson (MSFC)
- Spacecraft System: JPL
- Solar Sail System: MSFC

L1 Science Requirements

- NEA SCOUT SHALL HAVE THE CAPABILITY TO ADDRESS KEY STRATEGIC KNOWLEDGE GAPS AT A NEAR EARTH ASTEROID
- <u>Full Success Criteria</u>: Fly by a near Earth asteroid and acquire images sufficient to determine the target volume, shape model, asteroid spectral type and meteorite analogs, rotational properties (pole position, rotation period), orbit, debris/dust field in local environment, and regolith characteristics.
- <u>Minimum Success Criteria</u>: Fly by a near Earth asteroid and acquire images sufficient to estimate the target volume, the asteroid spectral type, determine rotational properties (pole position, rotation period), and orbit.
- <u>Rationale</u>: This requirement addresses the need to fill Strategic Knowledge Gaps related to asteroids as a precursor to subsequent safe and successful human missions. The data obtained will also support the advancement of science interests in asteroids.

Concept of Operations Overview

Near Earth Asteroid Scout Asteroid Flyby

NEA Reconnaissance <100 km distance at encounter 50 cm/px resolution over 80% surface SKGs: volume, global shape, spin properties, local environment

Target Detection and Approach: 50K km, Light source observation SKGs: Ephemeris determination and composition assessment (color)

Close Proximity Science High-resolution imaging, 10 /px over >30% surface SKGs: Local morphology Regolith properties

JPL IntelliCam (Updated OCO-3 Context Camera)

- Diameter ~ 5-12 meters
- Albedo is unknown
- Position is known within 2700 km (1- σ) but optical observation opportunity in July '17 will decrease uncertainty to a few 100s km
- Rotation period between a few minutes and less than 1 hour
- Unlikely to have a companion
- Unlikely to retain an exosphere or dust cloud
 - Solar radiation pressure sweeps dust on timescales of hours or day

NEA Scout Flight System Configuration

Solar Sail Subsystem Overview

Test Deployment with Linear Springs

NEA Scout Approximate Scale

QUESTIONS?

28